15 Reunião 15: 20/OUT/2020

15.1 Reuniões passadas

• tipos: int str, float bool, NoneType

• comandos de seleção

• comando de repetição while

• funções:

— criar uma nova função permite dar nome a um conjunto de comandos

None} return Now

- funções diminuem o tamanho de um programa através da eliminação de repetições
- dividir um programa em funções facilita o teste dos componentes
- funções bem projetadas podem ser usadas por vários programas

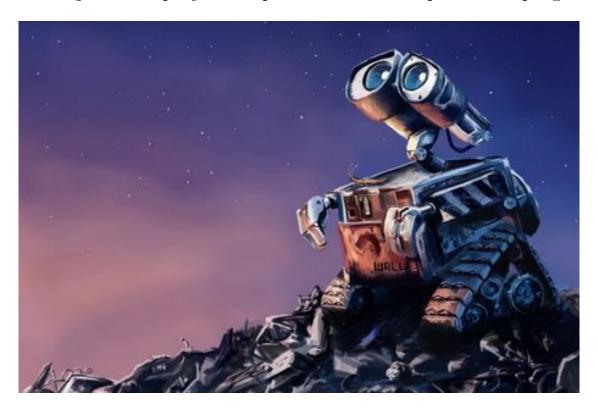


Figure 1: Fonte: WALL-E, Disney-Pixar

15.2 Exercício: séries de potências

Em matemática, uma série é essencialmente uma descrição da operação de adicionar infinitas quantidades, uma após a outra. O estudo de séries é uma parte importante do cálculo e análise matemática.

- (a) Escreva uma função modulo() que recebe um valor x e retorna o valor absoluto de x.
- (b) Escreva uma função fatorial () que recebe um número inteiro n e retorna o fatorial de n.
- (c) Escreva uma função E() que **recebe** um número real **x** um número real **epsilon** > 0 e calcular uma **epsilon**-aproximação do valor **Sx** da sérje:

$$Sx = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

Em uma **epsilon**-aproximação são adcionados à soma todos os termos até o primeiro de *valor absoluto* menor do que **epsilon**.

(d) Escreve uma função main() que lê uma número x e um número real epsilon > 0 e imprime uma epsilon-aproximação de S_x .

15.2.1

 $e^{x} = (S_{x}) = 1 + x + \frac{x^{2}}{2!}$ Exemplos

Os exemplos a seguir mostram os cálculos intermediários.

Digite o valor de (x) 1 Digite o valor de eps k=0, termo(0)=1.000000, Sx = 1.000000

k= 1, termo(1)=1.000000, Sx=2.000000

k=2, termo(2)=0.500000, $Sx \neq 2.500000$

k=3, termo(3)=0.166667, Sx=2.666667

E(1.000000) = 2.708333

k=4, termo(4)=0.041667, Sx=2.708333

Digite o valor de x: 1

Digite o valor de eps: 0.01

k=0, termo(0)=1.000000, Sx=1.000000

k= 1, termo(1)=1.000000, Sx=2.000000

k= 2, termo(2)=0.500000, Sx=2.500000

k= 3, termo(3)=0.166667, Sx=2.666667

k=4, termo(4)=0.041667, Sx=2.708333

k=5, termo(5)=0.008333, Sx=2.716667

E(1.000000) = 2.716667

15.2.2 Rascunhos

Rascunhos
$$5_{\times} = 0$$

$$0$$

$$1$$

$$1$$

$$1$$

$$2$$

$$3$$

$$4$$

$$4$$

$$5$$

$$4$$

15.2.3 Solução

(a) modulo() recebe um valor x e retorna o valor absoluto de x.

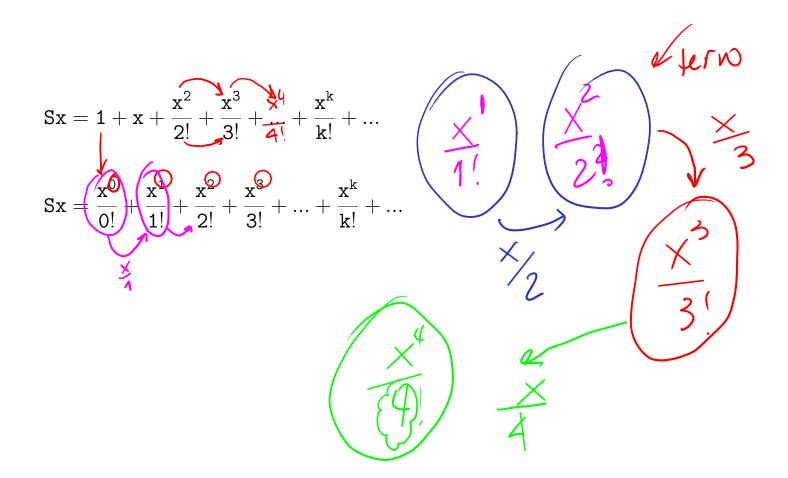
```
def modulo(x):
    '''(número) -> número
        Retorna o valor absoluto de x
    '''
    if x < 0:
        return -x # abandona a função aqui
    return x # só cheqa nesta linha se x >= 0
```

