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Abstract. We study “disjoint” versions of the notions of trivial, locally trivial, strictly
singular and super-strictly singular quasi-linear maps in the context of Köthe function spaces.
Among other results, we show: i) (locally) trivial and (locally) disjointly trivial notions
coincide on reflexive spaces; ii) On non-atomic superreflexive Köthe spaces, no centralizer
is singular, although most are disjointly singular. iii) No super singular quasi-linear maps
exist between superreflexive spaces although Kalton-Peck centralizers are super disjointly
singular; iv) Disjoint singularity does not imply super disjoint singularity.

1. Introduction

For all unexplained notation and terms, please keep reading. This paper has its roots
in [10] where the authors introduced the notion of disjointly singular centralizer on Köthe
function spaces, proved that disjoint singularity coincides with singularity on Banach spaces
with unconditional basis and presented a technique to produce disjointly singular centralizers
via complex interpolation.

A second equally important fact to consider is that the fundamental Kalton-Peck map
[25] is disjointly singular on Lp [10, Proposition 5.4], but it is not singular [35]. In fact, as
the last stroke one could wish to foster the study of disjoint singularity is the argument of
Cabello [2] that no centralizer on Lp can be singular that we extend here by showing that no
centralizer can be singular. It is thus obvious that while singularity is an important notion in
the domain of Köthe sequence spaces, disjoint singularity is the core notion in Köthe function
spaces. The purpose of this paper is then to study the disjointly supported versions of the
basic (trivial, locally trivial, singular and supersingular) notions in the theory of centralizers
and present several crucial examples.

2. Background

Most of the action in this paper will take place in the ambient of Köthe function spaces.
We present Kalton’s definition of Köthe function space since it is slightly different from the
standard one [29]. Let (S,Σ, µ) be a σ-finite measure space. Let L0 ≡ L0(µ) be the space of
all measurable complex functions on S endowed with the topology of convergence in measure
on sets of finite measure and we apply the usual convention about identifying functions equal
almost everywhere. According to [23, p. 482 and p. 486], a Köthe function space on S is a
linear subspace K of L0 with a norm ‖ � ‖K which makes it into a Banach space such that

(1) The unit ball BK = {x ∈ K : ‖x‖K ≤ 1} of K is closed in L0.
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(2) There exist strictly positive h, k ∈ L0 so that ‖hf‖1 ≤ ‖f‖K ≤ ‖kf‖∞ for every
f ∈ L0. (with the convention that ‖f‖K =∞ for every f ∈ L0 \ K).

(3) For every x, y ∈ L0, if y ∈ K and |x| ≤ |y| then x ∈ K and ‖x‖K ≤ ‖y‖K.

A particular case of which is that of Banach spaces with a 1-unconditional basis (called
Köthe sequence spaces in what follows) with their associated `∞-module structure.

2.1. Exact sequences, quasi-linear maps and centralizers. For a rather complete back-
ground on the theory of twisted sums see [11]. We recall that a twisted sum of two Banach
spaces Y and Z is a quasi-Banach space X which has a closed subspace isomorphic to Y such
that the quotient X/Y is isomorphic to Z. Equivalently, X is a twisted sum of Y , Z if there
exists a short exact sequence

0 −−−−→ Y −−−−→ X −−−−→ Z −−−−→ 0.

According to Kalton and Peck [25], twisted sums can be identified with homogeneous maps
Ω : Z → Y for which there exists C > 0 such that

‖Ω(z1 + z2)− Ω(z1)− Ω(z2)‖ ≤ C(‖z1‖+ ‖z2‖),

for every z1, z2 ∈ Z. Such maps are called quasi-linear. The smallest of the constants C
satisfying the above inequality is called the quasi-linearity constant of Ω and is denoted
Z(Ω).

Every quasi-linear map Ω : Z → Y induces an equivalent quasi-norm on X (seen alge-
braically as Y × Z) by

‖(y, z)‖Ω = ‖y − Ωz‖+ ‖z‖.
This space is usually denoted Y ⊕ΩZ. When Y and Z are, for example, Banach spaces of non-
trivial type, the quasi-norm above is equivalent to a norm; therefore, the twisted sum obtained
is a Banach space. Two exact sequences 0→ Y → X1 → Z → 0 and 0→ Y → X2 → Z → 0
are said to be equivalent if there exists an operator T : X1 → X2 such that the following
diagram commutes:

0 −−−−→ Y −−−−→ X1 −−−−→ Z −−−−→ 0∥∥∥ yT ∥∥∥
0 −−−−→ Y −−−−→ X2 −−−−→ Z −−−−→ 0.

