Melhores momentos

AULA 17

Segmento de soma máxima

Um **segmento** de um vetor v[0..n-1] é qualquer subvetor da forma v[e..d].

Problema: Dado um vetor v[0..n-1] de números inteiros, determinar um segmento v[e..d] de soma máxima.

Entra:

Segmento de soma máxima

Sai:

v[e..d] = v[2..6] é segmento de soma máxima.

v[2...6] tem soma 187.

Conclusões

O consumo de tempo do algoritmo segMax3 é proporcional a n^3 .

O consumo de tempo do algoritmo segMax2 é proporcional a n^2 .

O consumo de tempo do algoritmo segMax é proporcional a n.

Algumas técnicas

- Evitar recomputações. Usar espaço para armazenar resultados a fim de evitar recomputá-los (segMax2, segMax).
- Algoritmos incrementais/varredura. Solução de um subproblema é estendida a uma solução do problema original (segMax).
- ▶ Delimitação inferior. Projetistas de algoritmos só dormem em paz quando sabem que seus algoritmos são o melhor possível (segMax).

AULA 18

Análise de algoritmo (continuação)

Programming Pearls: Algorithm Design Techniques, Jon Bentley, Addison-Wesley, 1986

Análise experimental de algoritmos

"O interesse em experimentação, é devido ao reconhecimento de que os resultados teóricos, freqüentemente, não trazem informações referentes ao desempenho do algoritmo na prática."

Análise experimental de algoritmos

Segundo D.S. Johnson, pode-se dizer que existem quatro motivos básicos que levam a realizar um trabalho de implementação de um algoritmo:

- usar o código em uma aplicação particular, cujo propósito é descrever o impacto do algoritmo em um certo contexto;
- proporcionar evidências da superioridade de um algoritmo;

Análise experimental de algoritmos

- melhor compreensão dos pontos fortes e fracos e do desempenho das operações algorítmicas na prática; e
- produzir conjecturas sobre o comportamento do algoritmo no caso-médio sob distribuições específicas de instâncias onde a análise probabilística direta é muito difícil.

Ambiente experimental

A plataforma utilizada nos experimentos foi um computador rodando Ubuntu GNU/Linux 3.2.0-30

As especificações do computador que geraram as saídas a seguir são

model name: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

cpu MHz : 1596.000 cache size: 4096 KB

MemTotal: 3354708 kB

Ambiente experimental

Os códigos foram compilados com o gcc 4.6.3 e com opções de compilação

-Wall -ansi -O2 -pedantic -Wno-unused-result

As implementações comparadas neste experimento são segMax3, segMax2 e segMax.

Ambiente experimental

A estimativa do tempo é calculada utilizando-se:

```
#include <time.h>
[...]
clock_t start, end;
double time;
start = clock();
[...implementação...]
end = clock();
time = ((double)(end - start))/CLOCKS_PER_SEC;
```

Resultados experimentais

	segMax3			
n	tempo (s)	comentário		
256	0.00			
512	0.02			
1024	0.12			
2048	0.89			
4096	6.99			
8192	55.55	pprox 1 min		
16384	444.25	> 7 min		
32768	59m15.550s	pprox 1 hora		

Resultados experimentais

segMax2					
n	tempo (s)	comentário			
2048	0.00				
4096	0.01				
8192	0.02				
16384	0.13				
32768	0.53				
65536	2.12				
131072	8.52				
262144	34.08	$pprox 0.5 \; \mathrm{min}$			
524288	136.56	> 2 min			
1048576	561.41	> 9 min			

Resultados experimentais

	segMax	
n	tempo (s)	comentários
1048576	0.00	
2097152	0.01	
4194304	0.01	
8388608	0.01	
16777216	0.02	
33554432	0.05	
67108864	0.09	
134217728	0.19	> 134 milhões
268435456	0.37	> 268 milhões
536870912	0.75	> 0.5 bilhões

Notação assintótica

CLRS 3.1

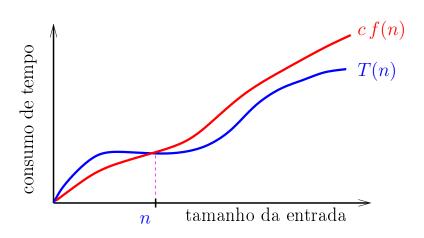
Notação assintótica

Sejam T(n) e f(n) funções dos inteiros nos reais. Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \le c f(n)$$

para todo $n \ge n_0$.

Notação assintótica

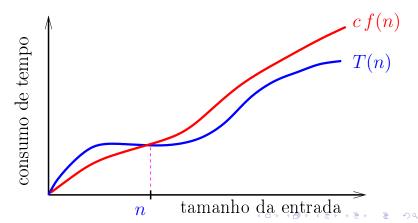


Mais informal

 $T(n) \in O(f(n))$ se existe c > 0 tal que

$$T(n) \le cf(n)$$

para todo n suficientemente GRANDE.



