Melhores momentos

AULA 17

Resumo

função	consumo de	observação
	tempo	
bubble	$O(n^2)$	todos os casos
insercao	$O(n^2)$	pior caso
	O(n)	melhor caso
insercaoBinaria	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
selecao	$O(n^2)$	todos os casos
mergeSort	$O(n \lg n)$	todos os casos
quickSort	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
	$O(n \lg n)$	em média ♡

Divisão e conquista

Algoritmos por divisão-e-conquista têm três passos em cada nível da recursão:

Dividir: o problema é dividido em subproblemas de tamanho menor;

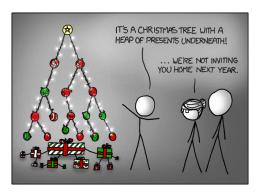
Conquistar: os subproblemas são resolvidos recursivamente e subproblemas "pequenos" são resolvidos diretamente;

Combinar: as soluções dos subproblemas são combinadas para obter uma solução do problema original.

Exemplos: mergeSort e quickSort.

AULA 18

Árvores em vetores e heaps

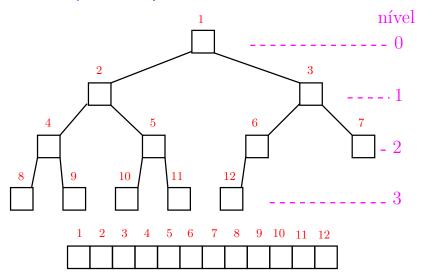


Fonte: http://xkcd.com/835/

PF 10

http://www.ime.usp.br/~pf/algoritmos/aulas/hpsrt.html

Representação de árvores em vetores



Pais e filhos

v[1..m] é um vetor representando uma árvore.

Diremos que para qualquer índice ou nó i,

- ightharpoonup [i/2] é o pai de i;
- 2 i é o filho esquerdo de i;
- \triangleright 2 **i**+1 é o filho direito.

Um nó i tem filho esquerdo se $2 i \le m$.

Um nó i tem filho direito se $2i+1 \leq m$.

O nó 1 não tem pai e é chamado de raiz.

Um nó i é uma folha se não tem filhos, ou seja, 2 i > m.

O nó 1 não tem pai e é chamado de raiz.

Um nó i é uma **folha** se não tem **filhos**, ou seja, 2 i > m.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó 1 não tem pai e é chamado de raiz.

Um nó i é uma **folha** se não tem **filhos**, ou seja, 2 i > m.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{\mathbf{p}}, 2^{\mathbf{p}} + 1, 2^{\mathbf{p}} + 2, \dots, 2^{\mathbf{p}+1} - 1.$$

O nó i pertence ao nível

O nó 1 não tem pai e é chamado de raiz.

Um nó i é uma **folha** se não tem **filhos**, ou seja, 2 i > m.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{\mathbf{p}}, 2^{\mathbf{p}} + 1, 2^{\mathbf{p}} + 2, \dots, 2^{\mathbf{p}+1} - 1.$$

O nó i pertence ao nível |lgi|.

O nó 1 não tem pai e é chamado de raiz.

Um nó i é uma **folha** se não tem **filhos**, ou seja, 2 i > m.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível $\lfloor \lg i \rfloor$.

Portanto, o número total de níveis é

O nó 1 não tem pai e é chamado de raiz.

Um nó i é uma **folha** se não tem **filhos**, ou seja, 2 i > m.

Níveis

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível $\lfloor \lg i \rfloor$.

Portanto, o número total de níveis é $1 + |\lg m|$.

Altura

A altura de um nó i é o maior comprimento de um caminho de i a uma folha.

Em outras palavras, a altura de um nó i é o maior comprimento de uma sequência da forma

$$\langle \text{filho}(\mathbf{i}), \text{filho}(\text{filho}(\mathbf{i})), \text{filho}(\text{filho}(\mathbf{i}))), \ldots \rangle$$

onde filho(i) vale 2i ou 2i + 1.

Os nós que têm altura zero são as folhas.

Resumão

```
filho esquerdo de i: 2 i
filho direito de i: 2i + 1
                          |\mathbf{i}/2|
pai de i:
nível da raiz:
nível de i:
                          |\lg i|
altura da raiz:
                          |\lg \mathbf{m}|
altura da árvore:
                          |\lg m|
```

Heaps

Um vetor $\mathbf{v}[1..m]$ é um \mathbf{max} -heap se

$$\mathbf{v}[\mathbf{i}/2] \ge \mathbf{v}[\mathbf{i}]$$

para todo $\mathbf{i} = 2, 3, \dots, \mathbf{m}$.

Heaps

Um vetor v[1..m] é um max-heap se

$$\mathbf{v}[\mathbf{i}/2] \ge \mathbf{v}[\mathbf{i}]$$

para todo $\mathbf{i} = 2, 3, \dots, \mathbf{m}$.

De uma forma mais geral, v[j..m] é um max-heap se

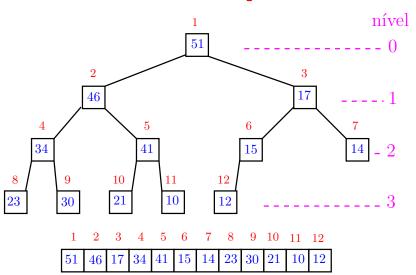
$$\mathbf{v}[\mathbf{i}/2] \ge \mathbf{v}[\mathbf{i}]$$

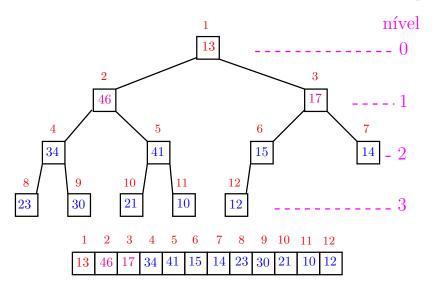
para todo

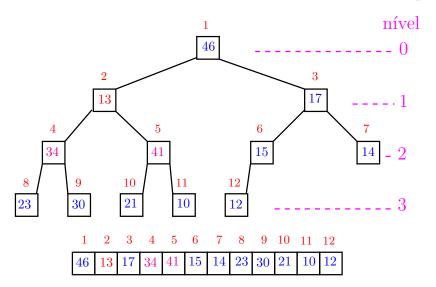
$$i = 2j, 2j + 1, 4j, \dots, 4j + 3, 8j, \dots, 8j + 7, \dots$$

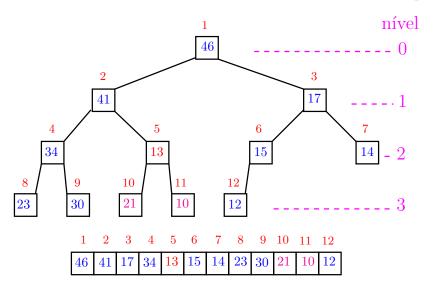
Neste caso também diremos que a subárvore com raiz j é um max-heap.

