Complexidade computacional

Classifica os problemas em relação à dificuldade de resolvê-los algoritmicamente.

CLRS 34

Problemas completos em NP

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

 Π e Π' problemas de decisão.

Se $\Pi \leq_P \Pi'$ e Π é NP-completo, então Π' é NP-completo.

Existe um algoritmo polinomial para um problema NP-completo se e somente se P = NP.

Demonstração de NP-completude

Para demonstrar que um problema Π' é NP-completo podemos utilizar o Teorema de Cook e Levin.

Demonstração de NP-completude

Para demonstrar que um problema Π' é NP-completo podemos utilizar o Teorema de Cook e Levin.

Para isto devemos:

- ightharpoonup Demonstrar que Π' está em NP.
- Escolher um problema Π sabidamente NP-completo.
- ▶ Demonstrar que $\Pi \leq_P \Pi'$.

3-Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

3-Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}\$$

que torna ϕ verdadeira?

Exemplo:

$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

3-Satisfatibilidade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n em que cada claúsula tem exatamente 3 literais, existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Exemplo:

$$\phi = (x_1 \vee \neg x_1 \vee \neg x_2) \wedge (x_3 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee \neg x_4)$$

Vamos mostrar que Satisfatibilidade \leq_P 3-Satisfatibilidade.

Exemplo 4

Satisfatibilidade \leq_P 3-Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ e devolve uma fórmula booleana ϕ' com exatamente 3 literais por claúsula tal que

 ϕ é satisfatível $\Leftrightarrow \phi'$ é satisfatível.

Exemplo 4

Satisfatibilidade \leq_P 3-Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ e devolve uma fórmula booleana ϕ' com exatamente 3 literais por claúsula tal que

 ϕ é satisfatível $\Leftrightarrow \phi'$ é satisfatível.

A transformação consiste em substituir cada claúsula de ϕ por uma coleção de claúsulas com exatamente 3 literais cada, e equivalente a ϕ .

Seja $(I_1 \vee I_2 \vee \cdots \vee I_k)$ uma claúsula de ϕ .

Seja $(I_1 \vee I_2 \vee \cdots \vee I_k)$ uma claúsula de ϕ .

Caso 1. k=1

Troque (I_1) por

$$(\mathit{I}_{1} \lor \mathit{y}_{1} \lor \mathit{y}_{2}) (\mathit{I}_{1} \lor \neg \mathit{y}_{1} \lor \mathit{y}_{2}) (\mathit{I}_{1} \lor \mathit{y}_{1} \lor \neg \mathit{y}_{2}) (\mathit{I}_{1} \lor \neg \mathit{y}_{1} \lor \neg \mathit{y}_{2})$$

onde y_1 e y_2 são variáveis novas.

Seja $(I_1 \vee I_2 \vee \cdots \vee I_k)$ uma claúsula de ϕ .

Caso 1.
$$k=1$$

Troque (I_1) por

$$(I_1 \vee y_1 \vee y_2) (I_1 \vee \neg y_1 \vee y_2) (I_1 \vee y_1 \vee \neg y_2) (I_1 \vee \neg y_1 \vee \neg y_2)$$

onde y_1 e y_2 são variáveis novas.

Caso 2.
$$k = 2$$

Troque $(l_1 \lor l_2)$ por $(l_1 \lor l_2 \lor y)(l_1 \lor l_2 \lor \neg y)$, onde y é uma variável nova.

Seja $(I_1 \vee I_2 \vee \cdots \vee I_k)$ uma claúsula de ϕ .

Caso 1.
$$k=1$$

Troque (I_1) por

$$(I_1 \vee y_1 \vee y_2)(I_1 \vee \neg y_1 \vee y_2)(I_1 \vee y_1 \vee \neg y_2)(I_1 \vee \neg y_1 \vee \neg y_2)$$

onde y_1 e y_2 são variáveis novas.

Caso 2.
$$k = 2$$

Troque $(l_1 \lor l_2)$ por $(l_1 \lor l_2 \lor y)(l_1 \lor l_2 \lor \neg y)$, onde y é uma variável nova.

