Análise de Algoritmos

Parte destes slides são adaptações de slides

do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Mais programação dinâmica

CLRS 15.4 e 15.5

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

Subsequências

 $\langle z_1, \dots, z_k \rangle$ é subsequência de $\langle x_1, \dots, x_m \rangle$ se existem índices $i_1 < \dots < i_k$ tais que

$$z_1 = x_{i_1} \quad \dots \quad z_k = x_{i_k}$$

EXEMPLOS:

 $\langle 5, 9, 2, 7 \rangle$ é subsequência de $\langle 9, 5, 6, 9, 6, 2, 7, 3 \rangle$

(A, A, D, A, A) é subsequência de
(A, B, R, A, C, A, D, A, B, R, A)

Problema: Decidir se Z[1...m] é subsequência de X[1...n]

Problema: Decidir se Z[1...m] é subsequência de X[1...n]

```
SUB-SEQ (Z, m, X, n)

1 i \leftarrow m

2 j \leftarrow n

3 enquanto i \ge 1 e j \ge 1 faça

4 se Z[i] = X[j]

5 então i \leftarrow i - 1

6 j \leftarrow j - 1

7 se i \ge 1

8 então devolva "não é subsequência"

9 senão devolva "é subsequência"
```

Problema: Decidir se Z[1...m] é subsequência de X[1...n]

```
SUB-SEQ (Z, m, X, n)

1 i \leftarrow m

2 j \leftarrow n

3 enquanto i \ge 1 e j \ge 1 faça

4 se Z[i] = X[j]

5 então i \leftarrow i - 1

6 j \leftarrow j - 1

7 se i \ge 1

8 então devolva "não é subsequência"

9 senão devolva "é subsequência"
```

Consumo de tempo é O(n) e $\Omega(\min\{m, n\})$.

Problema: Decidir se Z[1...m] é subsequência de X[1...n]

```
SUB-SEQ (Z, m, X, n)

1 i \leftarrow m

2 j \leftarrow n

3 enquanto i \ge 1 e j \ge 1 faça

4 se Z[i] = X[j]

5 então i \leftarrow i - 1

6 j \leftarrow j - 1

7 se i \ge 1

8 então devolva "não é subsequência"

9 senão devolva "é subsequência"
```

Invariantes:

```
(i0) Z[i+1..m] é subsequência de X[j+1..n]
(i1) Z[i..m] não é subsequência de X[j+1..n]
```

Subsequência comum máxima

Z é subseq comum de X e Y

se Z é subsequência de X e de Y

ssco = subseq comum

Subsequência comum máxima

Z é subseq comum de X e Y

se Z é subsequência de X e de Y

ssco = subseq comum

Exemplos: X = ABCBDAB

Y = BDCABA

ssco = BCA

Subsequência comum máxima

Z é subseq comum de X e Y

se Z é subsequência de X e de Y

ssco = subseq comum

Exemplos: X = ABCBDAB

Y = BDCABA

ssco = BCA

Outra ssco = BDAB

Problema

Problema: Encontrar uma ssco máxima de X e Y.

Exemplos: X = ABCBDAB

Y = BDCABA

ssco = B C A

ssco maximal = A B A

ssco máxima = B C A B

Outra ssco máxima = B D A B

LCS = Longest Common Subsequence

diff

more yabbadabbadoo more abracadabra Y A В A R В A В В В В RA A

diff -u abracadabra yabbadabbadoo

+Y Α В -R-A $-\mathbb{C}$ +BA A -R+BA +D+0

Subestrutura ótima

Suponha que Z[1..k] é ssco máxima de X[1..m] e Y[1..n].

Se X[m] = Y[n], então Z[k] = X[m] = Y[n] e Z[1...k-1] é ssco máxima de X[1...m-1] e Y[1...n-1].

Subestrutura ótima

Suponha que Z[1...k] é ssco máxima de X[1...m] e Y[1...n].

- Se X[m] = Y[n], então Z[k] = X[m] = Y[n] e Z[1...k-1] é ssco máxima de X[1...m-1] e Y[1...n-1].
- Se $X[m] \neq Y[n]$, então $Z[k] \neq X[m]$ implica que Z[1...k] é ssco máxima de X[1...m-1] e Y[1...n].

Subestrutura ótima

Suponha que Z[1...k] é ssco máxima de X[1...m] e Y[1...n].