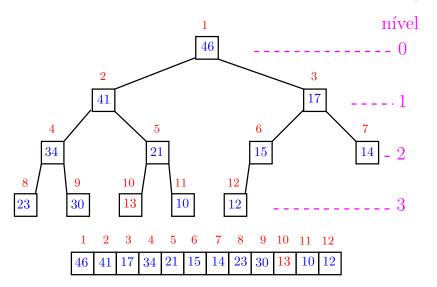
max-heap

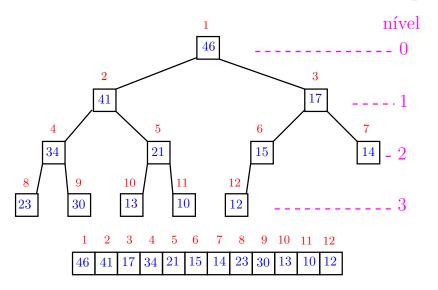












O coração de qualquer algoritmo que manipule um \max -heap é uma função que recebe um vetor arbitrário v[1..m] e um índice i e faz v[i] "descer" para sua posição correta.

Rearranja o vetor $\mathbf{v}[1..m]$ de modo que o "subvetor" cuja raiz é i seja um \max -heap.

```
void peneira (int i, int m, int v[]) {
   int f = 2*i, x;
2
  while (f \le m)
3
     if (f < m \&\& v[f] < v[f+1]) f++:
4
     if (v[i] >= v[f]) break:
5
     x = v[i]; v[i] = v[f]; v[f] = x;
6
     i = f; f = 2*i;
```

Supõe que os "subvetores" cujas raízes são filhos de i já são max-heap.

```
void peneira (int i, int m, int v[]) {
   int f = 2*i, x;
2
  while (f \le m)
3
      if (f < m \&\& v[f] < v[f+1]) f++:
     if (v[i] >= v[f]) break:
4
5
     x = v[i]; v[i] = v[f]; v[f] = x;
6
     i = f; f = 2*i;
```

A seguinte implementação é um pouco melhor pois em vez de trocas faz apenas deslocamentos (linha 5).

```
void peneira (int i, int m, int v[]) {
   int f = 2*i, x = v[i];
   while (f \le m)
3
      if (f < m \&\& v[f] < v[f+1]) f++;
4
     if (x \ge v[f]) break;
5
   v[i] = v[f]:
6
   i = f; f = 2*i;
7 \quad v[i] = x:
```

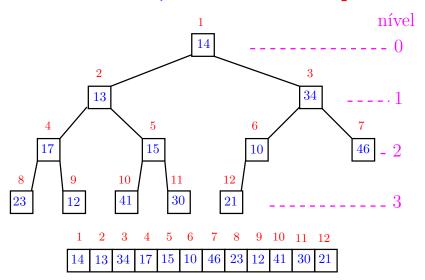
Consumo de tempo

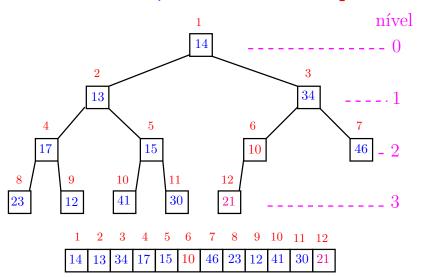
```
linha todas as execuções da linha
 2 \leq 1 + \lg m
 3 \leq \lg m
 4 \leq \lg m
 5 \leq \log m
 6 \leq \lg m
total < 3 + 5 \lg m = O(\lg m)
```

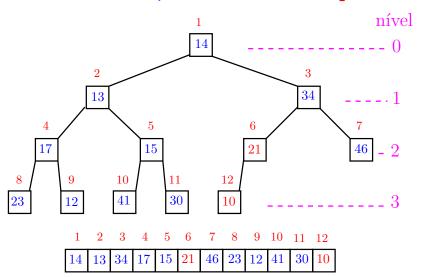
Conclusão

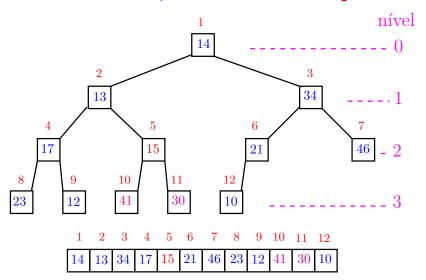
O consumo de tempo da função peneira é proporcional a lg m.

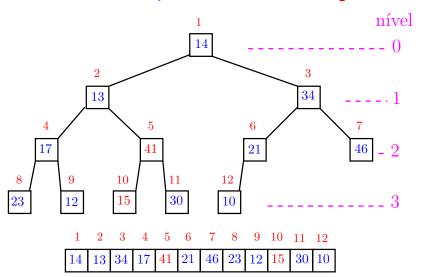
O consumo de tempo da função peneira é $O(\lg m)$.

