
Acta Informatica 1, 14-25 (1971)
�9 by Springer-Verlag 1971

Optimum Binary Search Trees*
D. E. KNUTH

Received June 22, t97o

One of the popular methods for retrieving information by its " n a m e " is to
store the names in a binary tree. To find if a given name is in the tree, we com-
pare it to the name at the root, and four cases arise:

1. There is no root (the binary tree is empty): The given name is not in the
tree, and the search terminates unsuccess/ully.

2. The given name matches the name at the root: The search terminates
suecess/ully.

3. The given name is less than the name at the root: The search continues
by examining the left subtree of the root in the same way.

4. The given name is greater than the name at the root: The search continues
by examining the right subtree of the root in the same way.

Special cases of this method are the binary search and its variants (tmcentered
binary search; Fibonacci search) and the search-sort scheme of Wheeler-Berners
Lee-Booth-Hibbard-Windley, et al. (see [t, 3, 7, t01).

When all names in the tree are equally probable, it is not difficult to see
that a best possible binary tree from the standpoint of average search time is
one with minimum path length, namely the complete binary tree (see [9,
pp. 400-40t]). This is the tree which is implicitly present in one of the variants
of the binary search method.

But when some names are known to be much more likely to occur than
others, the best possible binary tree will not necessarily be balanced. For example,
consider the following words and frequencies,

a 32
an 7
and 69
by 13
effects 6
for 15
from t 0
high 8
in 64
of t 42
on 22
the 79
to 18
with 9

~, The research reported here was supported by IBM Corporation.

Optimum Binary Search Trees t 5

showing words to be ignored in a certain KWIC indexing application [6, p. t 24].
The best possible tree in this case turns out to be

of

m on

an b / "x'b-- with
y \ ,rom

effects high

In this paper we discuss the question of finding such "optimal binary trees",
when frequencies are given. The ordering property of the tree makes this problem
more difficult than the standard "Huffman coding problem" (see [9, Sec-
tion 2.3.4.5]).

For example, suppose that our words are A, B, C and the frequencies are
e, fl, ~,. There are 5 binary trees with three nodes:

A A B C C

/ A c / 8
C B B A

I II III IV V

The following diagram shows the ranges of (ct, fl, ~) in which each of these trees
is optimum, assuming that ~t + f l + ~ = 1 :

~=0\/7=0

e ~] ~ / / I I I ~

2 x x 11 ,8 = 112--X(�89 ~, O) (o, �89 �89

2 1 2 1

y=o a = t y=I12 ~=112

t~=t

7 1/2

--r = - 1/2

t

,0,~) t~=

) , = 1 o c = o

16 D.E. Knuth:

Note tha t it is sometimes best to put B at the root even when both A and C
occur more frequently. And on the other hand, it is not sufficient simply to choose
the root so as to equalize the left and right search probabilities as much as
possible, contrary to a remark of Iverson [8, p. t44; 2, p.3t8].

[2 n l ~ ,-~4~[n~n binary trees with n nodes, so an In general, there are ~ n / n + t

exhaustive search for the opt imum is out of the question. However, we shall
show below that an elementary application of "dynamic programming," which
is essentially the same idea used as the basis of the Cocke-Kasami-Younger-
Earley parsing algorithm for context-free grammars[4], can be used to find an
opt imum binary search tree in order n 3 steps. By refining the method we will
in fact cut the running time to order n 2.

In practice we want to generalize the problem, considering not only the fre-
quencies with which a success]ul search is completed, but also the frequencies
where unsuccess]ul searches occur. Thus we are given n names A1, A 2 A~
and 2n + 1 frequencies ~0, Xl ~;/51,/52 ,/5~. Here/5i is the frequency of
encountering name A~, and cr i is the frequency of encountering a name which
lies between A i and Ai+l; ~ and ~ have obvious interpretations.

The key fact which makes this problem amenable to dynamic programming
is tha t all subtrees of an opt imum tree are optimum. If Ai appears at the root,
then its left subtree is an opt imum solution for frequencies cr o ~i-1 and
/51 /5i-1; its right subtree is opt imum for ~i ,% and/5~+1 /5~. There-
fore we can build up opt imum trees for all "frequency intervals" ~ l i and
/5i+1 /5i when i =<1", starting from the smallest intervals and working toward
the largest. Since there are only (n+2)(n+t)/2 choices of O~i~i<=n, the
total amount of computation is not excessive.

