Análise de Algoritmos

Parte destes slides são adaptações de slides

do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Mais programação dinâmica

CLRS 15.5

- = "recursão-com-tabela"
- = transformação inteligente de recursão em iteração

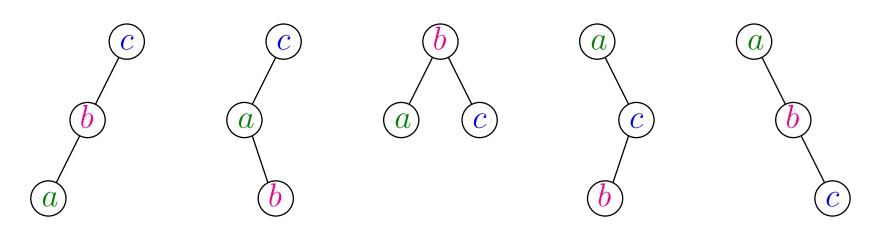
Buscas em conjunto conhecido

Dadas estimativas do número de acessos a cada elemento de v[1...n], qual é a melhor estrutura de dados para v?

Árvore de busca binária (ABB)

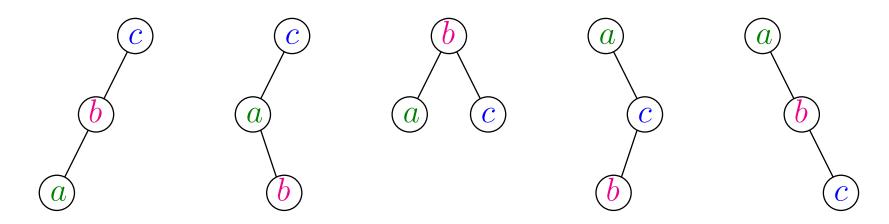
Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.

Qual a melhor das ABBs?



Exemplo

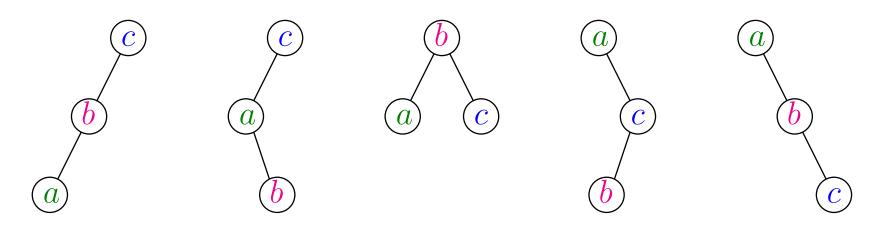
Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Qual a melhor das ABBs?

Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Número esperado de comparações:

$$10 \cdot 3 + 20 \cdot 2 + 40 \cdot 1 = 110$$

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

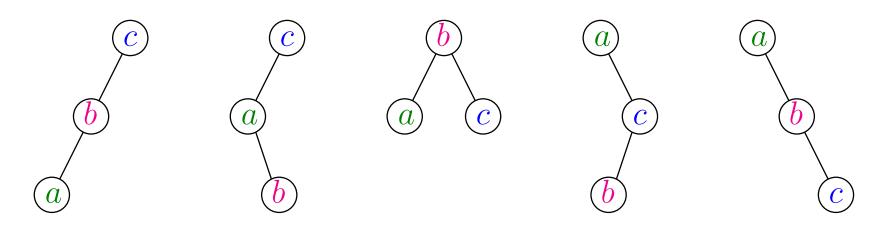
$$10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$10 \cdot 1 + 20 \cdot 3 + 40 \cdot 2 = 150$$

$$10 \cdot 1 + 20 \cdot 2 + 40 \cdot 2 = 170$$

Exemplo

Exemplo: n = 3 e $e_1 = 10$, $e_2 = 20$, $e_3 = 40$.