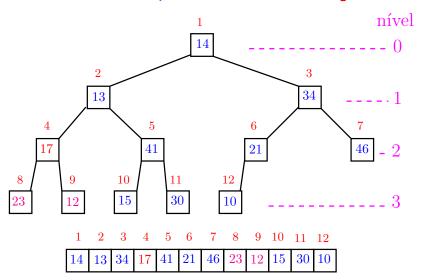


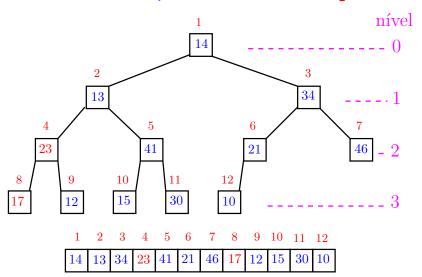


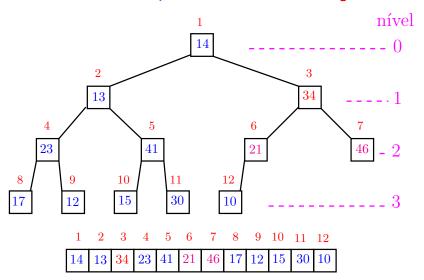


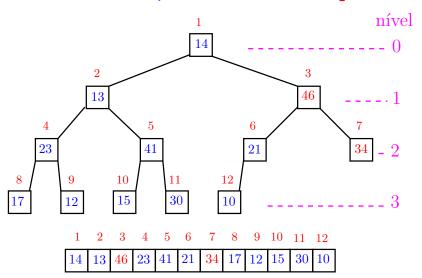


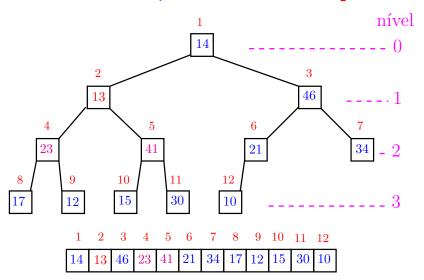


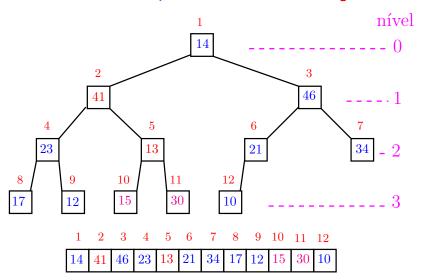


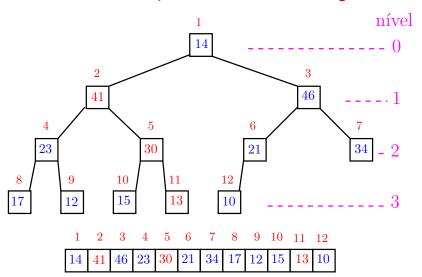


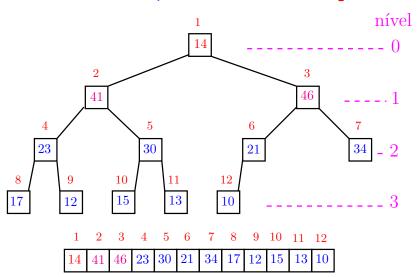


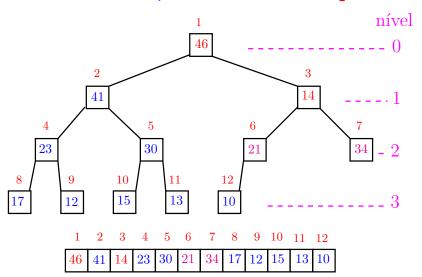


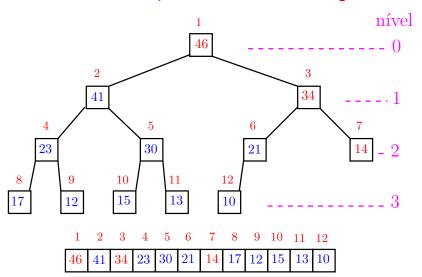


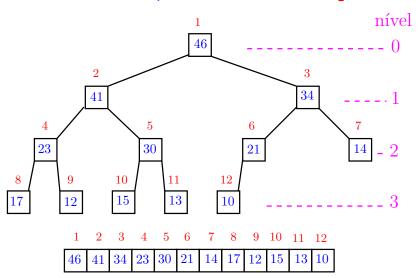












```
Recebe um vetor v[1..n] e
rearranja v para que seja max-heap.

1  for (i = n/2; /*A*/ i >= 1; i--)
2   peneira(i, n, v);
```

Relação invariante:

```
(i0) em /*A*/ vale que
i+1,...,n são raízes de max-heaps.
```

Consumo de tempo

Análise grosseira: consumo de tempo é

$$\frac{\mathtt{n}}{2} \times \lg \mathtt{n} = \mathrm{O}(\mathtt{n} \lg \mathtt{n}).$$

Verdade seja dita ...

Análise mais cuidadosa: consumo de tempo é O(n).

Conclusão

O consumo de tempo para construir um \max -heap é $O(n \lg n)$.

Verdade seja dita ...

O consumo de tempo para construir um \max -heap é O(n).

Ordenação: algoritmo Heapsort

PF 10

http://www.ime.usp.br/~pf/algoritmos/aulas/hpsrt.html

Ordenação

v[1..n] é crescente se $v[1] \le \cdots \le v[n]$.

Problema: Rearranjar um vetor v[1..n] de modo que ele fique crescente.

Entra:

Sai:

_1										n
11	22	22	33	33	33	44	55	55	77	99

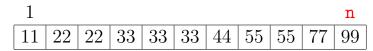
Heapsort

O Heapsort ilustra o uso de estruturas de dados no projeto de algoritmos eficientes.

Rearranjar um vetor $v[\underline{1..n}]$ de modo que ele fique crescente.

Entra:

Sai:



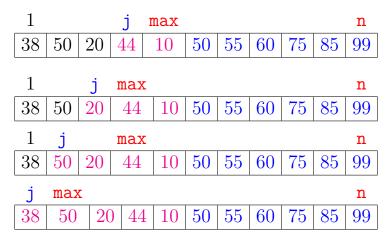
1				max						n
38	50	20	44	10	50	55	60	75	85	99

1			j	max						n
38	50	20	44	10	50	55	60	75	85	99

1			j	max						n
38	50	20	44	10	50	55	60	75	85	99
1		i	max							n
38	50	20	44	10	50	55	60	75	85	99

1			j	max						n
38	50	20	44	10	50	55	60	75	85	99
-1										
1		J	max							n
38	50	20	44	10	50	55	60	75	85	99
1	j		max							n
38	50	20	44	10	50	55	60	75	85	99

i=5



1			j	max						n
38	50	20	44	10	50	55	60	75	85	99
-1										
1		j	max							n
38	50	20	44	10	50	55	60	75	85	99
1	j		max							n
38	50	20	44	10	50	55	60	75	85	99
j	max									n
38	50	20) 44	10	50	55	60	75	85	99
1	max									n
38	50	20) 44	10	50	55	60	75	85	99