- Se X[m] = Y[n], então Z[k] = X[m] = Y[n] e Z[1...k-1] é ssco máxima de X[1...m-1] e Y[1...n-1].
- Se $X[m] \neq Y[n]$, então $Z[k] \neq X[m]$ implica que Z[1...k] é ssco máxima de X[1...m-1] e Y[1...n].
- Se $X[m] \neq Y[n]$, então $Z[k] \neq Y[n]$ implica que Z[1...k] é ssco máxima de X[1...m] e Y[1...n-1].

Problema: encontrar o comprimento de uma ssco máxima.

Problema: encontrar o comprimento de uma ssco máxima.

```
c[i, j] = comprimento de uma ssco máxima de X[1...i] e Y[1...j]
```

Problema: encontrar o comprimento de uma ssco máxima.

$$c[i, j] =$$
 comprimento de uma ssco máxima de $X[1 ... i]$ e $Y[1 ... j]$

Recorrência:

$$c[0, j] = c[i, 0] = 0$$

Problema: encontrar o comprimento de uma ssco máxima.

$$c[i, j] =$$
comprimento de uma ssco máxima de $X[1 ... i]$ e $Y[1 ... j]$

Recorrência:

$$\begin{split} c[0, \pmb{j}] &= c[\pmb{i}, 0] = 0 \\ c[\pmb{i}, \pmb{j}] &= c[\pmb{i} - 1, \pmb{j} - 1] + 1 \text{ se } X[\pmb{i}] = Y[\pmb{j}] \end{split}$$

Problema: encontrar o comprimento de uma ssco máxima.

$$c[i, j] =$$
comprimento de uma ssco máxima de $X[1 ... i]$ e $Y[1 ... j]$

Recorrência:

$$\begin{split} c[0, \pmb{j}] &= c[\pmb{i}, 0] = 0 \\ c[\pmb{i}, \pmb{j}] &= c[\pmb{i} - 1, \pmb{j} - 1] + 1 \text{ se } X[\pmb{i}] = Y[\pmb{j}] \\ c[\pmb{i}, \pmb{j}] &= \max{(c[\pmb{i}, \pmb{j} - 1], c[\pmb{i} - 1, \pmb{j}]) \text{ se } X[\pmb{i}] \neq Y[\pmb{j}]} \end{split}$$

Algoritmo recursivo

Devolve o comprimento de uma ssco máxima de X[1..i] e Y[1..j].

```
REC-LCS-LENGTH (X, i, Y, i)
     se i = 0 ou j = 0 então devolva 0
    se X[i] = Y[j]
          então c[i, j] \leftarrow \mathsf{REC}\text{-}\mathsf{LCS}\text{-}\mathsf{LENGTH}\;(X, i-1, Y, j-1) + 1
          senão q_1 \leftarrow \mathsf{REC}\text{-}\mathsf{LCS}\text{-}\mathsf{LENGTH}\;(X,i-1,Y,j)
5
                      q_2 \leftarrow \mathsf{REC}\text{-LCS-LENGTH}(X, i, Y, j-1)
                      se q_1 \ge q_2
                           então c[\mathbf{i}, \mathbf{j}] \leftarrow q_1
                           senãoc[i,j] \leftarrow q_2
     devolva c[i, j]
```

Consumo de tempo

```
T(m, n) :=  número de comparações feitas por 
REC-LCS-LENGTH (X, m, Y, n) no pior caso
```

Consumo de tempo

T(m, n) := número de comparações feitas por REC-LCS-LENGTH (X, m, Y, n) no pior caso

Recorrência

$$T(0, \mathbf{n}) = 0$$

$$T(\mathbf{m},0) = 0$$

$$T(m, n) \ge T(m - 1, n) + T(m, n - 1) + 1$$
 para $n \ge 1$ e $m \ge 1$

Consumo de tempo

T(m, n) := número de comparações feitas por REC-LCS-LENGTH (X, m, Y, n) no pior caso

Recorrência

$$T(0, \mathbf{n}) = 0$$

$$T(\mathbf{m},0) = 0$$

$$T(m, n) \ge T(m-1, n) + T(m, n-1) + 1$$
 para $n \ge 1$ e $m \ge 1$

A que classe Ω pertence T(m, n)?