Consider the following binary tree:

(Square nodes denote empty or terminal positions where no names are stored.)
The "weighted path length" P of a binary tree is the sum of frequencies times
the level of the corresponding nodes; in the above example the score is

3 ~ + 2fl, + 3 ~ +fl~ + 4 ~ + 3fl3 +4~ , +2fl~ + 3~4.

In general, we can see that the weighted path length satisfies the equation

P = ~ + p ~ + w ,

Optimum Binary Search Trees t 7

where PL and PR are the weighted path lengths of the left and right subtrees,
and W = 0 ~ + 0 k + .. . + ~ + f l l + "'" +/5~ is the "we igh t" of the tree, the sum
of all frequencies. The weighted path length measures the relative amount of
work needed to search the tree, when the ,r and/5's are chosen appropriately;
therefore the problem of finding an optimum search tree is the problem of finding
a binary tree of minimum weighted path length, with the weights applied from
left to right in the tree.

The above remarks lead immediately to a straightforward calculation proce-
dure for determining an optimum search tree. Let Pii and Wii denote the weighted
path length and the total weight of an optimum search tree for all words lying
strictly between A i and Ai+l, when i ~] ; and let Rij denote the index of the
root of this tree, when i < i. The following formulas now determine the desired
algorithm :

Pi~ = Wii = ~i, for O~i<=n;

~i =~,i-l +/si+~i, (**)
PiR,, t-l+PR,~,1"=mine<k~_i (Pi, k-lMylD~])~-'Pi]--Wi]' for O~i<i~n._ _

The problem of finding "best alphabetical encodings," considered by Gilbert
and Moore in their classic paper [5], is easily seen to be a special case of the
problem considered here, with/51 =/sz /sn = 0. Another closely related (but
not identical) problem has been discussed by Wong [t2]. In both cases the
authors have suggested an algorithm for finding an optimum tree which is
essentially identical to (**); Gilbert and Moore observe that the algorithm takes
about n816 iterations of the inner loop (choosing R ei from among ?' - - i possibilities).

By studying the combinatorial properties of optimum binary trees more care-
fully, we can refine the algorithm somewhat.

Lemma. If 0~ =/5~ = 0, an optimum binary tree may be obtained by replacing
the rightmost terminal node

of the optimum tree for r162 0~_ 1 and/50 /5,-1 by the subtree

Pro#. By the formulas above, Wi,.=Wi,._ 1 for 0 _ ~ i < n ; P ~ = ~ = 0 ;
R ~ _ l , . = n ; P . _ l , . = 2 a ~ _ l . We want to prove that P~ .=P i ,~_ l+0~_ l and
Ri . = Ri,~_ 1 for 0 ~ i - - < n - - 2 , and the proof is by induction on n - - i . Consider
the sums

P~, ~ + P~+I,.; ...; ~ , . - 2 + P~-I,.; P~,.-1 +/'~,.-

By induction, these are respectively equal to

~, i -~- Pi+l ,n-1 -~- ~cn-1; "" "; Pi ,n-2 -~- Pn- l ,n -1 ~- ~ ~,~r-1.
2 Acta Informatica~ Vol. i

t 8 D .E . Knuth:

Let Ri,n_ 1 = r ; since

Pi,n_l = Pi, r_l ~- g,m_l -~ Wi,n-l ~-Pi, r-1--~ Pr, n- l -Jl-~-l ,

the min imum value in the above set of numbers is P/,,-1 + P , , , hence we m a y
take Rin=r.

Theorem. Adding a new name to the tree, which is greater than all other
names, never forces the root of the op t imum tree to move to the left. In other
words, there is always a solution to the above equations such tha t

Ro,,-i <= Ro.,,
when n & 2.

Proo]. We use induct ion on n, the result being vacuous when n = 1. Since
the op t imum tree is a function of cr +fin, we m a y assume tha t fin = 0 . The method
of proof is to s tar t with a ~ = O; in this case the above lemma assures us of a
mat r ix Ri] satisfying the desired condition. We will show tha t this condition
can be mainta ined as ~r increases to arbitrari ly high values.

