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One of the popular methods for retrieving information by its " n a m e "  is to 
store the names in a binary tree. To find if a given name is in the tree, we com- 
pare it to the name at the root, and four cases arise: 

1. There is no root (the binary tree is empty): The given name is not in the 
tree, and the search terminates unsuccess/ully. 

2. The given name matches the name at the root: The search terminates 
suecess/ully. 

3. The given name is less than the name at the root: The search continues 
by examining the left subtree of the root in the same way. 

4. The given name is greater than the name at the root: The search continues 
by examining the right subtree of the root in the same way. 

Special cases of this method are the binary search and its variants (tmcentered 
binary search; Fibonacci search) and the search-sort scheme of Wheeler-Berners 
Lee-Booth-Hibbard-Windley, et al. (see [t, 3, 7, t01). 

When all names in the tree are equally probable, it is not difficult to see 
that a best possible binary tree from the standpoint of average search time is 
one with minimum path length, namely the complete binary tree (see [9, 
pp. 400-40t]). This is the tree which is implicitly present in one of the variants 
of the binary search method. 

But when some names are known to be much more likely to occur than 
others, the best possible binary tree will not necessarily be balanced. For example, 
consider the following words and frequencies, 
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showing words to be ignored in a certain KWIC indexing application [6, p. t 24]. 
The best possible tree in this case turns out to be 

of 
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In this paper we discuss the question of finding such "optimal binary trees", 
when frequencies are given. The ordering property of the tree makes this problem 
more difficult than the standard "Huffman coding problem" (see [9, Sec- 
tion 2.3.4.5]). 

For example, suppose that  our words are A, B, C and the frequencies are 
e, fl, ~,. There are 5 binary trees with three nodes: 

A A B C C 

/ A c / 8  
C B B A 

I II III  IV V 

The following diagram shows the ranges of (ct, fl, ~) in which each of these trees 
is optimum, assuming that  ~t + f l  + ~  = 1 : 

~=0\/7=0 

e ~ ] ~ / /  I I I  ~ 

2 x x 11 ,8 = 112--X(�89 ~, O) (o, �89 �89 

2 1 2 1 

y=o a = t  y=I12 ~=112 

t~=t 

7 1/2 

--r = -  1/2 

t 

,0,~) t~= 

) , = 1  o c = o  



16 D.E.  Knuth: 

Note tha t  it is sometimes best to put B at the root even when both A and C 
occur more frequently. And on the other hand, it is not sufficient simply to choose 
the root so as to equalize the left and right search probabilities as much as 
possible, contrary to a remark of Iverson [8, p. t44; 2, p.3t8].  

[ 2 n l ~  ,-~4~[n~n binary trees with n nodes, so an In  general, there are ~ n / n + t  

exhaustive search for the opt imum is out of the question. However, we shall 
show below that  an elementary application of "dynamic programming," which 
is essentially the same idea used as the basis of the Cocke-Kasami-Younger- 
Earley parsing algorithm for context-free grammars[4], can be used to find an 
opt imum binary search tree in order n 3 steps. By  refining the method we will 
in fact cut the running time to order n 2. 

In practice we want to generalize the problem, considering not only the fre- 
quencies with which a success]ul search is completed, but also the frequencies 
where unsuccess]ul searches occur. Thus we are given n names A1, A 2 . . . . .  A~ 
and 2n + 1 frequencies ~0, Xl . . . . .  ~;/51,/52 . . . .  ,/5~. Here/5i is the frequency of 
encountering name A~, and cr i is the frequency of encountering a name which 
lies between A i and Ai+l; ~ and ~ have obvious interpretations. 

The key  fact which makes this problem amenable to dynamic programming 
is tha t  all subtrees of an opt imum tree are optimum. If  Ai appears at the root, 
then its left subtree is an opt imum solution for frequencies cr o . . . . .  ~i-1 and 
/51 . . . . .  /5i-1; its right subtree is opt imum for ~i . . . . .  ,% and/5~+1 . . . . .  /5~. There- 
fore we can build up opt imum trees for all "frequency intervals" ~ . . . . .  l i  and 
/5i+1 . . . . .  /5i when i =<1", starting from the smallest intervals and working toward 
the largest. Since there are only (n+2)(n+t)/2 choices of O~i~i<=n, the 
total  amount  of computation is not excessive. 