Número esperado de comparações:

$$10 \cdot 2 + 20 \cdot 3 + 40 \cdot 1 = 120$$

$$10 \cdot 2 + 20 \cdot 1 + 40 \cdot 2 = 120$$

$$\bullet$$
 10 · 1 + 20 · 3 + 40 · 2 = 150

$$10 \cdot 1 + 20 \cdot 2 + 40 \cdot 3 = 170$$

Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Árvore de busca ótima

Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto $\{1, \ldots, n\}$ que minimiza o número

$$\sum_{i=1}^{n} h_i \, e_i,$$

onde h_i é o número de nós no caminho de i até a raiz da árvore.

Árvore de busca ótima

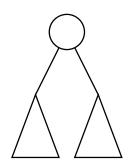
Considere um vetor e[1..n] de inteiros com uma estimativa do número de acessos a cada elemento de $\{1,...,n\}$.

Uma ABB ótima com respeito ao vetor e é uma ABB para o conjunto $\{1, \ldots, n\}$ que minimiza o número

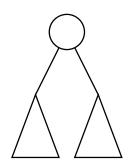
$$\sum_{i=1}^{n} h_i \, e_i,$$

onde h_i é o número de nós no caminho de i até a raiz da árvore.

Problema (ABB Ótima): Dado e[1..n], encontrar uma árvore de busca binária ótima com respeito a e.

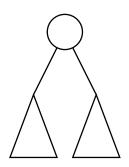


Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.



Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

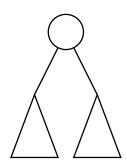


Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

c[i,j]: custo min de uma ABB para e[i ...j]

s[i,j]: soma dos acessos em e[i ...j]



Subárvores esquerda e direita de uma ABB ótima são ABBs ótimas.

Resta determinar a raiz da ABB ótima.

c[i, j]: custo min de uma ABB para e[i ... j]

s[i,j]: soma dos acessos em e[i ...j]

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{i}, \mathbf{j}]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

```
c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j] s[j] - s[i-1]: soma dos acessos em e[i..j]
```

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

c[i,j]: custo min de uma ABB para e[i..j] s[j]: soma dos acessos em e[1..j] s[j] - s[i-1]: soma dos acessos em e[i..j]

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

Para calcular s:

```
1 s[0] = 0

2 para i \leftarrow 1 até n faça

3 s[i] \leftarrow s[i-1] + e[i]
```

```
c[i,j]: custo min de uma ABB para e[i ...j] s[j]: soma dos acessos em e[1...j] s[j] - s[i-1]: soma dos acessos em e[i...j]
```

$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

Como preencher a matriz c? Em que ordem?

c[i, j]: custo min de uma ABB para e[i ... j]

s[j]: soma dos acessos em e[1...j]

s[j] - s[i-1]: soma dos acessos em e[i ... j]

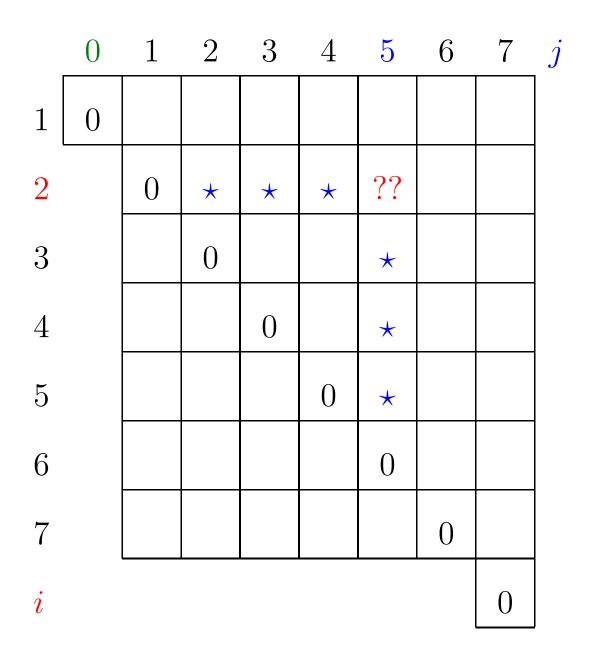
$$c[\mathbf{i}, \mathbf{j}] = \begin{cases} 0 & \text{se } \mathbf{i} > \mathbf{j} \\ \min_{\mathbf{i} \le k \le \mathbf{j}} \{c[\mathbf{i}, k-1] + c[k+1, \mathbf{j}] + s[\mathbf{j}] - s[\mathbf{i}-1]\} & \text{se } \mathbf{i} \le \mathbf{j} \end{cases}$$

Como preencher a matriz c?