Let ~ be a value such tha t the op t imum tree is J " when % = ~ r e, but it
is J " =4=5 r" when ~n=0r +e, for all sufficiently small e > 0 . Assume further tha t
the root of 3 - ' is less than (i.e., to the left of) the root of ~ . The weighted path
length of 3 - is a linear expression of the form

where l (x) denotes the level associated with x, and the corresponding formula
for 3 - ' is

r(~0) ~o + l'(~1) ~, + " " + V(~n) ~n + l'(/~)//1 + " " + r (&) & .

These two expressions become equal when ~r = ~ , and

v(~n) < l(~n)
so tha t J " is be t ter when an > a . When =n = a , both trees are opt imum.

Consider now the following diagrams:

._% -.% j - , __

\
By our assumptions, 1'1 < / 1 ; i l l~,)=/ 'v(~)= n. Since 1"1 < ix, we can use induct ion
and left-right s y m m e t r y of the theorem to conclude tha t 7"~ ~ i 2 . If /'3 < i s ,
similarly, we have /'a =<ia. But since l'(~n)</(con), / 'v(~)=n>ivr hence /'k = i k
for some k. Therefore we can replace the right subtree of Aik in 3 - by the similar
subtree in ~g-', obtaining a b inary tree J " ' whose weighted path length is equal
to t ha t of J " for all 0r n. Since 3 - " has the same root as J,, this a rgument shows
tha t we need never move the root to the left as a increases.

Optimum Binary Search Trees t9

Corollary. There is always a solution to conditions (**) above satisfying

Ri, i_x <~R~,i and Ri, i~Ri+1,i, for 0 ~ i < l ' - - t < n .

Proo]. This is simply the result of the theorem applied to all subtrees, and
using left-right symmetry .

The corollary suggests an algorithm which is much faster than the previous
one, since we usually will not have to search the entire range i<r<= i when
determining Rii. In fact, only Ri+l,i--Ri, i_x+l cases need to be examined
when Rii is being calculated; summing for fixed I ' - i gives a telescoping series
which shows that the total amount of work is at worst proportional to n z.

Summary, and Open Problems
The formulas above amount to a systematic method for finding opt imum

search trees, given the frequency of occurrence of each name in the tree as well
as the frequencies of occurrence of names not in the tree. The number of steps
is essentially proportional to the square of the number of names. An ALGOL
program for the algorithm appears in the appendix, together with a detailed
example from a compiler application.

Several open problems remain to be solved. Perhaps the most interesting is
to obtain the best possible bound on the weighted pa th length in the opt imum
tree as a function of n, given arbi t rary frequencies such that

~ + ~ 1 + . . . + ~ . +fl~ + .." + f l . = l .

For example, when n = 2 the weighted path length is ~ 3, and the worst case
occurs when 0 q = t , Cr The same bound applies when n=3,
since the tree

obviously has weighted pa th length N 3. I t is not obvious what the best possible
bounds are when n > 3, although it is easy to see that the opt imum weighted
path length never exceeds [log s (n + t)] + t .

Another problem concerns the efficiency of the algorithm. Our n 2 algorithm
essentially finds all of the optimal trees for 0 ~ i < i ~ n. But if we discover by
some means that Ro,,,-1 >= 5, it is unnecessary to determine Ri,,~ for 1 = < i ~ 4
when we compute Ro,,~. There m a y be some way to arrange the calculation so
tha t the method is less than order n 2 on the average.

A harder problem, but perhaps solvable, is to devise an algorithm which keeps
its own frequency counts empirically, maintaining the tree in opt imum form
depending on the past history of the searches. Names that occur most frequently
gradually move towards the root, etc. Perhaps some such updating method could
be devised which would save more t ime than it consumes.

2*

20 D.E. Knuth:

Another interesting problem is related to our first example. The opt imum
in t h e " of-and-the" case turned out to be obtainable by the following" top-down"
rule: Place the most frequently occurring name at the root of the tree, then
proceed similarly on the subtrees. Another plausible rule is to choose the root
so as to equalize the total weight of the left and right subtrees as much as possible.
Our example for n = 3 shows that neither of these rules will produce an opt imum
tree in all cases, but it might be possible to give some quantitat ive estimate of
how far from the opt imum these methods can be.

The solution to any of these problems should provide further insight into
the nature of opt imum search trees.