Consider the following binary tree: 

(Square nodes denote empty  or terminal positions where no names are stored.) 
The "weighted path  length"  P of a binary tree is the sum of frequencies times 
the level of the corresponding nodes; in the above example the score is 

3 ~  + 2fl, + 3 ~  +fl~ + 4 ~  + 3fl3 +4~ ,  +2fl~ + 3~4. 

In general, we can see that  the weighted path  length satisfies the equation 

P = ~ + p ~ + w ,  
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where PL and PR are the weighted path lengths of the left and right subtrees, 
and W = 0 ~ + 0 k +  .. .  + ~ + f l l  + "'" +/5~ is the "we igh t"  of the tree, the sum 
of all frequencies. The weighted path length measures the relative amount of 
work needed to search the tree, when the ,r and/5's are chosen appropriately; 
therefore the problem of finding an optimum search tree is the problem of finding 
a binary tree of minimum weighted path length, with the weights applied from 
left to right in the tree. 

The above remarks lead immediately to a straightforward calculation proce- 
dure for determining an optimum search tree. Let  Pii and Wii denote the weighted 
path length and the total  weight of an optimum search tree for all words lying 
strictly between A i and Ai+l, when i ~ ] ;  and let Rij denote the index of the 
root of this tree, when i < i. The following formulas now determine the desired 
algorithm : 

Pi~ = Wii = ~i, for O~i<=n; 

~i =~,i-l +/si+~i, (**) 
PiR,, t-l+PR,~,1"=mine<k~_i (Pi, k-lMylD~])~-'Pi]--Wi]' for O~i<i~n._ _ 

The problem of finding "best alphabetical encodings," considered by Gilbert 
and Moore in their classic paper [5], is easily seen to be a special case of the 
problem considered here, with/51 =/sz . . . . .  /sn = 0. Another closely related (but 
not identical) problem has been discussed by  Wong [t2]. In both cases the 
authors have suggested an algorithm for finding an optimum tree which is 
essentially identical to (**); Gilbert and Moore observe that  the algorithm takes 
about n816 iterations of the inner loop (choosing R ei from among ?' - - i  possibilities). 

By  studying the combinatorial properties of optimum binary trees more care- 
fully, we can refine the algorithm somewhat. 

Lemma. If 0~ =/5~ = 0, an optimum binary tree may be obtained by replacing 
the rightmost terminal node 

of the optimum tree for r162 . . . . .  0~_ 1 and/50 . . . . .  /5,-1 by  the subtree 

Pro#. By the formulas above, Wi,.=Wi,._ 1 for 0 _ ~ i < n ;  P ~ = ~ = 0 ;  
R ~ _ l , . = n ;  P . _ l , . = 2 a ~ _ l .  We want to prove that  P~ .=P i ,~_ l+0~_ l  and 
Ri .  = Ri,~_ 1 for 0 ~ i - - < n - - 2 ,  and the proof is by  induction on n - - i .  Consider 
the sums 

P~, ~ + P~+I,.; ...; ~ , . - 2 +  P~-I,.; P~,.-1 +/'~,.- 

By induction, these are respectively equal to 

~, i -~-  Pi+l ,n-1  -~- ~cn-1; "" "; Pi ,n-2 -~- Pn- l ,n -1  ~- ~ ~,~r-1. 
2 Acta Informatica~ Vol. i 
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Let  Ri,n_ 1 = r ;  since 

Pi,n_l = Pi, r_l ~- g,m_l  -~ Wi,n-l ~-Pi, r-1--~ Pr, n- l  -Jl-~-l ,  

the min imum value in the above set of numbers  is P/,,-1 + P , , ,  hence we m a y  
take Rin=r. 

Theorem. Adding a new name to the tree, which is greater than all other  
names, never  forces the root  of the op t imum tree to move to the left. In  other  
words, there is always a solution to the above equations such tha t  

Ro,,-i <= Ro.,, 
when n & 2. 