Consumo de tempo segMax3

Se a execução de cada linha de código consome 1 unidade de tempo o consumo total é:

linha	tod	as as execuções da linha	
1	=	1	= O(1)
2	=	n+1	= O(n)
3	=	$(\mathbf{n}+1)+\mathbf{n}+(\mathbf{n}-1)+\cdots+1$	$= O(n^2)$
4	=	$\mathbf{n} + (\mathbf{n} - 1) + \dots + 1$	$= O(n^2)$
5	=	$(2 + \cdots + (n + 1)) + (2 + \cdots + n) + \cdots + 2$	$= O(n^3)$
6	=	$(1+\cdots+\mathbf{n})+(1+\cdots+(\mathbf{n}-1))+\cdots+1$	$= O(n^3)$
7	=	$\mathbf{n} + (\mathbf{n} - 1) + (\mathbf{n} - 2) + \dots + 1$	$= O(n^2)$
8	\leq	$\mathbf{n} + (\mathbf{n} - 1) + (\mathbf{n} - 2) + \dots + 1$	$= O(n^2)$
total	=	$O(2n^3 + 4n^2 + n + 1)$	$= O(n^3)$

Consumo de tempo segMax2

Se a execução de cada linha de código consome 1 unidade de tempo o consumo total é:

linha	tod	das as execuções da lin	ha
1	=	1	= O(1)
2	=	n+1	= O(n)
3	=	n	= O(n)
4	=	$(\mathbf{n}+1)+\mathbf{n}+\cdots+2$	$2 = O(n^2)$
5	=	$\mathbf{n} + (\mathbf{n} - 1) + \cdots + 1$	$l = O(n^2)$
6	=	$\mathbf{n} + (\mathbf{n} - 1) + \cdots + 1$	$l = O(n^2)$
7	\leq	$\mathbf{n} + (\mathbf{n} - 1) + \cdots + 1$	$L = O(n^2)$
total	=	$O(4n^2 + 2n + 1)$	$= O(n^2)$

Consumo de tempo segMaxI

Se a execução de cada linha de código consome 1 unidade de tempo o consumo total é:

	linha	tod	as as execuções da linh	ıa
-	1	=	1	= O(1)
	2	=	n+1	= O(n)
	3	=	n	= O(n)
	4	=	$2+3+\ldots+(\mathbf{n}+1)$	$= O(n^2)$
	5	=	$1+2+\ldots+{\tt n}$	$= O(n^2)$
	6	=	$1+2+\ldots+{\tt n}$	$= O(n^2)$
	7	=	n	= O(n)
	8	\leq	n	= O(n)
	total	=	$O(3n^2 + 4n + 1)$	$= O(n^2)$

Conclusões

O consumo de tempo do algoritmo segMax3 é $O(n^3)$.

O consumo de tempo do algoritmo segMax2 é $O(n^2)$.

O consumo de tempo do algoritmo $segMax \in O(n)$.

$(3/2){\bf n}^2 + (7/2){\bf n} - 4 \ {\rm versus} \ (3/2){\bf n}^2$

n	(3/2)n ² + $(7/2)$ n - 4	(3/2)n ²
64	6364	6144
128	25020	24576
256	99196	98304
512	395004	393216
1024	1576444	1572864
2048	6298620	6291456
4096	25180156	25165824
8192	100691964	100663296
16384	402710524	402653184
32768	1610727420	1610612736

$$(3/2)n^2 + (7/2)n - 4$$
 versus $(3/2)n^2$

n	(3/2)n ² + $(7/2)$ n - 4	(3/2)n ²
64	6364	6144
128	25020	24576
256	99196	98304
512	395004	393216
1024	1576444	1572864
2048	6298620	6291456
4096	25180156	25165824
8192	100691964	100663296
16384	402710524	402653184
32768	1610727420	1610612736

(3/2)n² domina os outros termos

Tamanho máximo de problemas

Suponha que cada operação consome 1 microsegundo $(1\mu s)$.

consumo de	Tamanho máximo de problemas (n)		
$tempo(\mu s)$	1 segundo	1 minuto	1 hora
400n	2500	150000	9000000
$20n \lceil \lg n \rceil$	4096	166666	7826087
$2n^2$	707	5477	42426
n^4	31	88	244
2^n	19	25	31

Michael T. Goodrich e Roberto Tamassia, *Projeto de Algoritmos*, Bookman.

