Curso de Verão 2018 - Tópicos de Álgebra Linear - Lista 3

12 de janeiro de 2018

- 1. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x,y) = (x+y,x-y). Mostre que T é isomorfismo e determine T^{-1} .
- 2. Considere $T: \mathbb{R}^2 \to \mathcal{P}_1(\mathbb{R})$ a transformação linear tal que T(1, -1) = 2 + t e T(0, 1) = t 1. Mostre que T é isomorfismo e determine T^{-1} .
- 3. Sejam V e W espaços vetoriais sobre \mathbb{K} e $T:V\to W$ um isomorfismo. Então $T^{-1}:W\to V$ é um isomorfismo.
- 4. Sejam U, V, W espaços vetoriais sobre \mathbb{K} . Se $U \cong V$ e $V \cong W$, mostre que $U \cong W$.
- 5. Sejam V um \mathbb{K} -espaço vetorial de dimensão finita e $T \in \mathcal{L}(V)$. Suponha que existe $S \in \mathcal{L}(V)$ tal que $TS = Id_V$. Mostre que T é inversível e que $T^{-1} = S$. Esse resultado é ainda válido sem a hipótese de V ser de dimensão finita?
- 6. Sejam V e W dois \mathbb{K} -espaços vetorias e $T \in \mathcal{L}(V, W)$ um isomorfismo. Mostre que $T \mapsto UTU^{-1}$ é um isomorfismo de $\mathcal{L}(V, V)$ sobre $\mathcal{L}(W, W)$.
- 7. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformação linear definida por T(x,y,z) = (x-y+z,x+y+2z,x+2y+z). Determine $[T]_{can}$.
- 8. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformação linear definida por T(x,y,z) = (x+2y+z,2x-y,2y+z). Determine $[T]_{can}$, $[T]_{can,\mathcal{B}}$, $[T]_{\mathcal{B},can}$, $[T]_{\mathcal{B},\mathcal{C}}$, $[T]_{\mathcal{C},\mathcal{B}}$ e $[T]_{\mathcal{C}}$, $[T]_{\mathcal{C},can}$ e $[T]_{can,\mathcal{C}}$, onde can denota a base canônica de \mathbb{R}^3 , $\mathcal{B} = \{(1,-1,1),(0,1,0),(0,0,1)\}$ e $\mathcal{C} = \{(1,0,1),(0,1,1),(0,0,1)\}$.
- 9. Considere a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que $[T]_{can,\mathcal{C}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$, onde $\mathcal{C} = \{(1,0,1), (-1,0,1), (0,1,0)\}$.
 - a) Determine T(1,0) e T(0,1).
 - b) Determine uma base para Im(T).
 - c) T é injetora?
- 10. Sejam $T: \mathbb{R}^4 \to \mathbb{R}^4$ uma transformação linear, $\mathcal{C} = \{v_1, v_2, v_3, v_4\}$ uma base de \mathbb{R}^4 e $S = [v_1, v_2, v_3]$.
 - a) Se T(v) = v para todo $v \in S$ e $T(v_4) = v_1 + v_3$, determine $[T]_{\mathcal{C}}$.
 - b) Se $[I]_{can,\mathcal{C}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$, determine $[T(e_1)]_{\mathcal{C}}$.