Proo]. We use induct ion on n, the result being vacuous when n = 1. Since 
the op t imum tree is a function of cr +fin,  we m a y  assume tha t  fin = 0 .  The method  
of proof is to  s tar t  with a ~ =  O; in this case the above lemma assures us of a 
mat r ix  Ri] satisfying the desired condition. We will show tha t  this condition 
can be mainta ined as ~r increases to arbitrari ly high values. 

Let  ~ be a value such tha t  the op t imum tree is J "  when % = ~ r  e, but  it 
is J "  =4=5 r" when ~n=0r +e, for all sufficiently small e > 0 .  Assume further  tha t  
the root  of 3 - '  is less than  (i.e., to  the left of) the root  of ~ .  The weighted path  
length of 3 -  is a linear expression of the form 

where l (x) denotes the level associated with x,  and the corresponding formula 
for 3 - '  is 

r(~0) ~o + l'(~1) ~, + " "  + V(~n) ~n + l'(/~)//1 + " "  + r (&)  & .  

These two expressions become equal when ~r = ~ ,  and 

v(~n) < l(~n) 
so tha t  J "  is be t ter  when an > a .  When =n = a ,  both  trees are opt imum.  

Consider now the following diagrams:  

._% -.% j - ,  __ 

\ 
By our  assumptions,  1'1 < / 1 ;  i l l~,)=/ 'v(~)= n. Since 1"1 < ix, we can use induct ion 
and  left-right s y m m e t r y  of the theorem to conclude tha t  7"~ ~ i 2 .  If  /'3 < i s ,  
similarly, we have /'a =<ia. But  since l'(~n)</(con), / 'v(~)=n>ivr  hence /'k = i k  
for some k. Therefore we can replace the right subtree of Aik in 3 -  by  the similar 
subtree in ~g-', obtaining a b inary  tree J " '  whose weighted path  length is equal 
to t ha t  of J "  for all 0r n. Since 3 - "  has the same root  as J,,  this a rgument  shows 
tha t  we need never move  the root  to the left as a increases. 
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Corollary. There is always a solution to conditions (**) above satisfying 

Ri, i_x <~R~,i and Ri, i~Ri+1,i, for 0 ~ i < l ' - - t < n .  

Proo]. This is simply the result of the theorem applied to all subtrees, and 
using left-right symmetry .  

The corollary suggests an algorithm which is much faster than the previous 
one, since we usually will not  have to search the entire range i<r<= i when 
determining Rii. In  fact, only Ri+l,i--Ri, i_x+l  cases need to be examined 
when Rii is being calculated; summing for fixed I ' -  i gives a telescoping series 
which shows that  the total  amount  of work is at worst proportional to n z. 

Summary, and Open Problems 
The formulas above amount  to a systematic method for finding opt imum 

search trees, given the frequency of occurrence of each name in the tree as well 
as the frequencies of occurrence of names not in the tree. The number  of steps 
is essentially proportional to the square of the number  of names. An ALGOL 
program for the algorithm appears in the appendix, together with a detailed 
example from a compiler application. 

Several open problems remain to be solved. Perhaps the most  interesting is 
to obtain the best possible bound on the weighted pa th  length in the opt imum 
tree as a function of n, given arbi t rary frequencies such that  

~ + ~ 1 +  . . .  + ~ .  +fl~ + .." + f l . = l .  

For example, when n = 2 the weighted path  length is ~ 3, and the worst case 
occurs when 0 q = t ,  Cr  The same bound applies when n=3,  
since the tree 

obviously has weighted pa th  length N 3. I t  is not obvious what the best possible 
bounds are when n > 3, although it is easy to see that  the opt imum weighted 
path  length never exceeds [log s (n + t)] + t .  

Another problem concerns the efficiency of the algorithm. Our n 2 algorithm 
essentially finds all of the optimal trees for 0 ~ i < i ~ n. But  if we discover by  
some means that  Ro,,,-1 >= 5, it is unnecessary to determine Ri,,~ for 1 = < i ~ 4  
when we compute Ro,,~. There m a y  be some way to arrange the calculation so 
tha t  the method is less than order n 2 on the average. 

