MAC0338 Análise de Algoritmos
Algoritmos na Web
Na internet há muito material muito bom de algoritmos.
A lista de sítios de Algoritmos e
assuntos relacionados foi garimpada
pelos professores e alunos
de edições passadas de MAC0338.
Se você encontrar algum sítio de
Algoritmos (ou de qualquer outra coisa) que você ache
interessante, por favor, não deixe de me avisar.
Durante o andamento da disciplina a lista abaixo
deve ser atualizada e expandida.
Edições passadas de MAC0338
Cristina Gomes
Fernandes:
2003,
2001.
Paulo Feofiloff:
2002, 1999.
Yoshiharu Kohayakawa:
2000.
Algorithms Courses on the WWW
O nome já diz tudo.
Stony Brook Algorithms Repository
Repositório de algoritmos de Steven Skiena em Nova Iorque.
Não é bem um sítio de teoria dos grafos,
mas pode ser interessante para MAC328.
A propósito, veja o que Skiena diz do
Dictionary of Algorithms and Data Structures
This is a dictionary of algorithms, algorithmic techniques,
data structures, archetypical problems, and related definitions.
Algorithms include common functions, such as
Ackermann's function.
Problems include
traveling salesman and
Byzantine generals.
Some entries have links to implementations
and more information.
Index pages list entries by
area and by
type.
The two-level
index has a total download 1/20 as big as this page.
Sorting Algorithms
We all know that Quicksort is one of the fastest algorithms for sorting. It's
not often, however, that we get a chance to see exactly how fast Quicksort
really is. The following applets chart the progress of several common sorting
algorithms while sorting an array of data using in-place algorithms. This
means that the algorithms do not allocate additional storage to hold
temporary results: they sort the data in place. (This is inspired by the
algorithm animation work at Brown University and the video Sorting out
Sorting By Ronald Baecker from the University of Toronto (circa 1970!).)
Analysis of Algorithms Home Page
Analysis of Algorithms (AofA) is a field
in computer science whose overall goal is an understanding of the
complexity of algorithms. While an extremely large amount of research
is devoted to worst-case evaluations, the focus in these pages is
methods for average-case and probabilistic analysis. Properties of
random strings, permutations, trees, and graphs are thus essential
ingredients in the analysis of algorithms.
Last modified: Mon Mar 1 08:52:52 BRT 2004