Em que ordem?

Como no problema da parentização! Pelas diagonais!

Programação dinâmica



$$e[1]=10$$
 $e[2]=20$ $e[3]=30$ $e[4]=15$ $e[5]=30$

i

$$c[1, 1-1] + e[1] + c[1+1, 1] = 0+10+0 = 10$$

e[1]=10	e[2]=20	e[3] =	=30 e[4	=15	e[5]=30	
	U	1		<u>3</u>	4 	$\frac{3}{}$	J
1	0	10					
2		0	??				
3			0				
4				0			
5					0		
6						0	

i

$$c[2, 2-1] + e[2] + c[2+1, 2] = 0+20+0 = 20$$

e[1]=10	e[2]=20	e[3] =	=30 $e[4$	=15	e[5]=30	
	0	1	2	3	4	5	j
1	0	10					
2		0	20				
3			0	??			
4				0			
5					0		
6						0	

i.

$$c[3, 3-1] + e[3] + c[3+1, 3] = 0+30+0 = 30$$

e[1]=10	e[2]=20	e[3] =	=30 e[4	=15	e[5]=30	
į	0	1	2	3	4	5	j
1	0	10					
2		0	20				
3			0	30			
4				0	??		
5					0		
6						0	

i

$$c[4, 4+1] + e[4] + c[4+1, 4] = 0+15+0 = 15$$

e[1]=10 0	e[2]=20	e[3] = 2	=30 e[4	[=15]	e[5]=30	J
1	0	10					
2		0	20				
3			0	30			
4				0	15		
5					0	??	
6						0	

i.

$$c[5, 5+1] + e[5] + c[5+1, 5] = 0+30+0 = 30$$

e[1]=10	e[2]=20	e[3]=	=30 e[4	=15	e[5]=30	
	0	1	2	3	4	5	j
1	0	10	??				
2		0	20				
3			0	30			
4				0	15		
5					0	30	
6						0	

$$c[1, 1-1] + (e[1] + e[2]) + c[1+1, 2] = 0+30+20 = 50$$

$$c[1, 2-1] + (e[1] + e[2]) + c[2+1, 2] = 10+30+0 = 40$$

e[1]=10 0	e[2]=20	e[3] = 2	=30 e[4]	[=15]	e[5]=30	J
1	0	10	40		1		
2		0	20	??			
3			0	30			
4				0	15		
5					0	30	
6						0	

i.

$$c[2, 2-1] + (e[2] + e[3]) + c[2+1, 3] = 0+50+30 = 80$$

$$c[2, 3-1] + (e[2] + e[3]) + c[3+1, 3] = 20+50+0 = 70$$

e[1]=10	e[2]=20	e[3] = 2	=30 e[4	[=15]	e[5]=30	j
1	0	10	40				
2		0	20	70			
3			0	30	??		
4				0	15		
5					0	30	
6						0	

i

$$c[3, 3-1] + (e[3] + e[4]) + c[3+1, 4] = 0+45+15 = 60$$

$$c[3, 4-1] + (e[3] + e[4]) + c[4+1, 4] = 30+45+0 = 75$$

e[1]=10	e[2]=20	e[3] = 2	=30 e[4	[=15]	e[5]=30	J
1	0	10	40				
2		0	20	70			
3			0	30	60		
4				0	15	??	
5					0	30	
6						0	

i.

$$c[4, 4-1] + (e[4] + e[5]) + c[4+1, 5] = 0+45+30=75$$

$$c[4, 5-1] + (e[4] + e[5]) + c[5+1, 5] = 15+45+0 = 60$$

e[1]=10	e[2]=20	e[3] = 2	=30 e[4]	[=15]	e[5]=30	J
1	0	10	40	??			
2		0	20	70			
3			0	30	60		
4				0	15	60	
5					0	30	
6						0	