Note que T(m, n) = T(n, m) para $n = 0, 1, \dots$ e $m = 0, 1, \dots$

Note que T(m, n) = T(n, m) para $n = 0, 1, \dots$ e $m = 0, 1, \dots$

Seja $k := \min\{m, n\}$. Temos que

$$T(\mathbf{m}, \mathbf{n}) \ge T(k, k) \ge S(k),$$

onde

$$S(0) = 0$$

$$S(k) = 2S(k-1) + 1$$
 para $k = 1, 2, ...$

Note que T(m, n) = T(n, m) para $n = 0, 1, \dots$ e $m = 0, 1, \dots$

Seja $k := \min\{m, n\}$. Temos que

$$T(\mathbf{m}, \mathbf{n}) \ge T(k, k) \ge S(k),$$

onde

$$S(0) = 0$$

$$S(k) = 2S(k-1) + 1$$
 para $k = 1, 2, ...$

$$S(k) \notin \Theta(2^k) \Rightarrow T(m,n) \notin \Omega(2^{\min\{m,n\}})$$

Note que T(m, n) = T(n, m) para $n = 0, 1, \dots$ e $m = 0, 1, \dots$

Seja $k := \min\{m, n\}$. Temos que

$$T(\mathbf{m}, \mathbf{n}) \ge T(k, k) \ge S(k),$$

onde

$$S(0) = 0$$

$$S(k) = 2S(k-1) + 1$$
 para $k = 1, 2, ...$

$$S(k) \notin \Theta(2^k) \Rightarrow T(m,n) \notin \Omega(2^{\min\{m,n\}})$$

T(m,n) é exponecial

Conclusão

O consumo de tempo do algoritmo

REC-LEC-LENGTH É $\Omega(2^{\min\{m,n\}})$.

Cada subproblema, comprimento de uma ssco máxima de

$$X[1..i]$$
 e $Y[1..j]$,

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela c?

Para calcular c[4,6] preciso de ...

Cada subproblema, comprimento de uma ssco máxima de

$$X[1..i]$$
 e $Y[1..j]$,

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela c?

Para calcular c[4,6] preciso de ...

$$c[4,5]$$
, $c[3,6]$ e de $c[3,5]$.

Cada subproblema, comprimento de uma ssco máxima de

$$X[1..i]$$
 e $Y[1..j]$,

é resolvido uma só vez.

Em que ordem calcular os componentes da tabela c?

Para calcular c[4,6] preciso de ...

c[4,5], c[3,6] e de c[3,5].

Calcule todos os c[i, j] com i = 1 e j = 0, 1, ..., n, depois todos com i = 2 e j = 0, 1, ..., n, depois todos com i = 3 e j = 0, 1, ..., n, etc.

	1	2	3	4	5	6	7	8	J
1	0	0	0	0	0	0	0	0	
2	0								
3	0				*	*			
4	0				*	??			
5	0								
6	0								
7	0								
8	0								

Simulação

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	??						
В	2	0							
\mathbf{C}	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

Simulação

	Y		В	D	\mathbf{C}	A	В	\mathbf{A}	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	??					
В	2	0							
\mathbf{C}	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	??				
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	??			
В	2	0							
C	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	??		
В	2	0							
\mathbf{C}	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	<i>.</i>
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	??	
В	2	0							
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	??						
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	??					
C	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X	1	0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	??				
\mathbf{C}	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	??			
С	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	\underline{j}
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	??		
\mathbf{C}	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	??	
C	3	0							
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	\mathbf{A}	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	??						
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	??					
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	??				
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	ر ا
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	??			
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	??		
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
C	3	0	1	1	2	2	2	??	
В	4	0							
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	??						
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	??					
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	<i>J</i>
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	1	1	??				
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	<i>J</i>
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	??			
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	1
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	??		
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	??	
D	5	0							
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	1
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	??						
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	Ĵ
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	??					
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	??				
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	1
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	??			
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	1
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	??		
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	??	
A	6	0							
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	??						
В	7	0							

	Y		В	D	\mathbf{C}	A	В	\mathbf{A}	
X		0	1	2	3	4	5	6	Ĵ
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	??					
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	??				
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	•
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	??			
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	1
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	??		
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	\mathcal{J}
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	??	
В	7	0							

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	??						

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	??					

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	-
В	7	0	1	2	??				

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	J
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	_
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	2	??			

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
С	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	2	3	??		

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	2	3	4	??	