The classical 3-lemma (see [11, p. 3]) shows that T must be an isomorphism.

Definition 2.1. An L∞-centralizer (resp. an `∞-centralizer) on a Köthe function (resp.
sequence) space K is a homogeneous map Ω : K → L0 such that there is a constant C satisfying
that, for every f ∈ L∞ (resp. `∞) and for every x ∈ K, the difference Ω(fx)− fΩ(x) belongs
to K and

‖Ω(fx)− fΩ(x)‖K ≤ C‖f‖∞‖x‖K.
The centralizer is called real when it sends real functions (sequences) to real functions (se-
quences).

When no confusion arises we will simply say: a centralizer. Observe that a centralizer Ω
on K does not take values in K, but in L0, and still it induces an exact sequence

0 −−−−→ K −−−−→ dΩK
qΩ−−−−→ K −−−−→ 0

as follows: dΩK = {(w, x) : w ∈ L0, x ∈ K : w − Ωx ∈ K} endowed with the quasi-norm

‖(w, x)‖dΩK = ‖x‖K + ‖w − Ωx‖K
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and with obvious inclusion (x) = (x, 0) and quotient map qΩ(w, x) = x. The reason is that a
centralizer “is” quasi-linear, in the sense that for all x, y ∈ K one has Ω(x+y)−Ω(x)−Ω(y) ∈ K
and ‖Ω(x+ y)−Ω(x)−Ω(y)‖ ≤ C(‖x‖+ ‖y‖) for some C > 0 and all x, y ∈ K. To describe
the fact that the centralizer acts Ω : K → L0 but defines a twisted sum of K with itself we will
use sometimes the notation Ω : Ky K. Centralizers arise naturally by complex interpolation
[1] as can be seen in [23].

2.2. Trivial maps. An exact sequence 0 → Y → X → Z → 0 is trivial if and only if it is
equivalent to 0 → Y → Y ⊕ Z → Z → 0, where Y ⊕ Z is endowed with the product norm.
In this case we say that the exact sequence splits. Two quasi-linear maps Ω,Ω′ : Z → Y
are said to be equivalent, denoted Ω ≡ Ω′, if the difference Ω− Ω′ can be written as B + L,
where B : Z → Y is a homogeneous bounded map (not necessarily linear) and L : Z → Y is a
linear map (not necessarily bounded). Two quasi-linear maps are equivalent if and only if the
associated exact sequences are equivalent. A quasi-linear map is trivial if it is equivalent to
the 0 map, which also means that the associated exact sequence is trivial. Given two Banach
spaces Y,Z we will denote by `(Z, Y ) the vector space of linear (not necessarily continuous)
maps Z → Y . The distance between two homogeneous maps T,R will be the usual operator
norm (the supremum on the unit ball) of the difference; i.e., ‖T −R‖, which can make sense
even when R and T are unbounded. So a quasi-linear map Ω : Z −→ Y is trivial if and only if
d(Ω, `(Z, Y )) ≤ C < +∞, in which case we will say that Ω is C-trivial. A centralizer Ky K
is trivial if and only if there is a linear map L : K → L0 so that Ω− L : K → K is bounded.
In a more classical language, Ω is trivial if and only if Y is complemented in Y ⊕Ω Z.

2.3. Locally trivial maps. A quasi-linear map Ω : Z → Y is said to be locally trivial [21]
if there exists C > 0 such that for any finite dimensional subspace F of Z, there exists a
linear map LF such that ‖Ω|F − LF ‖ ≤ C. It is clear that a trivial map is locally trivial.
The converse is not true, although locally trivial quasi-linear maps Ω : Z → Y in which Y is
reflexive are trivial, by [5]. We say that Y is locally complemented in Y ⊕Ω Z if and only if
Ω locally splits.

