27 Reunião 27: 01/DEZ/2020

Figure 1: Bússola de ouro, copiado daqui

27.1 Reuniões passadas

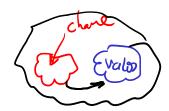
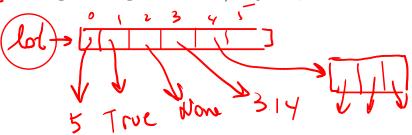


Figure 2: Desenho copiado daqui


Uni dicionário (tipo dict) é um conjunto de objetos ou itens cada um dotado de uma chave e de um valor.

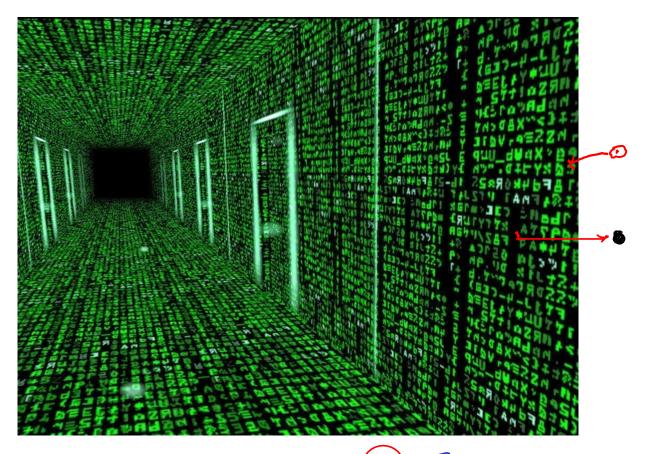
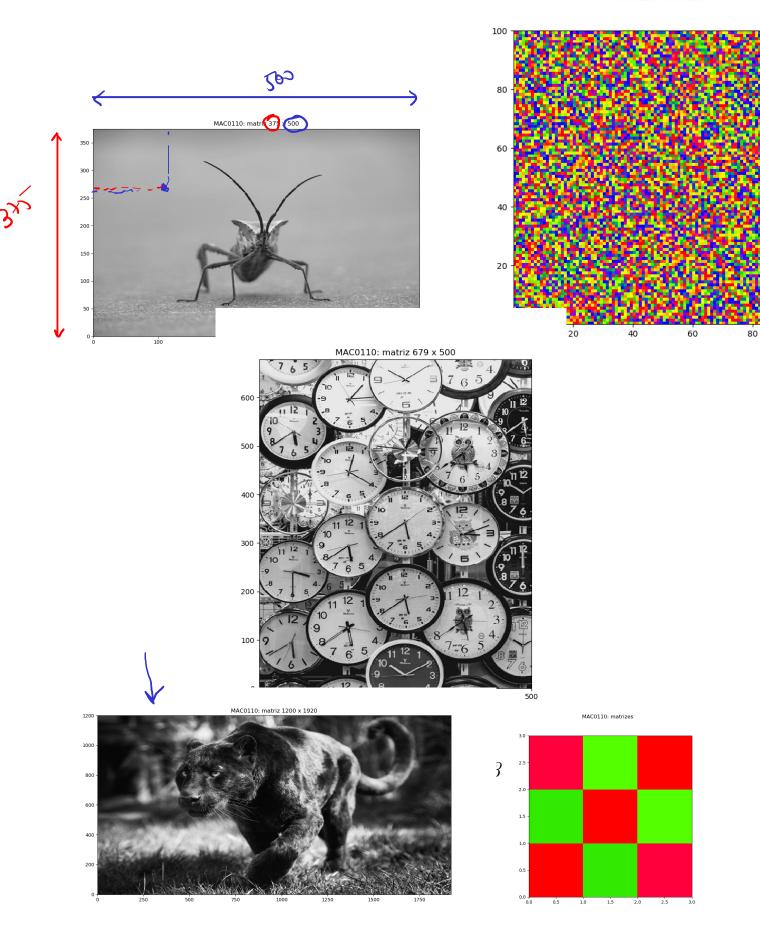
27.2 Hoje