(b) fatorial() recebe um número inteiro n e retorna n!.

(c) E() que recebe um número real x e um número real epsilon > 0 e calcular uma epsilon-aproximação do valor Sx da série:

$$Sx = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ... + \frac{x^k}{k!} + ...$$

Em uma **epsilon**-aproximação são adicionados à soma todos os termos até o primeiro de *valor absoluto* menor do que **epsilon**.



$$Sx = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

$$Sx = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^k}{k!} + \dots$$

$$def E(x, eps): \\ \text{'''}(float, float) -> float$$

$$Recebe números reais x e eps e retorna uma eps-aproximação de suriáveis$$

$$Sx = 1 \\ \text{termo} = 1 \\ k = 0 \\ \text{print}(f"k=\{k\}, \text{termo}(\{k\})=\{\text{termo}\} \text{ Sx=}\{\text{Sx}\}\setminus n")$$

$$\text{while modulo}(\text{termo}) > \text{eps:} \\ k = k + 1 \\ k =$$

7

return Sx

(d) main() que lê uma número x e um número real epsilon > 0 e imprime uma epsilon-aproximação de S x.

```
e imprime uma epsilon-aproximação de S_x.

def main():
    # leia x e eps
    x = float(input("Digite o valor de x: "))
    eps = float(input("Digite o valor de eps: "))
    print(f"E({x})={E(x,eps)"))

(d) main() que lê uma número x e um número real epsilon > 0
e imprime uma epsilon-aproximação de S_x.

import math

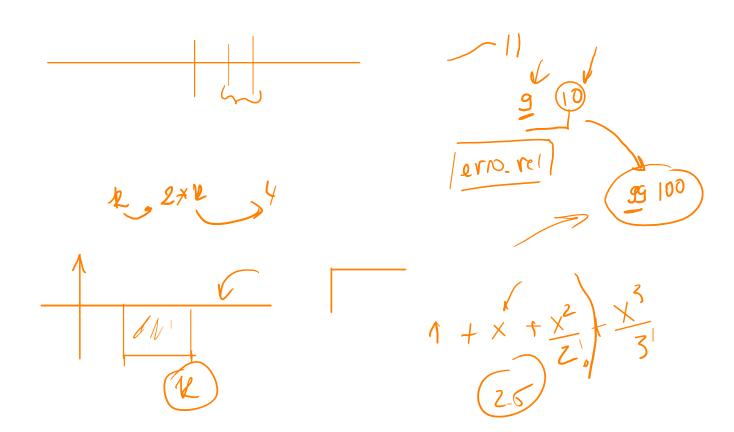
def main():
    # leia x e eps
    x = float(input("Digite o valor de x: "))
    eps = float(input("Digite o valor de eps: "))
    print(f"E({x})={E(x,eps)} math.exp({x})={math.exp(x)}")
```