2.4. Singular maps. An operator between Banach spaces is said to be strictly singular if
no restriction to an infinite dimensional closed subspace is an isomorphism. Analogously, a
quasi-linear map (in particular, a centralizer) is said to be singular if its restriction to every
infinite dimensional closed subspace is never trivial. An exact sequence induced by a singular
quasi-linear map is called a singular sequence. A quasi-linear map is singular if and only if
the associated exact sequence has strictly singular quotient map [13, Lemma 1]. Singular
`∞-centralizers exist and the most natural example is the Kalton-Peck map Kp : `p y `p,

0 < p < +∞, defined by Kp(x) = x log |x|
‖x‖p . The proof that Kp is singular can be found in

[25] for 1 < p < +∞, [13] for p = 1, and [8] for all 0 < p < +∞. A simple characterization
of singular `∞-centralizers on Banach sequence spaces can be presented

Proposition 2.2. Let X be a Banach space with an unconditional basis not containing
c0. Let Ω : X y X be an `∞-centralizer such that for every sequence (Ak) of consecutive
subsets of N and every sequence (un) of consecutive normalized blocks of the basis, for which
supk ‖

∑
n∈Ak un‖ → +∞ one has

lim sup
k

‖Ω(
∑

n∈Ak un)−
∑

n∈Ak Ω(un)‖
‖
∑

n∈Ak un‖
= +∞.

Then Ω is singular.
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Proof. If Ω : X y X is an `∞-centralizer verifying the condition above and, at the same time,
trivial on some subspace H, by the blocking principle (see [8, Lemma 2]), it must be trivial on
the subspace [un] spanned by some consecutive blocks of the basis. Standard manipulations
(see [8, 10]) show that the linear map `(un) = Ω(un) is at finite distance from Ω, which
implies that lim supk ‖

∑
n∈Ak un‖ < +∞ for all choices of (Ak), thus (un) is equivalent to

the canonical basis of c0 and consequently H contains c0. �

In sharp contrast, Cabello [2] proved that no L∞-centralizer is singular on Lp[0, 1]. Let us
observe that quite the same proof of Cabello provides the following proposition.

Proposition 2.3. Let K be a superreflexive Köthe function space over a non-atomic σ-finite
measure space and let Ω be a L∞-centralizer on K. Then Ω is not singular. Moreover, Ω is
bounded on some copy of `2.

Sketch of proof : Let K be a superreflexive Köthe function space with base space (S, µ)
where µ is a non-atomic σ-finite measure and let ΩK be an L∞-centralizer on K. For a
subset I ⊂ S we will denote K(I) the subspace of K formed by those functions with support
contained in I. By Kalton’s theorem [23, Thm. 7.6] plus the comments in [2, Section 1.3]
there are two Köthe spaces A,B so that K = (A,B)1/2; these spaces can be assumed to
be superreflexive by reiteration and [24, Thm. 7.8]. The admissibility of the norm yields
functions ha, ka such that ‖haf‖1 ≤ ‖f‖A ≤ ‖kaf‖∞ for every f ∈ A; and functions hb, kb
such that ‖hbf‖1 ≤ ‖f‖B ≤ ‖kbf‖∞ for every f ∈ B. Thus, one can find a positive measure
set I ⊂ S and a constant M > 0 such that ka, kb ≤M and ha, hb ≥M−1 on I. This provides
continuous inclusions L∞(I) ⊂ A(I) ⊂ L1(I) and L∞(I) ⊂ B(I) ⊂ L1(I) .

By super-reflexivity, both spaces A,B are p-convex and q-concave for some 1 < p, q < +∞
([29, Thm 1.f.12 and Thm 1.f.7.]) So, using the Johnson-Maurey-Schechtman-Tzafriri remark
[19, p.14] then also Lq(I) ⊂ A(I) ⊂ Lp(I) and Lq(I) ⊂ B(I) ⊂ Lp(I). Since µ is non-atomic,
let R(I) be the subspace generated by Rademacher functions supported in I. The Lp and
Lq-norms are equivalent on R(I) by Khintchine’s inequality, and are also equivalent to ‖ · ‖A
and to ‖ · ‖B, and thus R(I) ' `2. The equivalence of norms A and B on R(I) makes the
differential Ω1/2 bounded on R(I), and since ΩK is boundedly equivalent to Ω1/2, it must be
bounded too.

2.5. Super-singular maps. An operator T : Z → Y between two Banach spaces is said to
be super strictly singular (in short, super-SS) if there does not exist a number c > 0 and a
sequence of subspaces En of Z, with dim En = n, such that ‖Tx‖ ≥ c‖x‖ for every x ∈

⋃
nEn.

Equivalently [14, Lemma 1.1.], if every ultrapower of T is strictly singular. Super strictly
singular operators have also been called finitely strictly singular; they were first introduced
in [30, 31], and form a closed ideal containing the ideal of compact and contained in the ideal
of strictly singular operators. See also [14] for the study of such a notion in the context of
twisted sums, as well as [9] where a few results are also mentioned in relation to complex
structures on twisted sums.