I wish to thank Ronald L. Rivest for formulating a conjecture which led to the
theorem in this paper, and John Bruno for correcting an error in my original proof
of the lemma.

Appendix
The program below is written in ALGOL W, a refinement of ALGOL 60 due

to Wirth and Hoare [t l] . More than half of the code (the procedure display)
is actually devoted to printing out the opt imum tree in a reasonable pictorial
fashion, one it has been found.

In order to t ry the algorithm on a fairly complicated test case, a count was
made of all identifiers in about 25 example ALGOL W programs prepared by the
author for an introductory programming course. The frequency of each reserved
word was counted, as well as the frequency of occurrence of identifiers lying
between adjacent reserved words. This led to the following data (n =36):

33 abs 1 1t3 null 8
5 and 6 2 of 5
0 0

26 a r r a y 9 30 or 5
37 begin 77 38 procedure t6

c a s e 5 real 29
12 0

comment 95 record 2
54 div 12 0 reference t3
0 0

23 do 50 0 rem 9
else 16 result 0

0 end 77 23 short 0
15 tl

0 false 2 0 step 5
36 for 35 99 string 5

0 go 1 2 then 34
57 goto t 4 to 1

7 if 34 5 true 8
142 integer 37 4 until 34

0 logical 2 0 value 8
t13 long 5 t t l while 16

For example, any identifier starting with the letter J, K, or L would fall
between integer and logical. The R matr ix computed by the program is shown
on the next page. The average search length for this fairly large tree came to
less than 5.

Optimum Binary Search Trees 2t

The opt imum tree printed out by the program appears below, as well as the
quite different opt imum tree obtained when the frequencies ~ , 0q a3s were
set to zero. This shows tha t the "be tweenness" frequencies can profoundly in-
fluence the nature of the opt imum tree, so it is important to consider them.

ALGOL W Program

begin comment Finding an ' op t imum' search tree;
s tr ing(10) a r r a y wd(t :: t00); integer array a, b(0 :: t00);
integer n;
record node(string (10) in/o ; integer col; reference (node) left, right) ;
procedure display(integer value n; reference(node) va lue root);

begin comment Draw a picture of binary tree referenced by 'root';
r e f e r ence (node) a r r a y active, wai t ing(t :: n) ; string (t32) line;
integer k, sewk; comment The number of nodes on the waiting list;
r e f e rence (node) l~ ;
integer i; comment Counter used in colno procedure;
procedure colno(reference(node) value r);

begin comment Assign a column number to each node of the binary
tree referenced by r;

if r =~ null then
begin colno(lefl(r)) ;

col(r) : = round(123*i/(n -- t)) + 4 ; i : = i + t ;
colno(right(r))

end
end colno ;

] : = 0; colno (root) ;
wait ing (t) : = root; k : = 1 ;
while k > 0 do

gi be n l i n e : = " " ,
f o r j : = t until k do
begin comment Move waiting node to active area, and draw " [" lines

down to it;
active (i) : = # :----- waiting (7");
line (c01(#)11) : = "1 " ;

end;
write (line, line) ;
new k : = O;
for /" : = t until k do
begin comment Put nodes descended from active nodes onto the

waiting list, and prepare an appropriate line containing the ' in /o '
of active nodes;

integer cl, or;
: = active(j); cl : = cr : = col(p);
i f left(p) =4= null then

begin cl : = col(left(p)) ; newk : = newk + 1 ;
wait ing(newk) : = left(p)

end;

22 D . E . Knuf.h:

if right(p) :~= nul l then
begin cr : = col(right(p)) ; newk : = newk + t ;

waiting(newk) := right(p)
end;

for i : = cl until cr do l i n e (l i t) : = " - " ;
begin comment Center in/o(p) on line, about col(p);

integer s; s : = 0; while in/o(p) (s + l [l) ~ d o s : = s + t ;
cl : = col(p) - - s div 2;
f o r i : = 0 until s d o line(cl + i l t) :----- in/o(p)(i11);

end;
end;
write (line) ;
k : = newk

end
end display;

n : = 0; intfieldsize : = 5 ;
write (" T H E G I V E N F R E Q U E N C I E S A R E : ") ;
rloop: readC a (n), wd (n + 1), b (n + 1)) ;
write(. . . . , a(n)) ;
i f w d (n + t) (01t) ~ " . " then
begin n : = n + t ;