Crescimento de algumas funções

n	$\lg n$	\sqrt{n}	$n \lg n$	n^2	n^3	2^n
2	1	1,4	2	4	8	4
4	2	2	8	16	64	16
8	3	2,8	24	64	512	256
16	4	4	64	256	4096	65536
32	5	5,7	160	1024	32768	4294967296
64	6	8	384	4096	262144	1,8 10^{19}
128	7	11	896	16384	2097152	$3,4 \ 10^{38}$
256	8	16	1048	65536	16777216	$1,1 \ 10^{77}$
512	9	23	4608	262144	134217728	1,3 10^{154}
1024	10	32	10240	1048576	$1,1 \ 10^9$	$1,7 \ 10^{308}$

Nomes de "classes" O

classe	nome
O(1)	constante
$O(\lg n)$	logarítmica
O(n)	linear
$O(n \lg n)$	$n \log n$
$O(n^2)$	quadrática
$O(n^3)$	cúbica
$O(n^k)$ com $k \ge 1$	polinomial
$O(2^n)$	exponencial
$O(a^n)$ com $a>1$	exponencial

Busca em vetor ordenado

PF 7.1 a 7.8

http://www.ime.usp.br/~pf/algoritmos/aulas/bub

Busca em vetor ordenado

Um vetor v[0..n-1] é **crescente** se

$$v[0] \le v[1] \le v[2] \cdots \le v[{\color{red} n}-1].$$

Problema: Dado um número x e um vetor crescente v[0..n-1] encontrar um índice m tal que v[m] = = x.

Entra:
$$x == 50$$

Sai:
$$m == 7$$

Busca em vetor ordenado

```
Entra: x == 57

0

n-1

v 10 20 25 35 38 40 44 50 55 65 99
```

Sai: m == -1 (x não está em v)

Busca sequencial

```
int buscaSequencial(int x, int n, int v[])
{
1   int m = 0;
2   while (/*1*/ m < n && v[m] < x) ++m;
3   if (m < n && v[m] == x)
4    return m;
5   return -1;
}</pre>
```

Exemplo

Exemplo

x == 5535 | 38 | 50 | 55 | 65 m V

Exemplo

m V m V

x == 55 0 m 10 v 10 20 25 35 38 40 44 50 55 65 99

x == 55m V m V

m V m V m V

Relação invariante chave:

(i0) em /*1*/ vale que:
$$v[m-1] < x$$
. \heartsuit
 $x == 55$
 $v = 10 | 20 | 25 | 35 | 38 | 40 | 44 | 50 | 55 | 65 | 99$

A relação (i0) vale no começo da primeira iteração se supusermos que $\mathbf{v}[-1] = -\infty$.

No início da última iteração $m \ge n$ ou $v[m] \ge x$.

Portanto, se a função devolve -1, então x não está em v[0..n-1]

Consumo de tempo buscaSequencial

Se a execução de cada linha de código consome 1 unidade de tempo o consumo total é:

linha	todas as execuções d	a linha
1	= 1	= 1
2	\leq $n+1$	$pprox \mathtt{n}$
3	= 1	=1
4	\leq 1	≤ 1
5	\leq 1	≤ 1
total	\leq n+3	= O(n)

Conclusão

O consumo de tempo do algoritmo buscaSequencial no pior caso é proporcional a n.

O consumo de tempo do algoritmo buscaSequencial é O(n).

Busca binária

```
int buscaBinaria(int x, int n, int v[]) {
   int e, m, d;
   e = 0; d = n-1;
2 while (/*1*/e <= d) {
3
       m = (e + d)/2:
4
       if (v[m] == x) return m:
       if (v[m] < x) e = m + 1;
5
6
     else d = m - 1;
  return -1;
```

35 | 38 | 50 | 55 | 65 d е V

V m е

x == 48m е d 10 20 | 25 | 35 | 38 | 40 50 | 55 | 65 99 10 е 20 2535 38 40 50 55 | 65 99

Relação invariante chave:

(i0) em /*1*/ vale que:
$$v[e-1] < x < v[d+1]$$
. \heartsuit
 $x == 48$

0

e

d

 $n-1$
 v
 $10 \mid 20 \mid 25 \mid 35 \mid 38 \mid 40 \mid 44 \mid 50 \mid 55 \mid 65 \mid 99$

A relação (i0) vale no começo da primeira iteração se supusermos que $\mathbf{v}[-\mathbf{1}] = -\infty$ e $\mathbf{v}[\mathbf{n}] = +\infty$.