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	0	0	0	0	0	0	0	
A	1	0	0	0	0	1	1	1	
В	2	0	1	1	1	1	2	2	
\mathbf{C}	3	0	1	1	2	2	2	2	
В	4	0	1	1	2	2	3	3	
D	5	0	1	2	2	2	3	3	
A	6	0	1	2	2	3	3	4	
В	7	0	1	2	2	3	4	4	

Algoritmo de programação dinâmica

Devolve o comprimento de uma ssco máxima de X[1..m] e Y[1..n].

```
LEC-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faça c[i, 0] \leftarrow 0
      para j \leftarrow 1 até n faça c[0, j] \leftarrow 0
      para i \leftarrow 1 até m faça
          para j \leftarrow 1 até n faça
              se X[i] = Y[j]
                  então c[i,j] \leftarrow c[i-1,j-1]+1
                  senão se c[i-1,j] \geq c[i,j-1]
                               então c[i,j] \leftarrow c[i-1,j]
 8
                               senão c[i,j] \leftarrow c[i,j-1]
     devolva c[m, n]
10
```

Algoritmo de programação dinâmica

Devolve o comprimento de uma ssco máxima de X[1..m] e Y[1..n].

```
LEC-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faça c[i, 0] \leftarrow 0
      para j \leftarrow 1 até n faça c[0, j] \leftarrow 0
      para i \leftarrow 1 até m faça
          para j \leftarrow 1 até n faça
              se X[i] = Y[j]
                  então c[i,j] \leftarrow c[i-1,j-1]+1
                  senão se c[i-1,j] \geq c[i,j-1]
                               então c[i,j] \leftarrow c[i-1,j]
 8
                               senão c[i,j] \leftarrow c[i,j-1]
     devolva c[m, n]
10
```

Consumo de tempo: O(mn)

Conclusão

O consumo de tempo do algoritmo LEC-LENGTH é $\Theta(mn)$.

Subsequência comum máxima

	Y		В	D	\mathbf{C}	A	В	A	
X		0	1	2	3	4	5	6	j
	0	*	*	*	*	*	*	*	
A	1	*	\leftarrow	\leftarrow	\leftarrow	K	↑	K	
В	2	*	K	↑	↑	\leftarrow	K	↑	
С	3	*	\leftarrow	\leftarrow	K	†	\leftarrow	\leftarrow	
В	4	*	K	\leftarrow	\leftarrow	\leftarrow	K		
D	5	*	\	K	\	\	\	\	
A	6	*				K	\	K	
В	7	*	K				K		

Algoritmo de programação dinâmica

```
LEC-LENGTH (X, m, Y, n)
      para i \leftarrow 0 até m faça c[i, 0] \leftarrow 0
      para j \leftarrow 1 até n faça c[0, j] \leftarrow 0
 3
      para i \leftarrow 1 até m faça
           para j \leftarrow 1 até n faça
 4
 5
               se X[i] = Y[j]
 6
                   então c[i,j] \leftarrow c[i-1,j-1]+1
                             b[i,j] \leftarrow "\\\"
                   senão se c[i-1,j] \geq c[i,j-1]
                                  então c[i,j] \leftarrow c[i-1,j]
                                            b[i, j] \leftarrow "\uparrow"
10
                                  senão c[i,j] \leftarrow c[i,j-1]
                                            b[i, j] \leftarrow "\leftarrow"
12
13
      devolva c \in b
```

Consumo de tempo: O(mn)

Get-LCS

```
GET-LCS (X, m, n, b, maxcomp)
     k \leftarrow \text{máxcomp}
 2 \quad i \leftarrow m
 3 \quad j \leftarrow n
     enquanto i > 0 e j > 0 faça
 5
          se b[i,j] = "\"
               então Z[k] \leftarrow X[i]
 6
                        k \leftarrow k-1 i \leftarrow i-1 j \leftarrow j-1
               senão se b[i,j] = "\leftarrow"
 8
                                 então i \leftarrow i-1
10
                                 senão j \leftarrow j-1
      devolva Z
```

Consumo de tempo é O(m+n) e $\Omega(\min\{m,n\})$.

Exercícios

Exercício 20.A

Escreva um algoritmo para decidir se $\langle z_1, \ldots, z_k \rangle$ é subsequência de $\langle x_1, \ldots, x_m \rangle$. Prove rigorosamente que o seu algoritmo está correto.