Caso 3.
$$k = 3$$

Mantenha $(I_1 \vee I_2 \vee I_3)$.

Caso 4.
$$k > 3$$

Troque $(l_1 \lor l_2 \lor \cdots \lor l_k)$ por $(l_1 \lor l_2 \lor y_1)$
 $(\neg y_1 \lor l_3 \lor y_2) (\neg y_2 \lor l_4 \lor y_3) (\neg y_3 \lor l_5 \lor y_4) \cdots$
 $(\neg y_{k-3} \lor l_{k-1} \lor l_k)$
onde y_1, y_2, \dots, y_{k-3} são variáveis novas.

Caso 4.
$$k > 3$$

Troque $(l_1 \lor l_2 \lor \cdots \lor l_k)$ por $(l_1 \lor l_2 \lor y_1)$
 $(\neg y_1 \lor l_3 \lor y_2) (\neg y_2 \lor l_4 \lor y_3) (\neg y_3 \lor l_5 \lor y_4) \cdots$
 $(\neg y_{k-3} \lor l_{k-1} \lor l_k)$
onde y_1, y_2, \dots, y_{k-3} são variáveis novas.

Verifique que ϕ é satisfativel \Leftrightarrow nova fórmula é satisfatível.

Caso 4.
$$k > 3$$

Troque $(I_1 \lor I_2 \lor \cdots \lor I_k)$ por $(I_1 \lor I_2 \lor y_1)$
 $(\neg y_1 \lor I_3 \lor y_2) (\neg y_2 \lor I_4 \lor y_3) (\neg y_3 \lor I_5 \lor y_4) \cdots$
 $(\neg y_{k-3} \lor I_{k-1} \lor I_k)$
onde y_1, y_2, \dots, y_{k-3} são variáveis novas.

Verifique que ϕ é satisfativel \Leftrightarrow nova fórmula é satisfatível.

O tamanho da nova claúsula é O(q), onde q é o número de literais que ocorrem em ϕ (contando-se as repetições).

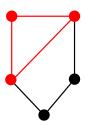
Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

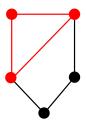
Exemplos:



Clique

Problema: Dado um grafo G e um inteiro k, G possui um clique com $\geq k$ vértices?

Exemplos:





clique com k vértices = subgrafo completo com k vértices

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tais que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tais que

 ϕ é satisfatível \Leftrightarrow G possui um clique $\geq k$.

Para cada claúsula, o grafo G terá três vértices, um correspondente a cada literal da cláusula. Logo, G terá 3k vértices.

Clique está em NP e 3-Satisfatibilidade \leq_P Clique.

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana ϕ com k claúsulas e exatamente 3 literais por claúsula e devolve um grafo G tais que

 ϕ é satisfatível $\Leftrightarrow G$ possui um clique $\geq k$.

Para cada claúsula, o grafo G terá três vértices, um correspondente a cada literal da cláusula. Logo, G terá 3k vértices.

Teremos uma aresta ligando vértices u e v se

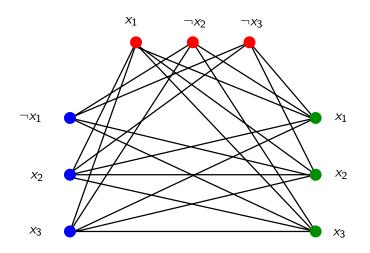
- u e v são vértices que correspondem a literais em diferentes claúsulas; e
- ▶ se u corresponde a um literal x então v não corresponde ao literal $\neg x$.

Clique é NP-completo (cont.)

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Clique é NP-completo (cont.)

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$



Cobertura por vértices

Um conjunto S de vértices de um grafo G é uma cobertura se toda aresta de G tem uma ponta em S.

Cobertura por vértices

Um conjunto S de vértices de um grafo G é uma cobertura se toda aresta de G tem uma ponta em S.

Problema: Dado um grafo G e um inteiro k, G possui uma cobertura com $\leq k$ vértices?

Cobertura por vértices

Um conjunto S de vértices de um grafo G é uma cobertura se toda aresta de G tem uma ponta em S.