A harder problem, but  perhaps solvable, is to devise an algorithm which keeps 
its own frequency counts empirically, maintaining the tree in opt imum form 
depending on the past  history of the searches. Names that  occur most frequently 
gradually move towards the root, etc. Perhaps some such updating method could 
be devised which would save more t ime than it consumes. 

2* 
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Another interesting problem is related to our first example. The opt imum 
in t h e "  of-and-the" case turned out to be obtainable by  the following" top-down" 
rule: Place the most  frequently occurring name at the root of the tree, then 
proceed similarly on the subtrees. Another plausible rule is to choose the root 
so as to equalize the total  weight of the left and right subtrees as much as possible. 
Our example for n = 3 shows that  neither of these rules will produce an opt imum 
tree in all cases, but  it might be possible to give some quantitat ive estimate of 
how far from the opt imum these methods can be. 

The solution to any of these problems should provide further insight into 
the nature of opt imum search trees. 

I wish to thank Ronald L. Rivest for formulating a conjecture which led to the 
theorem in this paper, and John Bruno for correcting an error in my original proof 
of the lemma. 

Appendix 
The program below is written in ALGOL W, a refinement of ALGOL 60 due 

to Wirth and Hoare [ t l ] .  More than half of the code (the procedure display) 
is actually devoted to printing out the opt imum tree in a reasonable pictorial 
fashion, one it has been found. 

In  order to t ry  the algorithm on a fairly complicated test case, a count was 
made of all identifiers in about  25 example ALGOL W programs prepared by  the 
author for an introductory programming course. The frequency of each reserved 
word was counted, as well as the frequency of occurrence of identifiers lying 
between adjacent reserved words. This led to the following data (n =36): 

33 abs 1 1t3 null 8 
5 and 6 2 of 5 
0 0 

26 a r r a y  9 30 or 5 
37 begin 77 38 procedure t6 

c a s e  5 real 29 
12 0 

comment  95 record 2 
54 div 12 0 reference t3 
0 0 

23 do 50 0 rem 9 
else 16 result 0 

0 end 77 23 short 0 
15 tl  

0 false 2 0 step 5 
36 for 35 99 string 5 

0 go 1 2 then 34 
57 goto t 4 to 1 

7 if 34 5 true 8 
142 integer 37 4 until 34 

0 logical 2 0 value 8 
t13 long 5 t t l  while 16 

For example,  any identifier starting with the letter J, K, or L would fall 
between integer and logical. The R matr ix  computed by  the program is shown 
on the next  page. The average search length for this fairly large tree came to 
less than 5. 
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The opt imum tree printed out by  the program appears below, as well as the 
quite different opt imum tree obtained when the frequencies ~ ,  0q . . . . .  a3s were 
set to zero. This shows tha t  the "be tweenness"  frequencies can profoundly in- 
fluence the nature of the opt imum tree, so it is important  to consider them. 

ALGOL W Program 

begin comment  Finding an ' op t imum'  search tree; 
s tr ing(10) a r r a y  wd( t  :: t00); integer array a, b(0 :: t00); 
integer n; 
record node(string (10) in/o ; integer col; reference (node) left, right) ; 
procedure display(integer value n; reference(node) va lue  root); 

begin comment  Draw a picture of binary tree referenced by  'root';  
r e f e r ence (node )  a r r a y  active, wai t ing( t  :: n) ; string (t32) line; 
integer k, sewk;  comment  The number  of nodes on the waiting list; 
r e f e rence (node )  l~ ; 
integer i; comment  Counter used in colno procedure; 
procedure colno(reference(node) value r); 

begin comment  Assign a column number  to each node of the binary 
tree referenced by  r; 

if r =~ null then 
begin colno(lefl(r) ) ; 

col(r) : =  round(123*i/(n --  t))  + 4 ;  i :  = i + t ; 
colno(right(r)) 

end  
end colno ; 