Exercício 20.B

Suponha que os elementos de uma sequência $\langle a_1, \dots, a_n \rangle$ são distintos dois a dois. Quantas subsequências tem a sequência?

Exercício 20.C

Uma subsequência crescente Z de uma sequência X e é $m\'{a}xima$ se não existe outra subsequência crescente mais longa. A subsequência $\langle 5,6,9 \rangle$ de $\langle 9,5,6,9,6,2,7 \rangle$ é máxima? Dê uma sequência crescente máxima de $\langle 9,5,6,9,6,2,7 \rangle$. Mostre que o algoritmo "guloso" óbvio não é capaz, em geral, de encontrar uma subsequência crescente máxima de uma sequência dada. (Algoritmo guloso óbvio: escolha o menor elemento de X; a partir daí, escolha sempre o próximo elemento de X que seja maior ou igual ao último escolhido.)

Exercício 20.D

Escreva um algoritmo de programação dinâmica para resolver o problema da subsequência crescente máxima.

Mais exercícios

Exercício 20.E [CLRS 15.4-5]

Mostre como o algoritmo da subsequência comum máxima pode ser usado para resolver o problema da subsequência crescente máxima de uma sequência numérica. Dê uma delimitação justa, em notação Θ , do consumo de tempo de sua solução.

Exercício 20.F [Printing neatly. CLRS 15-2]

Considere a sequência P_1, P_2, \ldots, P_n de palavras que constitui um parágrafo de texto. A palavra P_i tem l_i caracteres. Queremos imprimir as palavras em linhas, na ordem dada, de modo que cada linha tenha no máximo M caracteres. Se uma determinada linha contém as palavras $P_i, P_{i+1}, \ldots, P_j$ (com $i \leq j$) e há exatamente um espaço entre cada par de palavras consecutivas, o número de espaços no fim da linha é

$$M - (l_i + 1 + l_{i+1} + 1 + \dots + 1 + l_j)$$
.

É claro que não devemos permitir que esse número seja negativo. Queremos minimizar, com relação a todas as linhas exceto a última, a soma dos cubos dos números de espaços no fim de cada linha. (Assim, se temos linhas $1, 2, \ldots, L$ e b_p espaços no fim da linha p, queremos minimizar $b_1^3 + b_2^3 + \cdots + b_{L-1}^3$).

Dê um exemplo para mostrar que algoritmos inocentes não resolvem o problema. Dê um algoritmo de programação dinâmica que resolva o problema. Qual a "optimal substructure property" para esse problema? Faça uma análise do consumo de tempo do algoritmo.

Considere um inteiro n e um vetor v[1..n] de inteiros.

Problema: Dado v[1..n] e uma sequência de k inteiros, decidir se cada inteiro está ou não em v.

Considere um inteiro n e um vetor v[1...n] de inteiros.

Problema: Dado v[1..n] e uma sequência de k inteiros, decidir se cada inteiro está ou não em v.

Se k é grande, como devemos armazenar o v?

Considere um inteiro n e um vetor v[1..n] de inteiros.

Problema: Dado v[1...n] e uma sequência de k inteiros, decidir se cada inteiro está ou não em v.

Se k é grande, como devemos armazenar o v?

E se *v* armazena um conjunto bem conhecido, como por exemplo as palavras de uma língua? (A ser usado por um tradutor, ou um speller.)

Considere um inteiro n e um vetor v[1...n] de inteiros.

Problema: Dado v[1..n] e uma sequência de k inteiros, decidir se cada inteiro está ou não em v.

Se k é grande, como devemos armazenar o v?

E se v armazena um conjunto bem conhecido, como por exemplo as palavras de uma língua? (A ser usado por um tradutor, ou um speller.)

Podemos ordenar v e aplicar busca binária.

Podemos fazer algo melhor?

Dadas estimativas do número de acessos a cada elemento de v[1...n], qual é a melhor estrutura de dados para v?

Dadas estimativas do número de acessos a cada elemento de v[1...n], qual é a melhor estrutura de dados para v?

Árvore de busca binária (ABB)?

Dadas estimativas do número de acessos a cada elemento de v[1...n], qual é a melhor estrutura de dados para v?

Árvore de busca binária (ABB)?