1			i							n	
38	10	20	44	50	50	55	60	75	85	99	

1			i							n
38	10	20	44	50	50	55	60	75	85	99
1		i								n

1			i							n
38	10	20	44	50	50	55	60	75	85	99
1		i								n
20	10	38	44	50	50	55	60	75	85	99
1	i									n
20	10	38	44	50	50	55	60	75	85	99

1			i							n
38	10	20	44	50	50	55	60	75	85	99
1		i								n
20	10	38	44	50	50	55	60	75	85	99
1	i							1		n
1 10	i 20	38	44	50	50	55	60	75	85	n 99
1 10 1	i 20	38	44	50	50	55	60	75	85	

Função selecao

Algoritmo rearranja v[1..n] em ordem crescente.

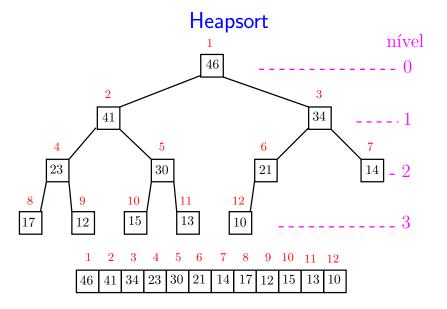
```
void selecao (int n, int v[]) {
   int i, j, max, x;
   for (i = n; /*B*/ i > 1; i--) 
     max = i:
3
     for (j = i-1; j >= 1; j--)
4
        if (v[j] > v[max]) max = j;
5
     x=v[i]; v[i]=v[max]; v[max]=x;
```

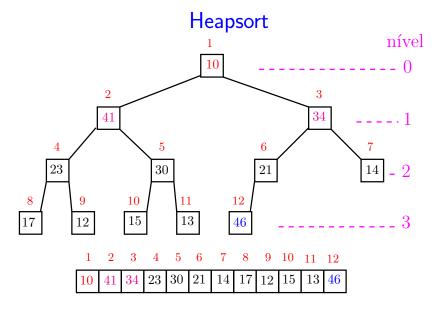
Função selecao

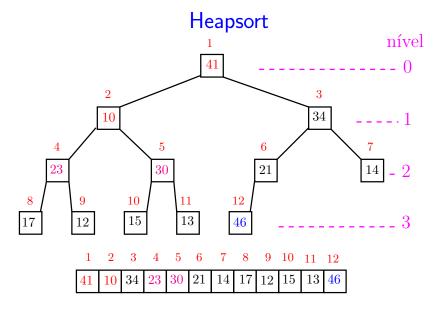
Relações invariantes: Em /*B*/ vale que:

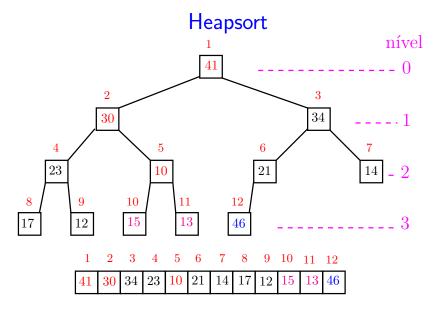
(i0)
$$v[i+1..n]$$
 é crescente;

