
Vol 34, No. 4, 2002 December 65 SIGCSE Bulletin

R
eview

ed
 P

ap
ers

1. Introduction
Students become familiar with the topic of recursion versus
iteration in several courses as in computer programming,
algorithms, and data structures. When comparing the advan-
tages and disadvantages of recursion against iteration, we
mention the simplicity in writing and understanding a recur-
sive program (especially if it based on a recursive mathe-
matical function). On the other hand, we emphasize the fact
that recursive programs are not as efficient as iterative ones
due to the extra time cost for function calls and extra space
cost for stack bookkeeping. Thus, the epilogue in such a lec-
ture is that if we need to simply have a correct program, then
we can use recursion; however, if time is a critical issue, then
we have to use iteration.

Motivation of the present report is the article of Timothy
Rolfe in the 2001 June issue of inroads [6], where he exam-
ined a number of tips for efficient calculation of binomial
coefficients by using recursion. The author presented a
recurrence relation based on the Pascal triangle, then he
derived a more efficient recurrence relation by using some
algebra and binomial coefficient properties, and finally he
suggested using the greatest common divisor to further
improve the latter method.

2. Iterative Approaches
When lecturing on recursion and recursive programs, at the
same time we spend quite some time to compare with equiv-
alent iterative programs. Moreover, we comment on all
these methods and try to show how we can improve by elab-
orating gradually each method. Thus, students capitalize
from this engineering approach. In this respect, classical are
the books by Bentley [1,2,3]. For specific examples that
build on such a progressive approach, see Section 5.3 on
Minimum Spanning Trees in the book by Moret and Shapiro
[5]), or Column 7 on the Maximum Subsequence Problem in
[2].

In the classroom, we can show several examples for
such a purpose. For instance, the calculation of powers, fac-
torials, greatest common divisors, and Fibonacci numbers
are classic simple cases. In contrast, well-known algorithms
exist for both recursive and iterative versions of binary
search, quicksort, and mergesort among others.

In the sequel, first we present a recursive and then an
iterative Pascal variation for the calculation of factorials. We
will use these functions for the calculation of binomial coef-
ficients. From the theoretical point of view, both variants are
equivalent since they perform O(n) operations to calculate n!
However, from the practical point of view, the previous com-
ment holds: function calls have a cost that is more significant
in comparison to the cost spent for the control structures and
other assignment operations. Also, have in mind that in this
case, the performed operations are multiplications, but we
use the general term operations instead of multiplications,
since the number of divisions will be equally important in
the subsequent efforts. In other words, multiplications and
divisions are our barometer metrics in the course of estimat-
ing the algorithmic complexity [4].

FUNCTION Factorial1(n: INTEGER): INTEGER;
BEGIN

IF n=0
THEN Factorial1:=1
ELSE Factorial1:=n*Factorial1(n-1)

END;

FUNCTION Factorial2(n: INTEGER): INTEGER;
VAR i,product: INTEGER;
BEGIN

I:=n; product:=1;
WHILE i<>0 DO
BEGIN

product:=i*product;
i:=i-1

END;
Factorial2:=product

END;

Binomial Coefficient Computation:
Recursion or Iteration?

Yannis Manolopoulos
Data Engineering Laboratory

Department of Informatics
Aristotle University

Thessaloniki, 54006 Greece
<manolopo@delab.csd.auth.gr>

Abstract
Binomial coefficient computation, i.e. the calculation of the number of combinations of n objects taken k at a time,
C(n,k), can be performed either by using recursion or by iteration. Here, we elaborate on a previous report [6], which
presented recursive methods on binomial coefficient calculation and propose alternative efficient iterative methods for
this purpose.

SIGCSE Bulletin 66 Vol 34, No. 4, 2002 December

R
ev

ie
w

ed
 P

ap
er

s

The following code fragment depicts a Pascal implementa-
tion of the first recursive solution for the binomial coeffi-
cient calculation, which appears in [6]. Apparently, this
implementation is very inefficient since its complexity is
O(C(n,k)). More specifically, it performs 2C(n,k)-1 multi-
plications to calculate C(n,k).

FUNCTION Comb1(n,k: INTEGER): INTEGER;
BEGIN

IF (k=0) OR (k=n)
THEN Comb1:=1
ELSE Comb1:=Comb1(n-1,k-1)+Comb1(n-1,k)

END;

From the above starting point, we will move gradually to
smarter solutions. First effort is to get rid of the recursion.
We can achieve this by calling any of the previous two
Factorial functions. Although, the following straightforward
fragment has a O(n) computation complexity, it has to be
noted that there is a hidden constant equal to 2.