wri te(. . . . , wd(n), b(n));
g o t o rloop

end;

begin comment Find an n-node op t imal tree, given relat ive f requency b(i) of
encounter ing wd(i) and f requency a(i) of being between wd(i) and wd(i + t) ;

integer array p, w, r(0 :: n, 0 :: n); comment p(i, i), w(i, i), rCi, i) denote
respect ive the weighted p a t h length, the to ta l weight, and the root of the
op t imal tree for the words lying be tween wd(i) and wdO" + t) , when i < i + t .
The average search length in this t ree is p(i, i)/w(i, i);

reference(node) procedure createtree(integer v a l u e i, i) ;
i f i =t= i then node(wd(r(i, i)), 0),

createtree(i, r(i, i) --1), createtree(r(i, i), i)) e l s e nul l ;
f o r i : = 0 until n d o p(i , i) : = w(i , i) : = a(i);
f o r i : = 0 until n d o f o r i : = i + t unt i l n d o

w(i, i) : ~ w(i, i - t) + b(]') + a(i);
f o r k : = t until n do for i : = 0 until n - -k do
begin integer ik, ran, rex; ik : = i + k ;

mx : = ifk----I t h e n ik else r(i, i k - - t) ; m n : = p(i, rex- - t) + p (m x , ik) ;
if k > t then f o r]" : = m x + l until r(i + l, ik) d o

if p(i , i - - t) + P (i , ik) <ran then
begin mn :~- p(i, i - - t) +pO', ik); mx : = i end;

p(i, ik) : = mn +w(i , ik); r(i, ik) : = mx
end;
w r i t e (" A V E R A G E P A T H L E N G T H IS", p(0, n) /w(o, n));

f i I I
r-

co
m

m
en

t
..

..
..

.
1

I I I
r

be
gi

n
-i

I
!

!
!

I
I

r-
--

ar
ra

y
co

se

i ! i
ab

s-
-~

 ! ! !
an

d

I 1 I
r

..
..

en

d
.

.
.

.
.

.
.

.
.

.

i
I

I
i

i

r-
-d

"o
--

1
r-

--
go

to

5
I

I
I

I
I

I
m

m
I if

di
v

el
se

r-

fo
r

--
i

I
I

I
I

fo
lls

e
gl

o

I I I
,i

nt
eg

er

..
..

..
..

..
..

..
..

i I I

r
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

re

al

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

i I I

r
th

~n
 .

..
..

..
..

..
..

7

I
I

I
I

i.
r

..
..

..

st
ri

ng

r-
--

w
h

il
e

I
I

I
! I

o

r-
--

re

su
lt

 .~

r-
un

hl
-~

I

I
|

I
I

I
I

I

I
sl

ho
rt

ci

rc
e

va
lu

e
re

fe
re

nc
e

!
I

I
I

i
I

I
st

ep

t~
)

I I

lo
gi

ca
l

--
-I

I I

r-
nu

ll
..

..
..

..

j
I

I
I

I

lo
ng

i

pr
oc

ed
ur

e
I I

r-
or

I I

re
co

rd

re
m

O
p

ti
m

u
m

 t
re

e
fo

r
th

e
A

L
G

O
L

-r
es

er
ve

d-
w

or
ds

 a
pp

li
ca

ti
on

1
r

..
..

..
..

.
en

d
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

I I I
r-

-C
om

m
en

t-
-i

I

I
l

I
I

.
r-

be
gi

n1

r-
-a

o-
-1

I

I
I

I
I

I
I

I
I

ra
rr

ay

ca
se

dM

iv
el

se

I I

r-a
lld

I I I

ab
s

! I

r
re

al

i 1

r
..

..
..

..

in
te

ge
r

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

I
I

I
I

I
/

I
r-

-f
or

..

..
..

.
r

..
..

pr

oc
ed

ur
e

I
I

I
I

I
I

I
/

I

r
...

..
if

r-
nu

ll
-1

�9

 fa
l's

e
I

~
i

I
I

go
--

1
r-

-l
on

g
of

-1

I
I

I
I

I
I

!
I

I
go

to

lo
gi

ca
l

or

1 I I /

r
..

..
..

..
..

..

th
~n

 .
..

..
..