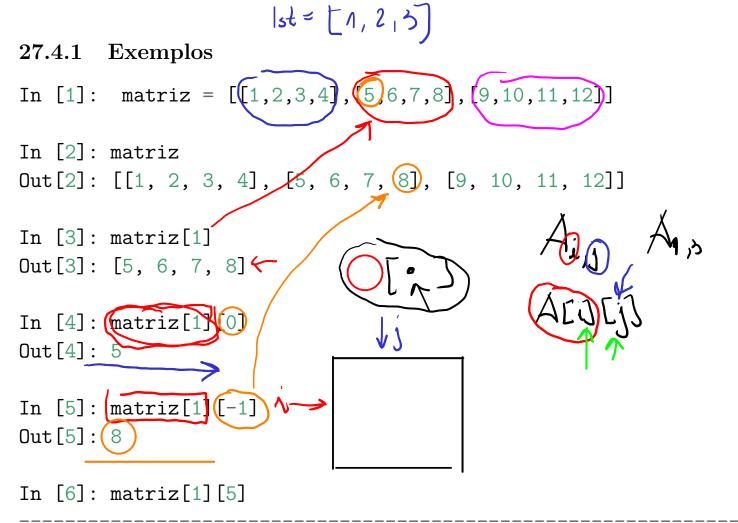
Começaremos a conversar sobre como representar matriz (=tabelas bidimensionais em Python). Hoje, nosso principal foco será em **percorrer matrizes** e nos habituarmos com seus índices e suas posições.

Lembrar:

- atribuções não cria nada, apenas um apelido;
- posições de listas e de matrizes são apelidos para coisas/objetos;

27.3 Matrizes


Figure 3: Matrix: matrix 522 x 700

Matrizes são estruturas bidimensionais (tabelas) com nlins linhas por ncols colunas muito importantes na matemática, utilizadas por exemplo para a resolução de sistemas de equações e transformações lineares e representar imagens.

27.4 Matrizes em Python

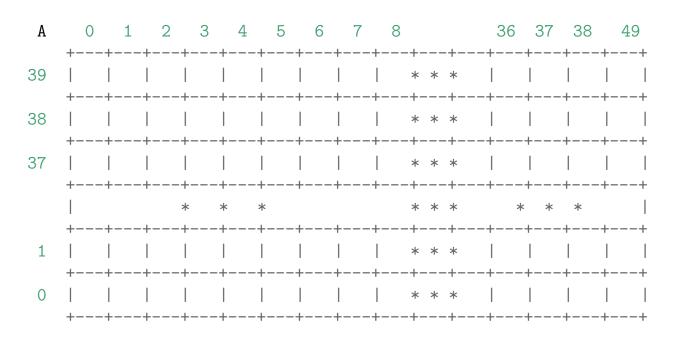
Em Python, uma matriz pode ser representada como uma lista de listas, onde elemento da lista contém uma linha da matriz, que por sua vez corresponde a uma lista com os elementos da coluna da matriz.

IndexError

Traceback (most recent

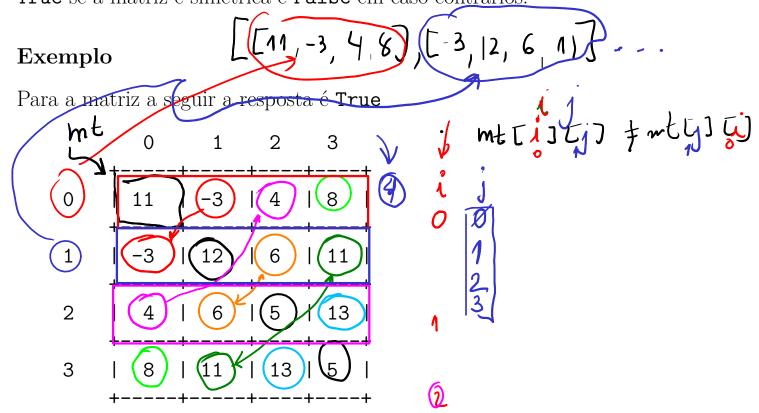
<ipython-input-6-fa3662a2b8eb> in <module>
----> 1 matriz[1](5)