Relação invariante chave:

(i0) em /*1*/ vale que:
$$v[e-1] < x < v[d+1]$$
. \heartsuit

$$x == 48$$
0
e
d
n-1
$$v | 10 | 20 | 25 | 35 | 38 | 40 | 44 | 50 | 55 | 65 | 99$$

No início da última iteração quando e > d nenhum elemento é "> v[e-1]" e "< v[d+1]", pois o vetor é crescente (!). Logo, x não está em v[0..n-1] e função devolve -1

Relação invariante chave:

(i0) em /*1*/ vale que:
$$v[e-1] < x < v[d+1]$$
. \heartsuit

$$x == 48$$
0
e
d
n-1
$$v | 10 | 20 | 25 | 35 | 38 | 40 | 44 | 50 | 55 | 65 | 99$$

O valor de $\mathbf{d} - \mathbf{e}$ diminui a cada iteração. Portanto, se a função não encontra \mathbf{m} tal que $\mathbf{v}[\mathbf{m}] == \mathbf{x}$, então a função para quando $\mathbf{d} - \mathbf{e} < 0$.

Consumo de tempo buscaBinaria

O consumo de tempo da função buscaBinaria é proporcional ao número k de iterações do while.

No início da 1a. iteração tem-se que $d - e = n - 1 \approx n$.

Sejam

$$(\mathsf{e}_0,\mathsf{d}_0),(\mathsf{e}_1,\mathsf{d}_1),\ldots,(\mathsf{e}_k,\mathsf{d}_k),$$

os valores das variáveis e e d no início de cada uma das iterações. No pior caso x não está em v.

Assim,
$$d_{k-1} - e_{k-1} \ge 0$$
 e $d_k - e_k < 0$

Número iterações

Estimaremos o valor de k em função de d - e.

Note que
$$\mathbf{d_{i+1}} - \mathbf{e_{i+1}} \le (\mathbf{d_i} - \mathbf{e_i})/2$$
 para $\mathbf{i=1,2,\ldots,k-1}$.

Desta forma tem-se que

Número iterações

Percebe-se que depois de cada iteração o valor de de e é reduzido pela metade.
Seja t o número inteiro tal que

$$2^{\mathsf{t}} \le \mathsf{n} < 2^{\mathsf{t}+1}$$

Da primeira desigualdade temos que

$$t \leq \lg n$$
,

onde $\lg n$ denota o logaritmo de n na base 2.

Número iterações

Da desigualde estrita, concluímos que

$$0 \le (\mathbf{d}_{k-1} - \mathbf{e}_{k-1})/2^{k-1} < \underline{\mathbf{n}}/2^{k-1} < \underline{2^{t+1}}/2^{k-1}.$$

Assim, em particular temos que

$$1 \le 2^{t+1}/2^{k-1}$$

ou, em outras palavras

$$k \le t + 2$$
.

Portanto, o número k de iterações é não superior a

$$t + 2 \le \lg n + 2.$$

Conclusão

O consumo de tempo do algoritmo buscaBinaria no pior caso é proporcional a lg n.

O consumo de tempo do algoritmo busca $Binaria \in O(lg n)$.

Número de iterações

buscaSequencial	buscaBinaria	
n	lg n	
256	8	
512	9	
1024	10	
2048	11	
4096	12	
8192	13	
16384	14	
32768	15	
65536	16	
262144	18	
1048576	20	
;	:	
4294967296	32	

Versão recursiva da busca binária

```
Para formular uma versão recursiva é necessário generalizar um pouco o problema trocando v[0..n-1] por v[e..d].

int buscaBinaria(int x, int n, int v[]) {
1 return buscaBinariaR(x,0,n-1,v);
}
```

Versão recursiva da busca binária

Recebe um vetor crescente v[e..d] e devolve um índice m tal que v[m] == x. Se tal m não existe, devolve -1.

```
int
buscaBinariaR(int x,int e,int d,int v[]) {
   int m;
1 if (d < e) return -1;
2 m = (e + d)/2;
3 if (v[m] == x) return m;
4
  if (v \lceil m \rceil < x)
5
      return buscaBinariaR(x,m+1,d,v);
6
  return buscaBinariaR(x,e,m-1,v);
```

Outra versão recursiva

Observações:

- ► As declarações int v[] e int *v no protótipos de funções são equivalentes. Abaixo escolhemos int *v apenas para deixar mais explicito que em ambos os casos o que está sendo passado como parâmetro é um endereço(!).
- As expressões "&v [m+1]" e "v+m+1" são equivalentes (=tem o memo valor =representam o mesmo endereço).
- ▶ Tem um problema . . .

Outra versão recursiva

A função abaixo não resolve o problema... Por quê? Como consertar? int buscaBinariaR(int x,int n, int *v) { int m: if (n == 0) return -1: m = n/2: if (v[m] == x) return m: if $(v \lceil m \rceil < x)$ return buscaBinariaR(x, n-m-1, &v[m+1]); return buscaBinariaR(x,m,v);