Problema: Dado um grafo G e um inteiro k, G possui uma cobertura com $\leq k$ vértices?

Você consegue provar que este problema é NP-completo?

Subset sum

Problema: Dado um conjunto S de números naturais e um número natural t, existe um subconjunto S' de S cujos elementos somam t?

Subset sum

Problema: Dado um conjunto S de números naturais e um número natural t, existe um subconjunto S' de S cujos elementos somam t?

Você consegue provar que este problema está em NP?

Subset sum

Problema: Dado um conjunto S de números naturais e um número natural t, existe um subconjunto S' de S cujos elementos somam t?

Você consegue provar que este problema está em NP?

Vamos provar que Cobertura por vértices \leq_P Subset sum.

(Na aula só...)

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica que P = NP.

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica que P = NP.

Todo problema NP-completo é NP-difícil.

Problemas NP-difíceis

Um problema Π , não necessariamente em NP, é NP-díficil se a existência de um algoritmo polinomial para Π implica que P = NP.

Todo problema NP-completo é NP-difícil.

Exemplos:

- Encontrar um ciclo hamiltoniano é NP-difícil, mas não é NP-completo, pois não é um problema de decisão e portanto não está em NP.
- ► Satisfabilidade é NP-completo e NP-difícil.

Mais problemas NP-difíceis

Os seguintes problema são NP-difíceis:

- mochila booleana
- caminho máximo
- caminho hamiltoniano
- escalonamento de tarefas
- subset-sum
- clique máximo
- cobertura por vértices
- ▶ sistemas 0-1

e mais um montão deles ...

Mais exercícios

Exercício 25.J [CLRS 34.2-8]

Uma fórmula booleana ϕ é uma tautologia se $t(\phi)$ = verdade para toda atribuição de t: {variáveis} \rightarrow {verdade, falso}. Mostre que o problema de decidir se uma dada fórmula booleana é uma tautologia está em co-NP.

Exercício 25.K [CLRS 34.2-9] Prove que $P \subseteq \text{co-NP}$.

Exercício 25.L [CLRS 34.2-10] Prove que se $NP \neq co-NP$, então $P \neq NP$.

Exercício 25.M [CLRS 34.2-11]

Se G é um grafo conexo com pelo menos 3 vértices, então G^3 é o grafo que se obtém a partir de G ligando-se por uma aresta todos os pares de vértices que estão conectados em G por um caminho com no máximo três arestas. Mostre que G^3 é hamiltoniano.

Exercício 25.N [CLRS 34.3-2]

Mostre que se $\Pi_1 \leq_P \Pi_2$ e $\Pi_2 \leq_P \Pi_3$, então $\Pi_1 \leq_P \Pi_3$.

Mais exercícios

Exercício 25.0 [CLRS 34.3-7]

Suponha que Π e Π' são problemas de decisão sobre o mesmo conjunto de instâncias e que $\Pi(I)=\sin$ se e somente se $\Pi'(I)=$ não. Mostre que Π é NP-completo se e somente se Π' é co-NP-completo. (Um problema Π' é co-NP-completo se Π' está em co-NP e $\Pi \leq_P \Pi'$ para todo problema Π em co-NP.)

Exercício 25.P [CLRS 34.4-4]

Mostre que o problema de decidir se uma fórmula boolena é uma tautologia é co-NP-completo. (Dica: veja o exercício 25.O.)

Exercício 25.Q [CLRS 34.4-6]

Suponha que ALG' é um algoritmo polinomial para Satisfatibilidade. Descreva um algoritmo polinomial ALG que recebe um fórmula booleana ϕ e devolve uma atribuição $t: \{\mathsf{variáveis}\} \to \{\mathsf{verdade}, \mathsf{falso}\}$ tal que $t(\phi) = \mathsf{verdade}$.

Exercício 25.Q [CLRS 34.5-3]

Prove que o problema Sistemas lineares 0-1 é NP-completo.

Exercício 25.R [CLRS 34.5-6]

Mostre que o problema Caminho hamiltoniano é NP-completo.

Exercício 25.S [CLRS 34.5-7]

Mostre que o problema de encontrar um ciclo de comprimento máximo é NP-completo.