<u>;</u>

$$c[1, 1-1] + (e[1] + e[2] + e[3]) + c[1+1, 3] = 0 + 60 + 70 = 130$$

$$c[1, 2-1] + (e[1]) + e[2] + e[3]) + c[2+1, 3] = 10 + 60 + 30 = 100$$

$$c[1, 3-1] + (e[1] + e[2] + e[3]) + c[3+1, 3] = 40+60+0 = 100$$

e[1]=10	e[2]=20	e[3]=	=30 $e[4$	=15	e[5]=30	
	0	1	2	3	4	5	j
1	0	10	40	100			
2		0	20	70	??		
3			0	30	60		
4				0	15	60	
5					0	30	
6						0	

i.

$$c[2, 2-1] + (e[2] + e[3] + e[4]) + c[2+1, 4] = 0 + 65 + 60 = 125$$

$$c[2, 3-1] + (e[2] + e[3] + e[4]) + c[3+1, 4] = 20 + 65 + 15 = 100$$

$$c[2, 4-1] + (e[2] + e[3] + e[4]) + c[4+1, 4] = 70 + 65 + 0 = 135$$

e[1]=10	e[2]=20	e[3] =	=30 e[4	=15	e[5] = 30	
ı	0	1	2	3	4	5	j
1	0	10	40	100			
2		0	20	70	100		
3			0	30	60	??	
4				0	15	60	
5					0	30	
6						0	

i.

$$c[3, 3-1] + (e[3] + e[4] + e[5]) + c[3+1, 5] = 0 + 75 + 60 = 135$$

$$c[3, 4-1] + (e[3] + e[4] + e[5]) + c[4+1, 5] = 30+75+30 = 135$$

$$c[3, 5-1] + (e[3] + e[4] + e[5]) + c[5+1, 5] = 60 + 75 + 0 = 135$$

i

Exercício: Preencha o que falta!

Árvore de busca ótima

```
ABB-ÓTIMA (e, n)
      s[0] = 0
      para i \leftarrow 1 até n faça
           s[i] \leftarrow s[i-1] + e[i]
      para i \leftarrow 1 até n+1 faça
 5
           c[\mathbf{i}, \mathbf{i}-1] \leftarrow 0
      para \ell \leftarrow 1 até n faça
           para i \leftarrow 1 até n-\ell+1 faça
 8
                i \leftarrow i + \ell - 1
                c[i,j] \leftarrow c[i+1,j]
                para k \leftarrow i+1 até j faça
10
                    se c[i, k-1] + c[k+1, j] < c[i, j]
                    então c[i,j] \leftarrow c[i,k-1] + c[k+1,j]
12
               c[i,j] \leftarrow c[i,j] + s[j] - s[i-1]
13
      devolva c[1, \mathbf{n}]
```

Árvore de busca ótima

Exercício: Como fazer para obter uma ABB ótima e não apenas o seu custo? Complete o serviço!

Exercícios para terça que vem: 8 e 21 (Bandeiras) da L6.

Exercício para quinta que vem: 12 da L6.

Mochila

Dados dois vetores x[1..n] e w[1..n], denotamos por $x \cdot w$ o produto escalar

$$w[1]x[1] + w[2]x[2] + \cdots + w[n]x[n].$$

Suponha dado um número inteiro não-negativo W e vetores positivos w[1...n] e v[1...n].

Uma mochila é qualquer vetor x[1..n] tal que

$$x \cdot w \leq W$$
 e $0 \leq x[i] \leq 1$ para todo i

O valor de uma mochila é o número $x \cdot v$.

Uma mochila é ótima se tem valor máximo.

Problema booleano da mochila

Uma mochila x[1..n] tal que x[i] = 0 ou x[i] = 1 para todo i é dita booleana.

Problema (Knapsack Problem): Dados (w, v, n, W), encontrar uma mochila boolena ótima.

Exemplo: W = 50, n = 4

	1	2	3	4
w	40	30	20	10
v	840	600	400	100
\boldsymbol{x}	1	0	0	0
\boldsymbol{x}	1	0	0	1
\boldsymbol{x}	0	1	1	0

valor = 840 valor = 940 valor = 1000