It is a standard fact (see [11]) that given an exact sequence 0 → Y → X → Z → 0 and
an ultrafilter U the ultrapowers form an exact sequence 0 → YU → XU → ZU → 0. If Ω is
a quasi-linear map associated to the former sequence we will call ΩU any quasi-linear map
associated to the later. We do not need for the moment to specify the construction of ΩU.
We will say, following [9] that a quasi-linear map Ω is super-singular if every ultrapower ΩU

is singular. We need to state here two facts proved in [9]:

• Ω is super-singular if and only the quotient map qΩ of the exact sequence it defines
is super strictly singular.
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• No super singular quasi-linear maps between B-convex Banach spaces exist. This
follows from [32, Thm. 3], where it is proved that a super strictly singular operator
on a B-convex space has super strictly singular adjoint. Since superreflexive spaces
are B-convex, B-convexity is a 3-space property (see [11]) and the adjoint of a quotient
map is an into isomorphism, the result follows.

After these prolegomena, we tackle the study of the “disjoint” versions of the preceding
properties. It is worth to observe that all our forthcoming “disjoint” notions admits an
immediate translation to general quasi-linear maps on Banach lattices.

3. Disjoint local triviality

Definition 3.1. A quasi-linear map Ω : K → Y defined on a Banach lattice is said to be
disjointly trivial if it is trivial on any subspace generated by a sequence of disjointly supported
elements. It is said to be locally disjointly trivial if there exists C > 0 such that for any finite
dimensional subspace F of K generated by disjointly supported vectors, there exists a linear
map LF such that ‖Ω|F − LF ‖ ≤ C.

We can show:

Proposition 3.2. Let K be a Köthe function space over a σ-finite measure space and let
Ω : K → Y be a quasi-linear map. Consider the following assertions:

(i) Ω is trivial.
(ii) Ω is disjointly trivial.

(iii) Ω is locally trivial.
(iv) Ω is locally disjointly trivial.

Then (i) ⇒ (ii) ⇒ (iii) ⇔ (iv). Moreover, if Y is complemented in its bidual, then all
assertions are equivalent.

Proof. Assertion (i) implies (iii) and it is well-known, see [5], that a locally trivial quasi-linear
map taking values in a space complemented in its bidual is trivial. It is clear that (i) implies
(ii) and that (iii) implies (iv). Let us show that (iv) implies (iii): Let Ω be a quasi-linear
map verifying (iv) and let F be a finite dimensional subspace of K. Approximating functions
by characteristic functions we may find a nuclear operator N on K of arbitrary small norm
so that (Id + N)(F ) is contained in the linear span [un] of a finite sequence of disjointly
supported vectors. The restriction Ω|[un] is trivial with constant C, thus using [9, Lemma
5.6], we get that Ω = Ω(I + N) − ΩN is trivial with constant C + ε on F . Therefore (iii)
holds.

It remains to show that (ii) implies (iii). We need to decompose first the measure ν = νa+µ
in its atomic part νa and its purely non-atomic part µ [18, Theorem 2.1]. We observe that the
result follows if one proves the implication assuming that the measure is either purely atomic
or non-atomic. Let us prove that (ii) implies (iii) for the atomic part, which follows from
the observation: Let Ω : X → Y be a quasilinear map and let δ : X → X∗∗ be the canonical
isometric embedding. If δΩ is trivial then Ω is locally trivial. Indeed, since X is locally
complemented in X∗∗ thanks to the Principle of Local Reflexivity and X∗∗ is complemented
in X∗∗ ⊕δΩ Y it turns out that X is locally complemented in X∗∗ ⊕δΩ Y , hence in X ⊕Ω Y .

Thus, if Ω is not locally trivial then δΩ is not trivial, hence δΩ is not disjointly trivial since
both notions are equivalent in the atomic case. Therefore Ω cannot be disjointly trivial.
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We prove now (ii) implies (iii) for the non-atomic part. Let (S, µ) be the non-atomic
σ-finite base space. Recall that for a subset I ⊂ S we denote K(I) the subspace of K formed
by those functions with support contained in I.

Claim 1. If I and J are disjoint subsets of S and Ω is locally trivial on both K(I) and K(J)
then it is locally trivial on K(I∪J). Let F be a finite dimensional subspace of K(I∪J). Then
F ⊆ F1 + F2 for finite dimensional subspaces F1 ⊆ K(I) and F2 ⊆ K(J). If ‖Ω|F1

− a‖ ≤ c
and ‖Ω|F2

− b‖ ≤ d, where a and b are linear, then ‖Ω|F − (a⊕ b)‖ ≤ 2(Z(Ω) + c+ d), where
a⊕ b is the obvious linear map on F .