] : = 0; colno (root) ; 
wait ing (t) : = root; k : = 1 ; 
while k > 0 do 

gi be  n l i n e : = "  " ,  
f o r  j : =  t until k do 
begin comment  Move waiting node to active area, and draw " [ "  lines 

down to it; 
active (i) : =  # :----- waiting (7"); 
line (c01(#)11) : = "1 " ;  

end; 
write (line, line) ; 
new k : = O; 
for /"  : =  t until k do 
begin comment  Put  nodes descended from active nodes onto the 

waiting list, and prepare an appropriate line containing the ' in /o '  
of active nodes; 

integer cl, or; 
# : =  active(j); cl : =  cr : =  col(p); 
i f  left(p) =4= null then 

begin cl : =  col(left(p)) ; newk : =  newk + 1 ; 
wait ing(newk) : =  left(p) 

end; 
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if  right(p) :~= nul l  then 
begin cr : =  col(right(p)) ; newk : = newk + t ; 

waiting(newk) := right(p) 
end; 

for  i : =  cl until cr do l i n e ( l i t  ) : =  " - " ;  
begin comment Center  in/o(p) on line, about  col(p); 

integer s; s : =  0; while in/o(p) ( s + l [ l )  ~ . . . .  d o  s : =  s + t ;  
cl : = col(p) - - s  div 2; 
f o r  i : =  0 until s d o  line(cl + i l t  ) :----- in/o(p)(i11); 

end; 
end; 
write (line) ; 
k : =  newk 

end 
end display; 

n : = 0; intfieldsize : = 5 ; 
write (" T H E  G I V E N  F R E Q U E N C I E S  A R E :  ") ; 
rloop: readC a (n), wd (n + 1), b (n + 1)) ; 
write( . . . .  , a(n)) ; 
i f w d ( n + t )  (01t) ~ " . "  then 
begin n : =  n + t ;  

wri te(  . . . .  , wd(n), b(n)); 
g o  t o  rloop 

end; 

begin comment Find an n-node op t imal  tree, given relat ive f requency b(i) of 
encounter ing wd(i) and f requency a(i) of being between wd(i) and wd(i + t) ; 

integer array p, w, r(0 :: n, 0 :: n);  comment  p(i, i), w(i, i), rCi, i) denote  
respect ive the weighted p a t h  length, the  to ta l  weight, and  the root  of the 
op t imal  tree for the words lying be tween wd(i) and wdO" + t) ,  when i < i + t .  
The  average  search length in this t ree is p(i, i)/w(i, i);  

reference(node) procedure createtree(integer v a l u e  i, i) ; 
i f  i =t= i then node(wd(r(i, i)), 0), 

createtree(i, r(i, i) --1),  createtree(r(i, i), i)) e l s e  nul l ;  
f o r  i : =  0 until n d o  p(i , i )  : =  w(i , i )  : =  a(i); 
f o r  i : =  0 until n d o  f o r  i : = i + t  unt i l  n d o  

w(i, i ) : ~  w(i, i - t )  + b(]') + a(i); 
f o r  k : =  t until n do for i : =  0 until n - -k  do 
begin integer ik, ran, rex; ik : =  i + k ;  

mx : =  ifk----I t h e n  ik else r(i, i k - - t )  ; m n  : =  p(i, rex- - t )  + p ( m x ,  ik) ; 
if k > t  then f o r  ]" : =  m x +  l until r(i + l,  ik) d o  

if p(i ,  i - - t )  + P ( i ,  ik) <ran  then 
begin mn :~- p(i, i - - t )  +pO', ik); mx  : =  i end; 

p(i, ik) : =  mn +w( i ,  ik); r(i, ik) : =  mx 
end; 
w r i t e ( " A V E R A G E  P A T H  L E N G T H  IS", p(0, n) /w(o,  n)); 
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24 D . E .  K n u t h :  
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iocontrol (3) ; 
display(n, createtree(O, n));  
iocontrot (3 ) ; int/ieldsize : =  2; 
for i :---- 0 until n do 
begin iocontrol(2) ; 

f o r  i : = 0 u n t i l  n d o  writeon(if i < f t h e n  r(i, j) e l se  O) 
end; 

end 
end. 

Note Added in Proo[. T. C. Hu and A. C. Tucker have recently discovered a 
completely different way  to find opt imum binary  search trees, in the  special case 
tha t  the  fl's are all zero. Their algori thm requires only O (n) units of memory  and 
O (n log ~) units of time, when suitable da ta  structures are employed. 
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