.
1

I
I

I
I

I
r-

re

m

..
..

..
.

1
I

I
I

I
I

/
re

fe
re

nc
e

r
..

..

sf
ep

--
~

I
I

I

'
I

1
I

re
co

rd

re
su

lt
l

st
ri

ng

I I

sh
~r

t

O
p

ti
m

u
m

 t
re

e
w

he
n

th
e

~
fr

eq
ue

nc
ie

s
ar

e
ig

no
re

d

r-
u~

ti
l-

--
i

I
I

I
I

rt
rl

~e

r-
w

hi
le

I

I
I

I

t~
)

v(
liu

e

ta

24 D . E . K n u t h :

0 0 0 ~ ~

0 0 0 0 ~ ~

 aaaaaa ~ ~ 0 0 0

~ ~ 0 ~ ~ 0 0 0 0 ~

~ ~ o o o ~ o o o o o ~
~ ~ ~ o ~ o o |
~ ~ 0 0 0 ~ 0 0 0 0 0 0 0

~ ~ 0 0 0 0 0 0 0 0 0 0 0

~ ~ ~ 0 0 0 0 0 0 0 0 0

~ ~ 0 0 0 0 0 0 0 0 0 0

~ ~ 0 0 0 0 0 0 0 0 0 0 0 0

~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 0

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m m m O 0 0 0

m m

~ m

~ m

m O 0 0 0 0 0 0 0 ~ ~ 0 0 0 0 0

m O 0 0 0 0 0 0 0 ~ ~ 0 0 0 0 0 0

~ m ~ O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ ~ ~ 0 0 0 0 0 0 0 0

~ ~ 0 0 0 0 0 0 0 0 0

~ ~ 0 0 0 0 0 0 0 0 0 0

~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 0

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ o o o o o o o o o o o o o o o o
~ o o o o o o o o o o o o o o o o o o

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

N

Optimum Binary Search Trees 25

iocontrol (3) ;
display(n, createtree(O, n));
iocontrot (3) ; int/ieldsize : = 2;
for i :---- 0 until n do
begin iocontrol(2) ;

f o r i : = 0 u n t i l n d o writeon(if i < f t h e n r(i, j) e l se O)
end;

end
end.

Note Added in Proo[. T. C. Hu and A. C. Tucker have recently discovered a
completely different way to find opt imum binary search trees, in the special case
tha t the fl's are all zero. Their algori thm requires only O (n) units of memory and
O (n log ~) units of time, when suitable da ta structures are employed.

References

t . Booth, A .D. , Colin, A. J. T. : On the efficiency of a new method of dict ionary
construction. Informat ion and Control 3, 327-334 (1960).

2. Brooks, Frederick P., Jr., Iverson, Kenneth 2 . : Automat ic da ta processing,
System/360 edition. Wiley t969.

3. Douglas, A. S. : Techniques for the recording of, and reference to da ta in a com-
puter. The Computer Journal 2, t - 9 (t959).

4. 2ar ley, J ay : An efficient context-free parsing algorithm. Communications of the
ACM 13, 94- t02 (t970).

5. Gilbert, 2 . N., Moore, E. F. : Variable-length b inary encodings. The Bell System
Technical Journal 38, 933-968 (1959).

6. Helbich, Jan : Direct selection of keywords for the KWIC index. Informat ion
Storage and Retr ieval ~, t 23 - t28 (t969).

7. Hibbard, Thomas N. : Some combinatorial properties of certain trees with applica-
tions to searching and sorting. Journal of the ACM 9, 13-28 (t962).

8. Iverson, Kenneth 2 . : A programming language. Wiley t 962.
9. Knuth, Donald 2 . : The ar t of computer programming, 1: Fundamen ta l algorithms.

Addison-Wesley t968.
t0. Windley, P. F. : Trees, forests and rearranging. The Computer Journal 3, 84-88,

t74, t84 (t960).
t t . Wir th , Niklaus, Hoare, C. A. R. : A contribution to the development of ALc-or.

Communications of the ACM 9, 4 t3-43t (t966).
t2. Wong, Eugene: A linear search problem. SIAM Review 6, t 68-t 74 (1964).

Prof. Dr. Donald E. Knuth
Stanford Universi ty
Computer Science Depar tment
Stanford, Calif. 94305
U.S.A.