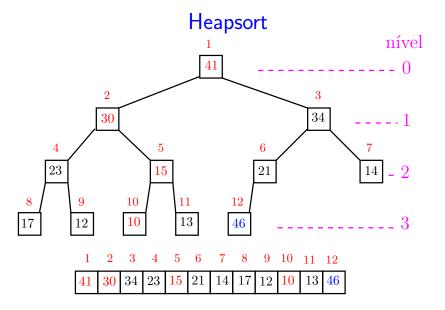
(i1)
$$v[1..i] \leq v[i+1];$$

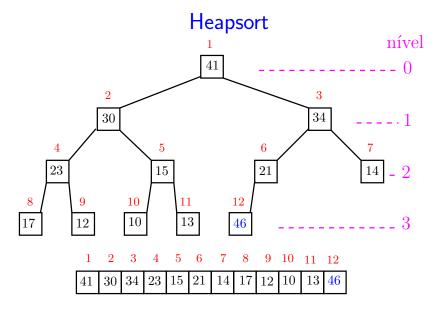


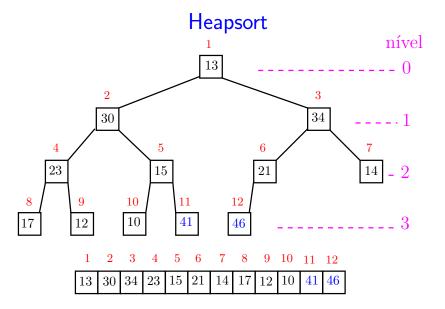


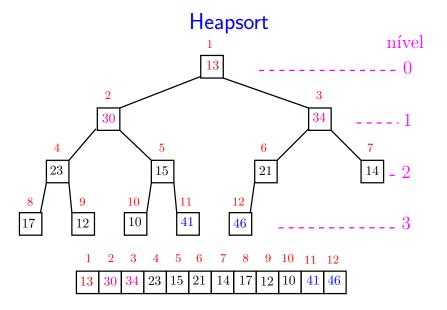


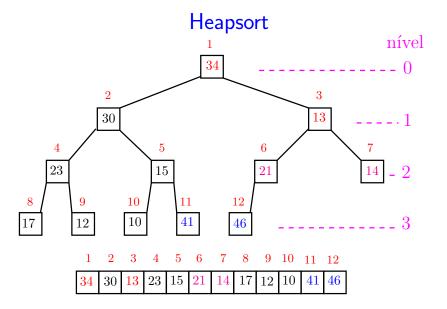


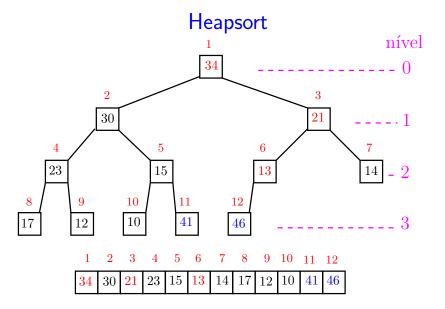


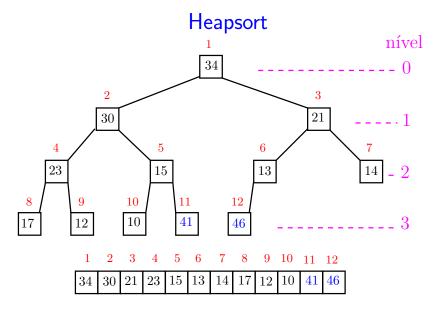


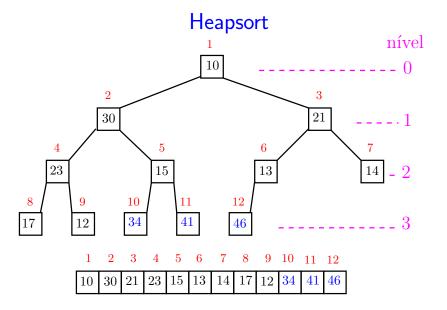


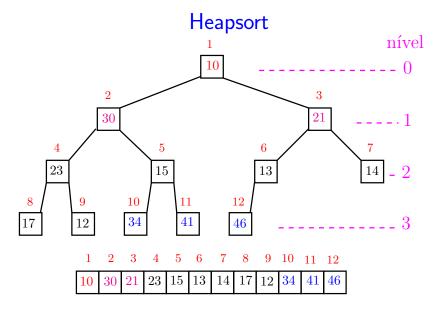


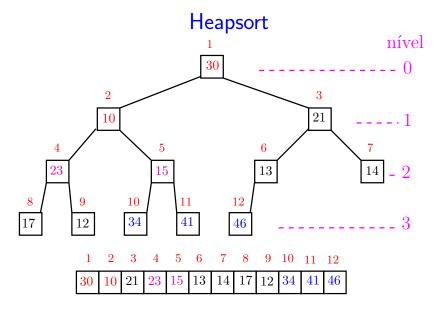


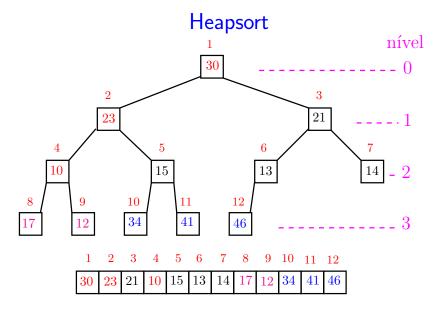


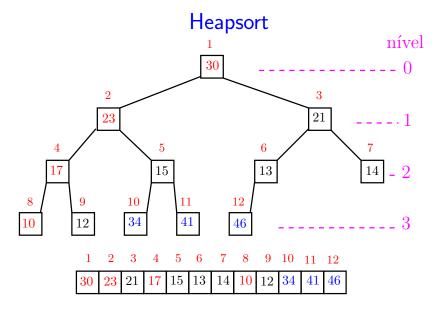


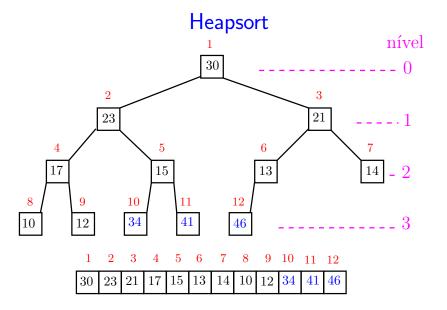


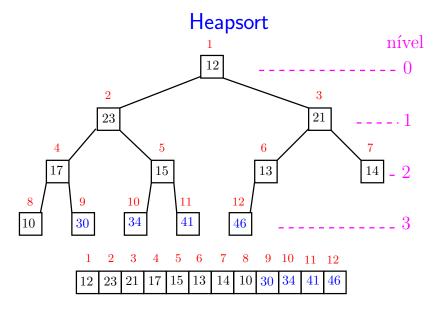


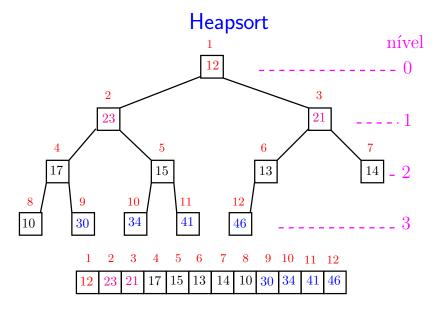


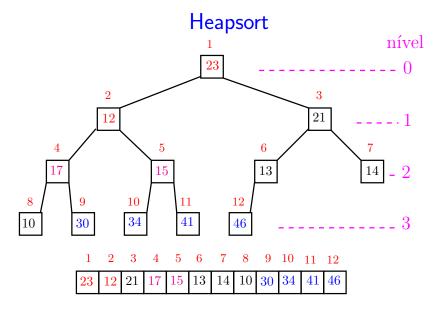


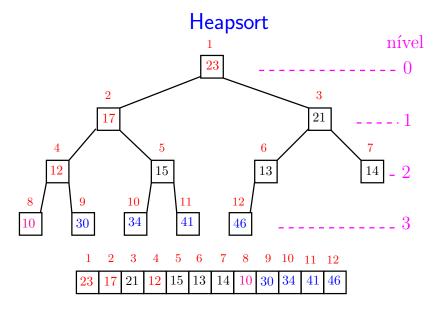


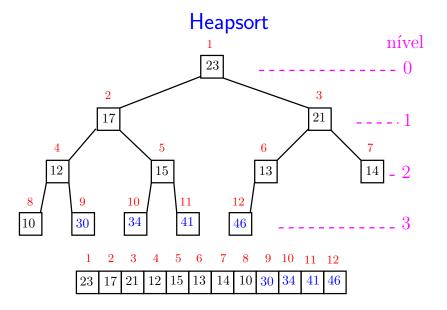


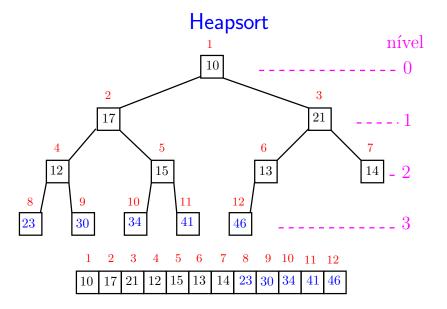


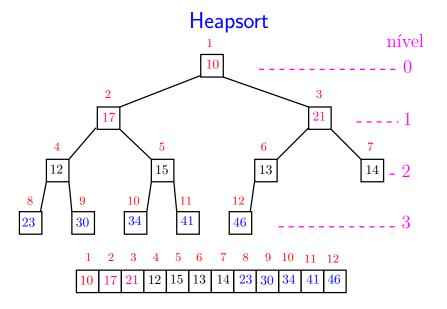


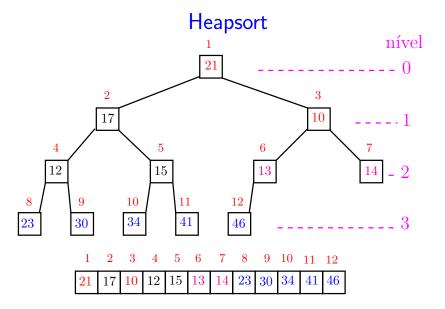


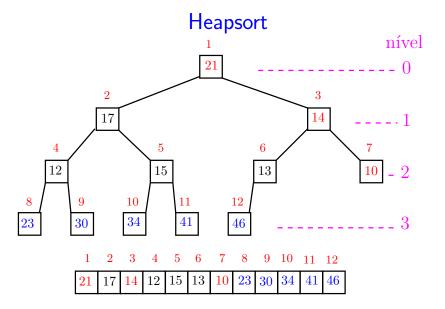


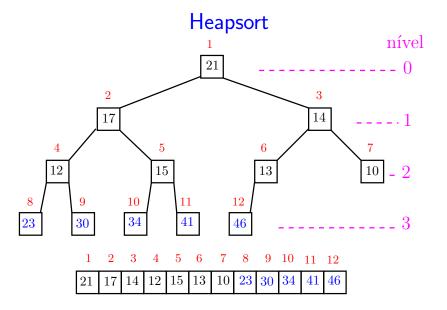


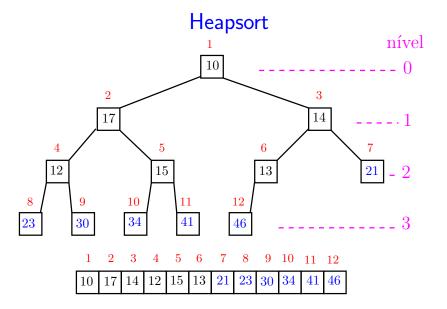


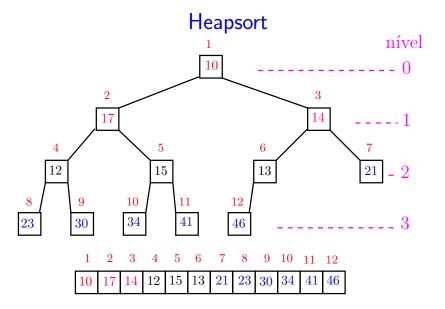


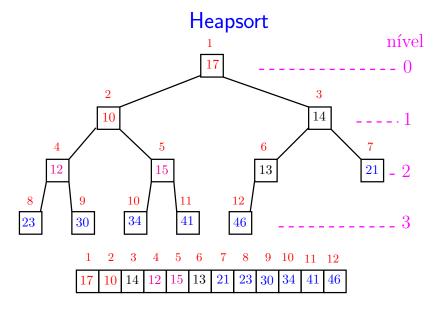


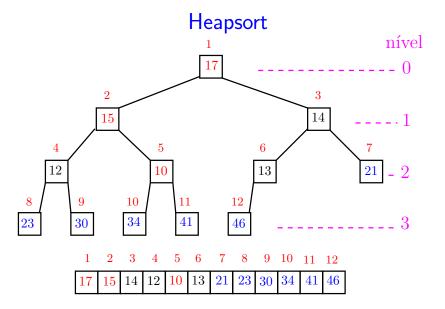


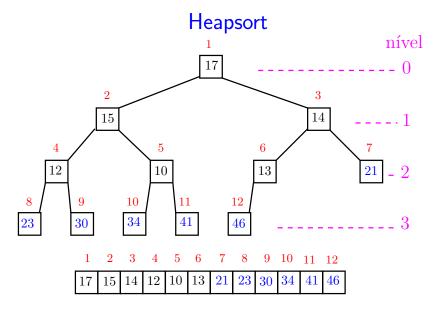


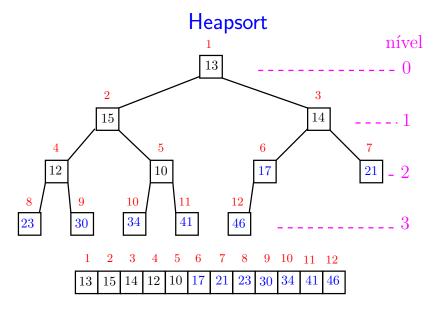


