MAP0413/MAP5712 - 10. Semestre de 2025

A. Hipersuperfícies. Sejam $\Omega \subset \mathbb{R}^N$ aberto e $\mathcal{M} \subset \Omega$. Dizemos que \mathcal{M} é uma hipersuperfície em Ω se existir $g: \Omega \to \mathbb{R}$ de classe C^1 tal que

- 1. $\mathcal{M} = \{x \in \Omega : g(x) = 0\};$
- 2. $g'(x) \neq 0$ para todo $x \in \mathcal{M}$.

Lembre que g'(x), a derivada de g no ponto x, é uma transformação linear de \mathbb{R}^N em \mathbb{R} . A matriz que representa g'(x), com relação à base canônica, é dada pela matriz jacobiana

$$\left[\frac{\partial g}{\partial x_1}(x) \frac{\partial g}{\partial x_2}(x) \cdots \frac{\partial g}{\partial x_N}(x)\right].$$

Note que (1) implica que \mathcal{M} é um subconjunto fechado de Ω e que (2) é equivalente à seguinte propriedade: dado $x_0 \in \mathcal{M}$ existe $j \in \{1, ..., N\}$ tal que $(\partial g/\partial x_j)(x_0) \neq 0$.

Exemplo. Considere a função $g: \mathbb{R}^n \to \mathbb{R}$ definida por

$$g(x) = |x|^2 - 1.$$

Então a esfera em \mathbb{R}^N de centro na origem e raio 1, dada por $S_1(0) = \{x \in \mathbb{R}^N : g(x) = 0\}$, é uma hipersuperfície em \mathbb{R}^N . Note que a matriz que representa g'(x), com relação à base canônica, é dada por $[2x_1 \ 2x_2 \cdots 2x_n]$ e esta não se anula em $S_1(0)$.

O teorema da função implícita permite dar uma descrição precisa de uma hipersuperfície \mathcal{M} em Ω em uma vizinhança de cada um de seus pontos. De fato, seja $x_0 \in \mathcal{M}$ e suponha, por exemplo, que $(\partial g/\partial x_N)(x_0) \neq 0$. Vamos decompor

$$\mathbb{R}^N = \mathbb{R}^{N-1} \times \mathbb{R}, \quad x = (x', x_N) \in \mathbb{R}^{N-1} \times \mathbb{R}.$$

Escrevemos $x_0=(x_0',x_{0N})$. Pelo teorema da função implícita existem $U\subset\Omega$ aberto, $x_0\in U,\,V\subset\mathbb{R}^{N-1}$ aberto, $x_0'\in V$, e uma função de classe $\psi:V\to\mathbb{R}$ de classe $C^1,\,\psi(x_0')=x_{N0}$, tais que

$$U \cap \mathcal{M} = \{(x', \psi(x')) : x' \in V\}.$$

Em outras palavras, em U a hipersuperfície \mathcal{M} é igual ao gráfico da função ψ .

Dado $x_0 \in \mathcal{M}$ o espaço tangente $T_{x_0}\mathcal{M}$ a \mathcal{M} no ponto x_0 é o conjunto de todos os vetores $v \in \mathbb{R}^N$ para os quais existem $\varepsilon > 0$ e $\gamma :] - \varepsilon, \varepsilon[\to \mathbb{R}^N$ de classe C^1 satisfazendo

$$\gamma(t) \in \mathcal{M}, \forall t \in]-\varepsilon, \varepsilon[, \quad \gamma(0) = x_0, \quad \gamma'(0) = v.$$

Pode-se provar que $T_{x_0}\mathcal{M}$ tem uma estrutura de espaço vetorial de dimensão N-1. Em particular seu ortogonal em \mathbb{R}^N é um subespaço vetorial unidimensional de \mathbb{R}^N , denominado *espaço normal a* \mathcal{M} *no ponto* x_0 e denotado por $\mathcal{N}_{x_0}\mathcal{M}$. Não é difícil mostrar que $\mathcal{N}_{x_0}\mathcal{M}$ é gerado pelo vetor $\nabla g(x_0)$

B. Abertos com fronteira regular. Seja $\Omega \subset \mathbb{R}^N$ aberto e $\rho \in C(\overline{\Omega})$ tal que $\Omega = \{x : \rho(x) < 0\}$. Segue facilmente que

$$\partial\Omega\subset\{x:\rho(x)=0\}$$

mas a inclusão pode ser ser estrita. De fato, considere uma função $\rho:\mathbb{R}\to\mathbb{R}$ contínua tal que

$$\rho(x) < 0 \text{ se } x < 0; \quad \rho(x) = 0 \text{ se } 0 \le x \le 1; \quad \rho(x) > 0 \text{ se } x > 1.$$

Neste caso
$$\Omega = \{x : x < 0\}$$
 e portanto $\partial \Omega = \{0\} \subset [0, 1] = \{x : \rho(x) = 0\}.$

Tal fenômeno não ocorre para abertos satisfazendo a definição seguinte:

Definição. Seja $\Omega \subset \mathbb{R}^N$ um aberto limitado. Dizemos que Ω é um aberto com fronteira regular se existir $\rho \in C^{\infty}(U)$, onde U é um aberto contendo $\overline{\Omega}$, satisfazendo:

(3)
$$\Omega = \{x \in U : \rho(x) < 0\};$$

(4)
$$\rho'(x) \neq 0$$
 se $x \in \partial \Omega$.

Neste caso temos $\partial\Omega=\{x\in U:\rho(x)=0\}$ e portanto $\partial\Omega$ é uma hipersuperfície em U. Para cada $x\in\partial\Omega$ temos que $\mathcal{N}_{x_0}\partial\Omega$ é gerado por $\vec{\nabla}\rho(x)$. Definimos

Poderíamos exigir menos regularidade para a função ρ , por exemplo $\rho \in C^k$, com $k \geq 1$. Isto, porém, não é importante em nossas aplicações.

então o campo normal exterior a Ω como sendo a aplicação

$$\partial\Omega\ni x\longrightarrow \vec{n}(x)=rac{\vec{\nabla}\rho(x)}{|\vec{\nabla}\rho(x)|}.$$

O termo "exterior"se explica pelo fato de que o gradiente de uma função em cada ponto sempre aponta para a direção de seu maior crescimento.

Devemos observar que a função ρ que define Ω na definição precedente não é única. De fato se tomarmos $\psi \in C^{\infty}(U), \ \psi > 0$, então $\rho_1 \doteq \psi \rho$ satisfaz $\Omega = \{x \in U : \rho_1(x) < 0\}$ e $\rho'_1(x) \neq 0$ se $x \in \partial \Omega$.

É possível mostrar, também, a existência de uma medida finita d σ sobre os subconjuntos borelianos de $\partial\Omega$ que é invariante, no sentido de que independente da função ρ que define Ω .

Temos então a validade do seguinte resultado, conhecido como o *Teorema da Divergência de Gauss*. Aqui dx denota a medida de Lebesgue em \mathbb{R}^N .

Teorema. Sejam Ω um aberto com fronteira regular e $\vec{X} = (X_1, \dots, X_N)$ um campo vetorial com coeficientes pertencentes a $C^1(\overline{\Omega})$. Então

$$\int_{\Omega} \operatorname{div} \vec{X}(x) \, \mathrm{d}x = \int_{\partial \Omega} \langle \vec{X}(y), \vec{n}(y) \rangle \, \mathrm{d}\sigma(y).$$