FUNCTION Comb2(n,k:INTEGER): INTEGER;
VAR t1,t2,t3: INTEGER;
BEGIN

t1:=Factorial2(n);
t2:=Factorial2(k);
t3:=Factorial2(n-k);
Comb2:=t1/(t2*t3)

END;

The previous iterative function has made an impressive
improvement in efficiency in comparison to the Comb1 func-
tion. However, we can achieve further improvement by
avoiding performing a certain number of multiplications on
the numerator for a term that simplifies by a same term of the
denominator. The following fragment Comb3 is a Pascal
implementation in place of the second recursive formula that
appeared in [6]. Here, we remark that a division operation
comes into play. The computation complexity of Comb3 is
O(k), i.e. irrelevant of n, with a hidden constant equal to 2.
We derive this by simply remarking that after simplifica-
tions, both the numerator and denominator contain k terms.

FUNCTION Comb3(n,k: INTEGER): INTEGER;
BEGIN

IF (k=0)
THEN Comb3:=1
ELSE Comb3:=Comb3(n-1,k-1)*n/k

END;

As mentioned in [6], the latter method can be improved by
using the binomial coefficient property that C(n,k)=C(n,n-k).

Next, we present a more efficient iterative version based
on this remark. Thus, the following Comb4 fragment first
calculates the maximum between k and n-k, in order to save
a number of operations. Although Comb4 fragment is longer,
apparently its computation complexity is O(min(k,n-k)), also
with a hidden constant equal to 2.

FUNCTION Comb4(n,k:INTEGER): INTEGER;
VAR t1,t2: INTEGER;
BEGIN

IF k<n-k THEN DO
BEGIN

t1:=1;
FOR i:=n DOWNTO n-k+1 DO t1:=t1*i;
t2:=Factorial2(k); Comb4:=t1/t2

END
ELSE

BEGIN
t1:=1;
FOR i:=n DOWNTO k+1 DO t1:=t1*i;
t2:=Factorial2(n-k); Comb4:=t1/t2

END
END;

As noted in [6], the Comb3 method has the disadvantage that
intermediate results are larger in magnitude than the final
number. OurComb4 method has the same disadvantage. For
large values of n and k, this may lead to overflows due to the
inadequacy of the used data types. For this reason, a third
recursive solution was provided in [6], where divisions are
performed before multiplications to prevent such a situation.
This is achieved by first calculating the greatest common
divisor (gcd) of n and k, a task that can be solved by the well-
known Euclidean algorithm of O(logn) complexity [4].
Assuming that d:=Gcd(n,k) and q:=k/d, the following frag-
ment Comb5 is easy to follow.

FUNCTION Comb5(n,k: INTEGER): INTEGER;
VAR d,q: INTEGER;
BEGIN

IF (k=0)
THEN Comb5:=1
ELSE Comb5:=(Comb5(n-1,k-1)/q)*n/d

END;

The above fragment Comb5 has the same computation com-
plexity as the previous Comb3 function. The advantage of
Comb5 over Comb3 is that the former is more robust for var-
ious n and k values, whereas the disadvantage is the cost of
the gcd calculation. Next, we give a final iterative function
Comb6, which is more efficient from the theoretical and the
practical point of view.

FUNCTION Comb6(n,k:INTEGER): INTEGER;
VAR t: INTEGER;
BEGIN

t:=1
IF k<n-k

THEN FOR i:=n DOWNTO n-k+1 DO
t:=t*i/(n-i+1)

ELSE FOR i:=n DOWNTO k+1 DO
t:=t*i/(n-i+1);

Comb6:=t
END;

Thus, with Comb6 we have reached our final word. This
method has three advantages:
1. It is iterative, thus avoiding time overhead for function

calls and space overhead for stacks,
2. It has optimal complexity, that is O(min(k,n-k)),
3. It is robust, as it performs multiplications and division

alternatively, thus avoiding data type overflows.

Vol 34, No. 4, 2002 December 67 SIGCSE Bulletin

R
eview

ed
 P

ap
ers

3. Conclusions
Motivation for this paper was the article by Rolfe [6] on
binomial coefficient calculation by using recurrence rela-
tions. Here, we make a step further and argue on alternative
iterative methods. We presented a number of Pascal frag-
ments that evolve from the less efficient to variants that are
more efficient. Such an approach shows that programming
is a science (i.e. methodology) and an art.

References
[1] Bentley J.L.: Writing Efficient Programs, Prentice Hall, 1982.
[2] Bentley J.L.: Programming Pearls, Addison Wesley, 1986.
[3] Bentley J.L.: More Programming Pearls - Confessions of a

Coder, Addison Wesley, 1988.
[4] Brassard G. and Bratley P.: Fundamentals of Algorithmics,

Prentice Hall, 1996.
[5] Moret B.M.E. and Shapiro H.D.: Algorithms from P to NP,

Volume I: Design and Efficiency, Benjamin/Cummings, 1991.
[6] Rolfe T.: Binomial Coefficient Recursion: the Good, and the

Bad and Ugly, ACM SIGCSE Bulletin Inroads, Vol.33, No.2,
pp.35-36, 2001.

Bridge the Past with the Present

through the

IEEE Annals of the
History of Computing

Feature Articles Events and Sightings
Reviews Biographies Anecdotes

Calculators Think Piece

Subscribe today!

<http://computer.org/subscribe/>