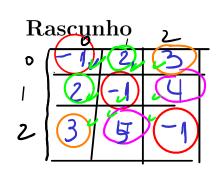
IndexError: list ind


MATRIZES

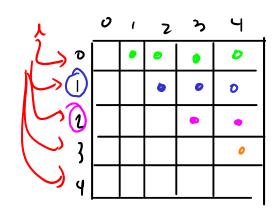
A										-+				
0								:	* *	*				
1								;	* *	*				
~ (2)					1 ×			;	* *	* -+				
			;	* >	k :	k		:	* *	*	*	*	*	-
38								:	* *	*				
39								:	* *	*				
	+	+	+	+			+	 	+	-+	+	+	+	+

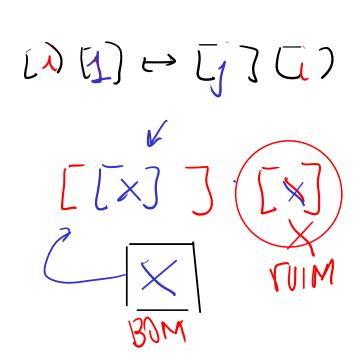
nlins = 40ncols = 50

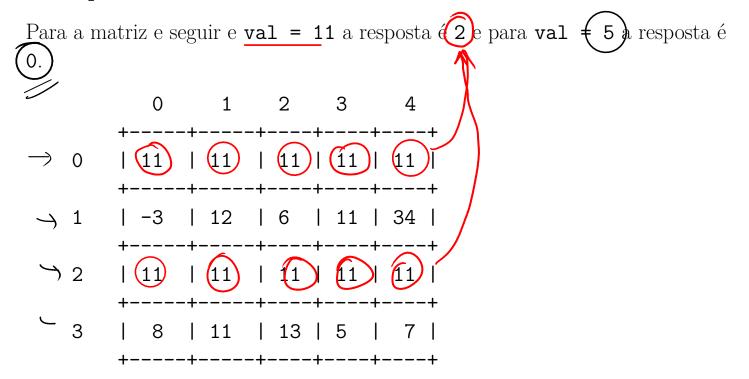

ALGUMAS IMAGENS



nlins = 40
ncols = 50


27.5 Exercício: matrizes simétricas


Escreva uma função simetrica () que recebe um matriz quadrada e retorna True se a matriz é simétrica e False em caso contrários.

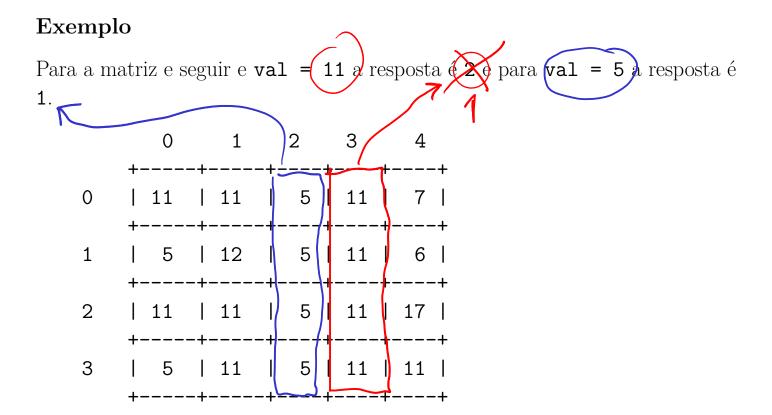



```
def simetrica(mt):
    '''(matriz) -> bool
    RECEBE uma matriz quadrada representada por lista de
           listas (list[list]).
    RETORNA True se a matriz for simétrica, em caso
           contrário retorna False.
    Pré-condição: a função supões que a matriz e quadrada
    In [10]: a = [[1,2,3],[2,1,4],[3,4,1]]
    In \lceil 117 \rceil: a
    Out[11]: [[1, 2, 3], [2, 1, 4], [3, 4, 1]]
    In [12]: simetrica(a)
    Out[12]: True
    1 1 1
    n = len(mt)
    e simetrica = True
    i = 0
    while i < n and e simetrica:
        j = 0
        while j < i and e simetrica:
            if mt[i][j] != mt[j][i]:
                e_simetrica = False
                print("Posições mt[{i}][{j}] = {mt[i][j]} != {mt[
            j = j + 1
        i = i + 1
    return e simetrica
```

