MAC 828 Tópicos em Complexidade Computacional
Horário: segundas-feiras das 14 às 16hs e quartas-feiras das 16 às 18hs .
Local: sala 267 do bloco A e sala 6 do bloco B.
Conteúdo das Aulas durante o mês de agosto
- Aula 1 (10 de agosto)
- Provas Interativas
- Jogos de Artur e Merlin
- Sistemas de Provas Interativas
- Definição das classes IP(t(n)), AM(t(n)), IP e AM
- Sistemas de Provas Interativas
- NP \subseteq IP(2) \subseteq IP
- Exemplo: Grafo Não-Isomorfismo (a ser
continuado...)
- Aula 2 (12 de agosto)
- co-NP \subseteq IP
- Prova: O seguinte problema está em IP: dado um
grafo, seu número cromático é maior ou igual a 4?
- Aula 3 (17 de agosto)
- co-NP \subseteq IP (continuação...)
- Aula 4 (21 de agosto)
- IP = PSPACE
- Prova:
IP \subseteq PSPACE: direto
PSPACE \subseteq IP: QBF é PSPACE-completo, IP
fechado em relação a reduções, QBF \in IP
- Aula 5 (24 de agosto)
- IP = PSPACE (continuação...)
- Aula 6 (28 de agosto)
- Provas verificáveis probabilisticamente: as classes
PCP(r(n),q(n))
- PCP(log n, 1) \subset NP
- Aula 7 (31 de agosto)
- O PCP teorema: relação com aproximação.
- Teorema. Existe uma constante \epsilon tal que
computar uma (1 + \epsilon)-aproximação para MAX-3SAT é
NP-difícil.
- Teorema. NP \subset PCP(n^3,1) (a ser continuado)
MAC 828 - Conteúdo das aulas.
Last modified: Tue Nov 17 09:54:05 EDT 1998