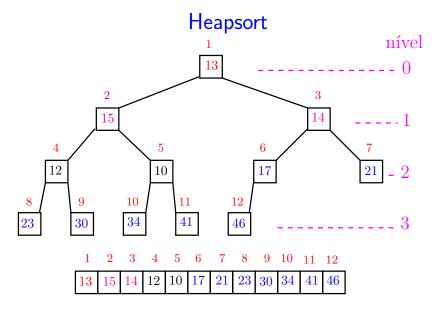


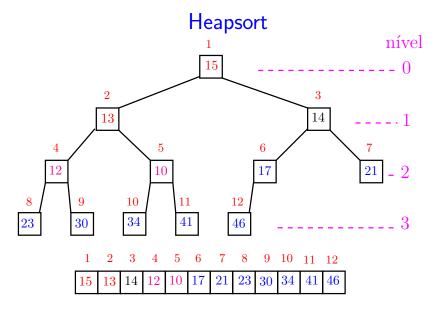


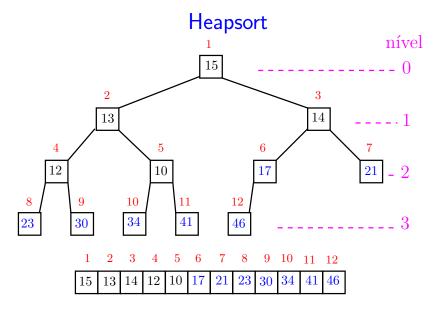


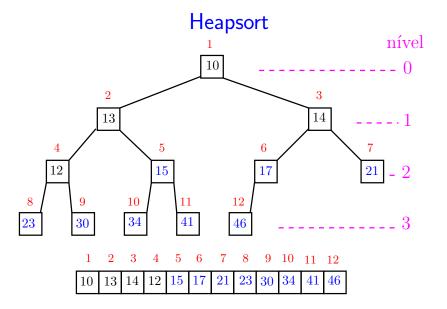


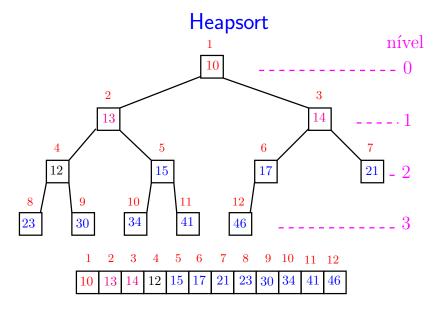


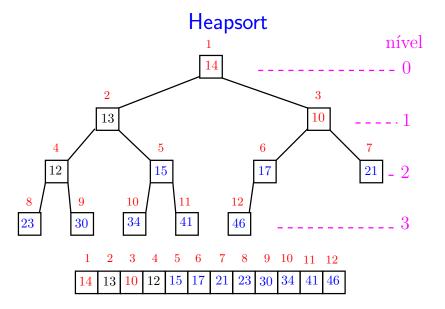


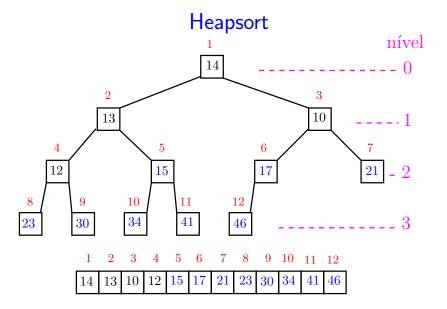


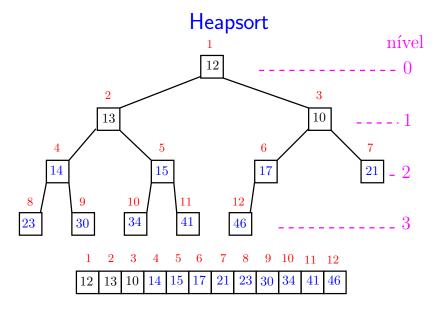


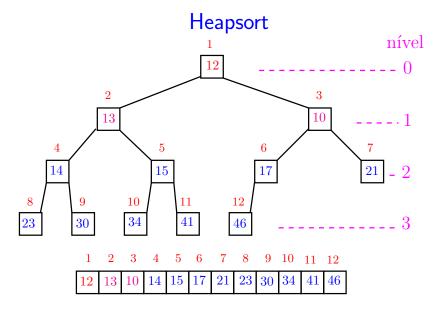


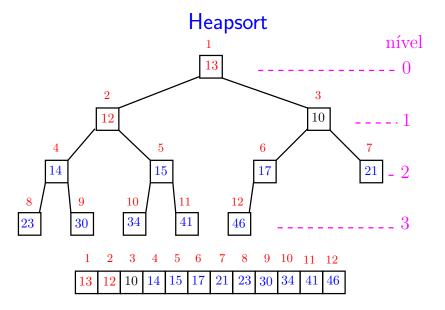


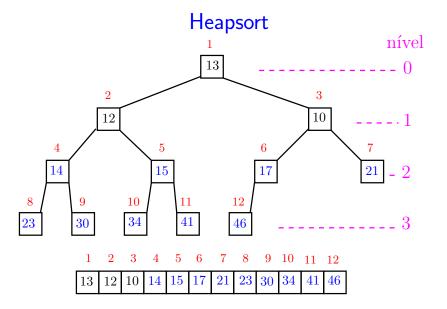


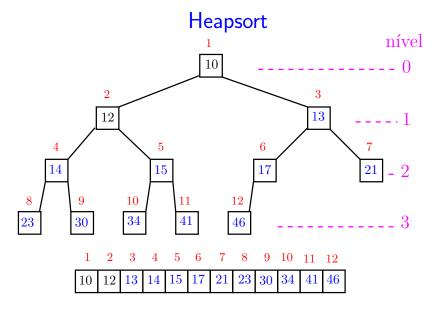


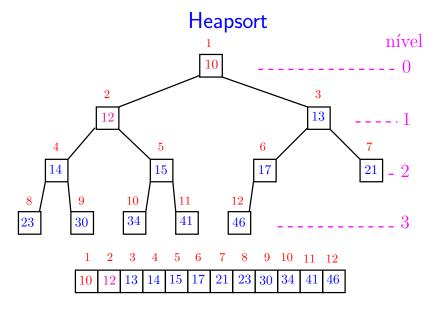


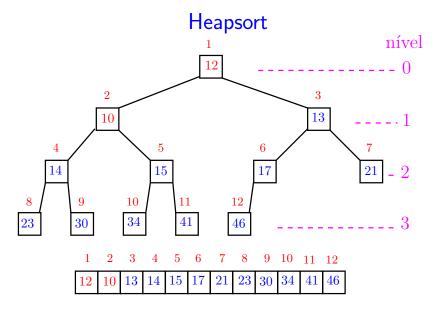


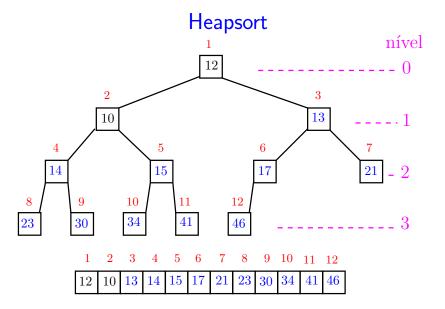


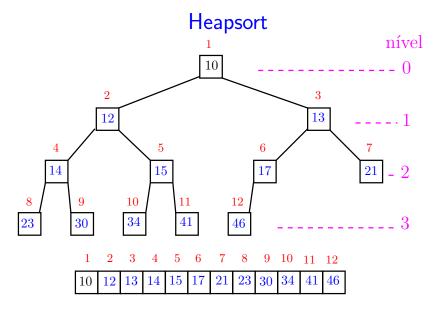


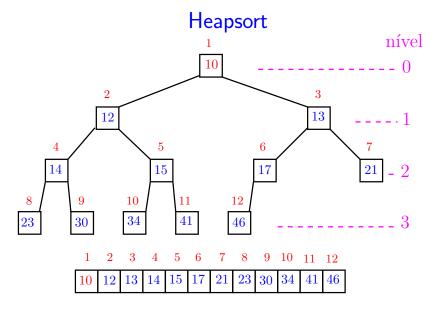


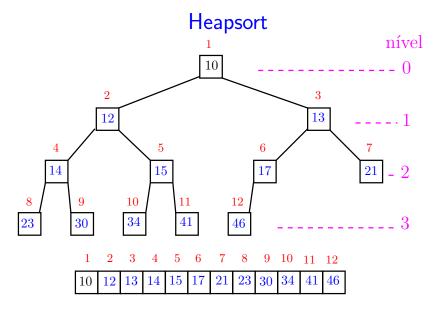


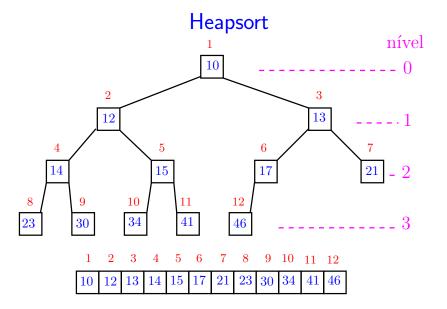












Função heapSort

Algoritmo rearranja v[1..n] em ordem crescente.

```
void heapSort (int n, int v[]) {
   int i, x;
   /* pre-processamento */
1 for (i = n/2; i >= 1; i--)
     peneira(i, n, v);
   for (i = n; /*C*/ i > 1; i--) {
3
     x=v[i]; v[i]=v[1]; v[1]=x;
5
     peneira(1, i-1, v);
```

Função heapSort

Relações invariantes: Em /*C*/ vale que:

- (i0) v[i+1..n] é crescente;
- (i1) $v[1..i] \leq v[i+1];$