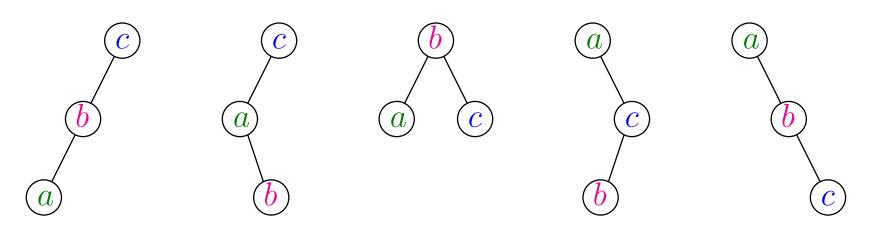
Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.

Dadas estimativas do número de acessos a cada elemento de v[1...n], qual é a melhor estrutura de dados para v?

Árvore de busca binária (ABB)?

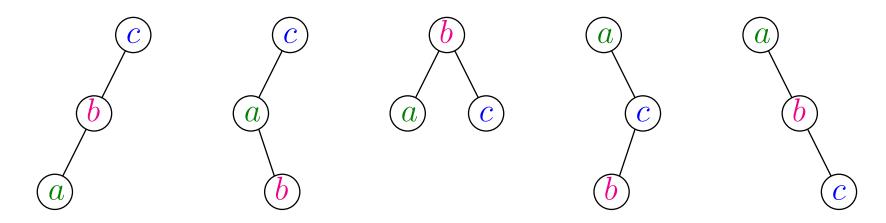
Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.

Qual a melhor das ABBs?



Exemplo

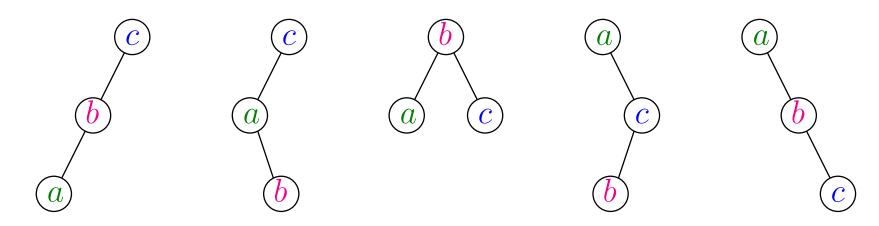
Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Qual a melhor das ABBs?

Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Número esperado de comparações:

$$10 \cdot 3 + 20 \cdot 2 + 40 \cdot 1 = 110$$

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

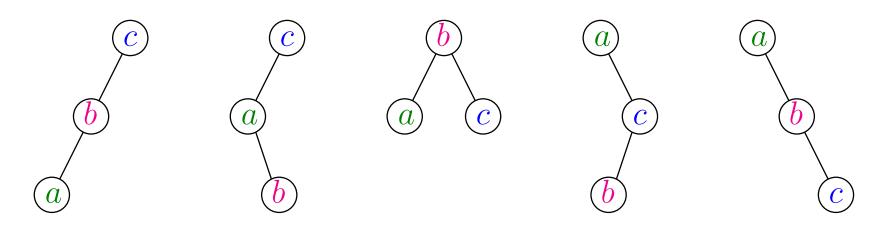
$$10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$10 \cdot 1 + 20 \cdot 3 + 40 \cdot 2 = 150$$

$$10 \cdot 1 + 20 \cdot 2 + 40 \cdot 2 = 170$$

Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Número esperado de comparações:

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

$$10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$10 \cdot 1 + 20 \cdot 3 + 40 \cdot 2 = 150$$

$$10 \cdot 1 + 20 \cdot 2 + 40 \cdot 2 = 170$$

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto $\{1, \ldots, n\}$ que minimiza o número

$$\sum_{i=1}^{n} h_i \, \mathbf{e_i},$$

onde h_i é o número de nós no caminho de i até a raiz da árvore.

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto $\{1, \ldots, n\}$ que minimiza o número

$$\sum_{i=1}^{n} h_i \, \mathbf{e_i},$$

onde h_i é o número de nós no caminho de i até a raiz da árvore.

Problema (ABB Ótima): Dado e[1..n], encontrar uma árvore de busca binária ótima com respeito a e.

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto $\{1, \ldots, n\}$ que minimiza o número

$$\sum_{i=1}^{n} h_i \, e_i,$$

onde h_i é o número de nós no caminho de i até a raiz da árvore.

Problema (ABB Ótima): Dado e[1..n], encontrar uma árvore de busca binária ótima com respeito a e.

Continuamos na aula que vem...