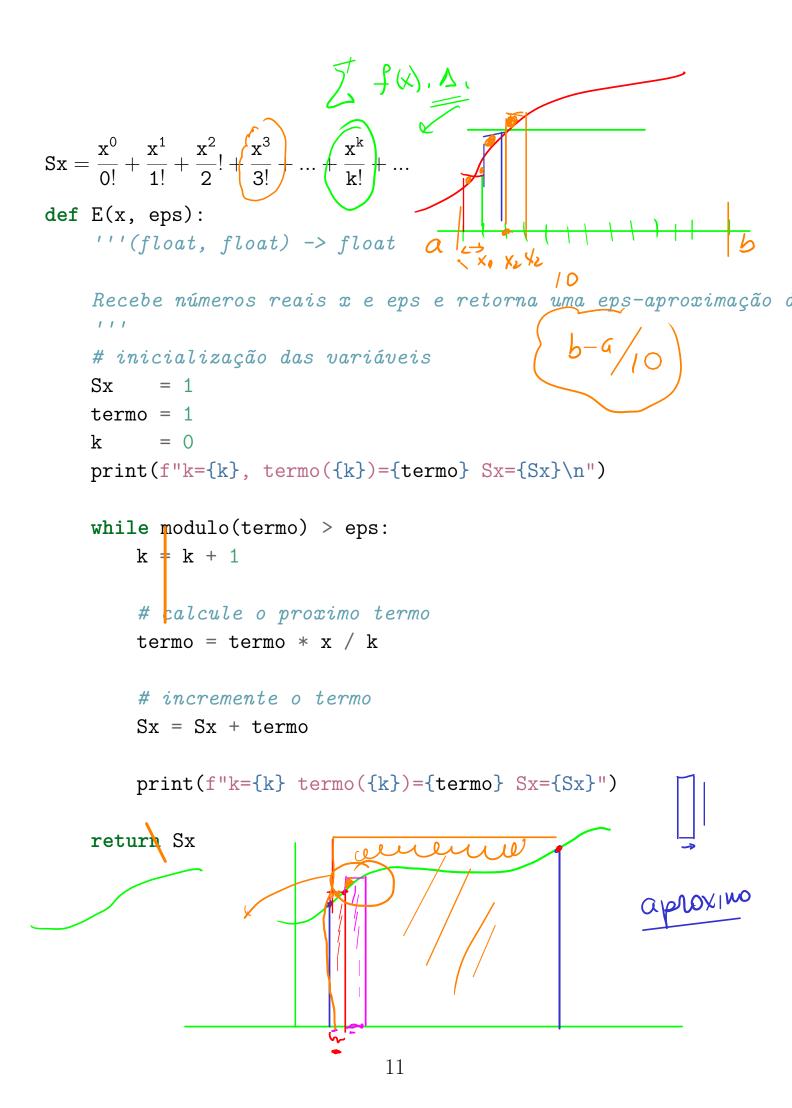
15.2.4 Exemplos

Os exemplos a seguir mostram os cálculos intermediários.

```
Digite o valor de x: 1
Digite o valor de eps: 0.1
k=0, termo(0)=1.000000, Sx=1.000000
k= 1, termo(1)=1.000000, Sx=2.000000
k=2, termo(2)=0.500000, Sx=2.500000
k=3, termo(3)=0.166667, Sx=2.666667
k=4, termo(4)=0.041667, Sx=2.708333
E(1.000000) = 2.708333
Digite o valor de x: 1
Digite o valor de eps: 0.01
k=0, termo(0)=1.000000, Sx=1.000000
k=1, termo(1)=1.000000, Sx=2.000000
k=2, termo(2)=0.500000, Sx=2.500000
k=3, termo(3)=0.166667, Sx=2.666667
k=4, termo(4)=0.041667, Sx=2.708333
k=5, termo(5)=0.008333, Sx=2.716667
E(1.000000) = 2.716667
```

$$\mathtt{Sx} = \frac{\mathtt{x}^0}{0!} + \frac{\mathtt{x}^1}{1!} + \frac{\mathtt{x}^2}{2!} + \frac{\mathtt{x}^3}{3!} + \ldots + \frac{\mathtt{x}^k}{k!} + \ldots$$





15.3 Biblioteca matemática do Python

import math

```
math.sqrt(x) # retorna raiz quadrada de x
math.fabs(x) # retorna |x|
math.sin(x) # seno(x)
math.cos(x) # cosseno(x)
math.exp(x)
```

In [1]: import math

In [2]: help(math)
Help on module math:

NAME

math

MODULE REFERENCE

https://docs.python.org/3.7/library/math

The following documentation is automatically generated from t source files. It may be incomplete, incorrect or include fea are considered implementation detail and may vary between Pyt implementations. When in doubt, consult the module reference location listed above.

DESCRIPTION

This module provides access to the mathematical functions defined by the C standard.

FUNCTIONS

acos(x)

```
Return the arc cosine (measured in radians) of x.
    atan2(y, x)
        Return the arc tangent (measured in radians) of y/x.
        Unlike atan(y/x), the signs of both x and y are considere
    cos(x)
        Return the cosine of x (measured in radians).
    pow(x, y)
        Return x**y (x to the power of y).
    sin(x)
        Return the sine of x (measured in radians).
    sqrt(x)
        Return the square root of x.
DATA
    e = 2.718281828459045
    inf = inf
    nan = nan
    pi = 3.141592653589793
    tau = 6.283185307179586
```