- (i2) v[1..i] é um max-heap.

1				i						n
50	44	10	38	20	50	55	60	75	85	99

Consumo de tempo

linha	СО	consumo de tempo das execuções da linha				
1-2	\approx	n lg n	$= O(n \lg n)$			
3	\approx	n	$= O(\frac{n}{n})$			
4	\approx	n	= O(n)			
5	\approx	$n \lg n$	$= O(n \lg n)$			
total	=	$2n \lg n + 2n$	$= O(n \lg n)$			

Conclusão

O consumo de tempo da função heapSort é proporcional a n lg n.

O consumo de tempo da função heapSort é $O(n \lg n)$.

Mais análise experimental

Algoritmos implementados:

```
mergeR mergeSort recursivo.
mergeI mergeSort iterativo.
quick quickSort recursivo.
heap heapSort.
```

Mais análise experimental

A plataforma utilizada nos experimentos foi um computador rodando Ubuntu GNU/Linux 3.5.0-17

```
Compilador:
```

```
gcc -Wall -ansi -02 -pedantic -Wno-unused-result.
```

Computador:

```
model name: Intel(R) Core(TM)2 Quad CPU Q6600 @
```

 $2.40 \mathrm{GHz}$

cpu MHz : 1596.000
cache size: 4096 KB
MemTotal : 3354708 kB

Aleatório: média de 10

n	mergeR	mergeI	quick	heap
8192	0.00	0.00	0.00	0.00
16384	0.00	0.00	0.00	0.00
32768	0.01	0.01	0.01	0.00
65536	0.01	0.01	0.01	0.01
131072	0.02	0.02	0.02	0.03
262144	0.05	0.04	0.04	0.06
524288	0.10	0.08	0.08	0.12
1048576	0.21	0.20	0.17	0.28
2097152	0.44	0.43	0.35	0.70
4194304	0.92	0.90	0.73	1.73