27.6 Exercício: linhas com val

Escreva uma função linhas_val() que recebe um matriz mt e um valor val e retorna o número de linhas em que todos os valores são iguais a val

Exemplo



return cont

```
def linhas_val(mt, val):
    '''(matriz, obj) -> int
    RECEBE uma matriz `mat` representada por lista de
           listas (list[list]) e um valor `val`.
    RETORNA o número de linhas da m`mt` em que todos os valores
           são iquais a `val`.
    In [10]: a = [[1,1,1],[2,1,4],[1,1,1]]
    In [117: a
    [[1, 1, 1], [2, 1, 4], [1, 1, 1]]
    In [12]: linhas_val(a, 1)
    Out[12]: 2
    111
    cont = 0
    nlins = len(mt)
    ncols = len(mt[0])
    for i in range(nlins):
        iguais = True
        for j in range(ncols):
            if mt[i][j] != val:
                iguais = False
        if iguais:
            cont += 1
```

27.7 Exercício: colunas com val

Escreva uma função colunas_val() que recebe um matriz mt e um valor val e retorna o número de colunas em que todos os valores são iguais a val


```
def colunas val(mt, val):
    '''(matriz, obj) -> int
    RECEBE uma matriz `mat` representada por lista de
            listas (list[list]) e um valor `val`.
    RETORNA o número de colunas de `mt` em que todos os valores
           são iguais a `val`.
    In [10]: a = [[1,1,1],[2,1,4],[1,1,1]]
    In \lceil 117 \rceil: a
    [[1, 1, 1], [2, 1, 4], [1, 1, 1]]
    In [12]: colunas_val(a, 1)
    Out [12]: 1
    111
    cont = 0
    nlins = len(mt)
    ncols = len(mt[0])
    for j in range(ncols):
        iguais = True
        for i in range(nlins):
            if mt[i][j] != val:
                iguais = False
        if iguais:
            cont += 1
```

27.8 Exercício: diagonais com val

Escreva uma função diagonais_val() que recebe um matriz quadrada mt e um valor val e retorna True se a matriz é a diagonal principal e secundária de mt tem todos seus valores iguais a val. Em caso contrário a função retorna False.

```
def diagonais_val(mt, val):
    '''(matriz, obj) -> int
    RECEBE uma matriz quadrada `mt` representada por lista de
           listas (list[list]) e um valor `val`.
    RETORNA True se todos os valores da diagonal principal e sec
           de `mt` são iguais a `val`. Em caso contrário a função
           False.
    In [10]: a = [[1,1,1],[2,1,4],[1,1,1]]
    In [117: a
    [[1, 1, 1], [2, 1, 4], [1, 1, 1]]
    In [12]: diagonais_val(a, 1)
    Out [12]: True
    111
    iguais = True
    nlins = len(mt)
    for i in range(nlins):
        if mt[i][i] != val or mt[nlins-1-i][i] != val:
            iguais = False
    return iguais
```