8388608	1.90	1.87	1.51	4.13

Tempos em segundos.

Decrescente

n	mergeR	mergeI	quick	heap
1024	0.00	0.00	0.00	0.00
2048	0.00	0.00	0.00	0.00
4096	0.01	0.00	0.01	0.00
8192	0.00	0.00	0.03	0.00
16384	0.00	0.00	0.14	0.00
32768	0.00	0.01	0.57	0.00
65536	0.01	0.01	2.27	0.01
131072	0.02	0.01	9.06	0.02
262144	0.03	0.03	36.31	0.04

Tempos em segundos.

Para n=524288 quickSort dá Segmentation fault (core dumped)

Crescente

n	mergeR	mergeI	quick	heap
1024	0.00	0.00	0.00	0.00
2048	0.00	0.00	0.00	0.00
4096	0.00	0.00	0.00	0.00
8192	0.00	0.00	0.03	0.00
16384	0.00	0.00	0.14	0.01
32768	0.01	0.00	0.57	0.01
65536	0.00	0.01	2.26	0.01
131072	0.02	0.02	9.05	0.02
262144	0.03	0.02	36.21	0.04

Tempos em segundos.

Para n=524288 quickSort dá Segmentation fault (core dumped)

Resumo

função	consumo de	observação
	tempo	
bubble	$O(n^2)$	todos os casos
insercao	$O(n^2)$	pior caso
	O(n)	melhor caso
insercaoBinaria	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
selecao	$O(n^2)$	todos os casos
mergeSort	$O(n \lg n)$	todos os casos
quickSort	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
heapSort	$O(n \lg n)$	todos os casos

Animação de algoritmos de ordenação

Criados na Sapientia University (Romania):

https://www.youtube.com/channel/UCIqiLefbVHsOAXDAxQJH7Xw