Claim 2. If Ω is non-locally trivial on K then S can be split in two sets S = I ∪ J so that
Ω|K(I) and Ω|K(J) are both non-locally trivial. We first assume that S is a finite measure space.
Assume the claim does not hold. Since µ is non-atomic, split S = R1 ∪ I1 in two sets of the
same measure and assume Ω|K(I1) is locally trivial. Note that since the claim does not hold,
given any C ⊂ S and any splitting C = I ∪ J the map Ω is locally trivial on K(I) or K(J).
So, split R1 = R2 ∪ I2 in two sets of equal measure and assume that Ω|K(I2) is locally trivial,
and so on. If Ω is λ-locally trivial on K(∪j≤nIj) for λ < +∞ and for all n then Ω is locally
trivial on K, and we get a contradiction. If λn → ∞ is such that Ω|K(∪j≤nIj) is λn+1-locally
trivial but not λn-locally trivial for all n, then by Claim 1 we note that for m < n, Ω cannot
be locally trivial with constant less than λn/2− Z(Ω)− λm − 1 on K(∪m<j≤nIj). From this
we find a partition of N as N1 ∪ N2 so that if I = ∪n∈N1In and J = ∪n∈N2In, then Ω is
non-locally trivial on K(I) and K(J), another contradiction.

If S is σ-finite then the proof is essentially the same: either one can choose the sets In all
having measure, say, 1 or at some step Rm is of finite measure, and we are in the previous
case. This concludes the proof of the claim.

We pass to complete the proof that (ii) implies (iii). Assume that Ω is non-locally trivial
on K. By Claim 2, split S = I1 ∪ J1 so that Ω is non-locally trivial on both K(I1) and
K(J1). It cannot be locally disjointly trivial on them, so there is a finite number {u1

n}n∈F1

of disjointly supported vectors on K(I1) on which Ω is not 2-trivial. By the claim applied
to K(J1) split J1 = I2 ∪ J2 so that Ω is non-locally trivial neither on K(I2) nor in K(J2). It
cannot be locally disjointly trivial on them, so there is a finite number of disjointly supported
vectors {u2

n}n∈F2 on K(I2) on which Ω is not 4-trivial. Iterate the argument to produce a
subspace Y generated by an infinite sequence

{u1
n}n∈F1 , {u2

n}n∈F2 , . . . , {ukn}n∈Fk , . . .

of disjointly supported vectors, where Ω cannot be trivial. �

An immediate corollary of (the proof of) Proposition 3.2 is:

Corollary 3.3. Let K be a Köthe space over a σ-finite measure space (S, µ) and let Ω be a
non-locally trivial quasi-linear map on K. Then there exists a sequence (In) of finite measure
mutually disjoint subsets of S so that the restriction Ω|[1In ] is non-locally trivial.

In Lp(S, µ), given a sequence (In) of finite measure mutually disjoint subsets of S, the
subspace [1In ] is isomorphic to `p when 0 < p < +∞ and to c0 in L∞(S, µ). Hence we have

Corollary 3.4. Let (S, µ) be a σ-finite measure space and let 0 < p < ∞. Then for every
non-locally trivial quasi-linear map Ω defined on Lp(S, µ) (resp. L∞(S, µ)) there is a copy
of `p (resp. c0) spanned by disjointly supported vectors on which the restriction of Ω is not
locally trivial.
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It is not clear whether Proposition 3.2 can be translated to the domain of Banach lattices.
C(K)-spaces are not, as a rule, Köthe spaces; however, the above essential part of Proposition
3.2 still survives for C(K)-spaces: every non-locally trivial quasi-linear map defined on a
C(K) must be non-trivial on a subspace isomorphic to c0 [6, Theorem 2.1].

4. Disjoint singularity

Proposition 3.2 shows that (local) triviality and disjoint (local) triviality are essentially
equivalent. We shall now see that the situation is much more complex regarding singularity
notions. The following definition was introduced in [10].

Definition 4.1. A quasi-linear map on a Banach lattice is called disjointly singular if its
restriction to every infinite dimensional subspace generated by a disjointly supported sequence
is never trivial.

Of course, a singular quasi-linear map is disjointly singular and a disjointly singular quasi-
linear map on a Köthe sequence space is singular. An open question, to the best of our
knowledge due to Félix Cabello, is about the existence of singular quasi-linear maps on
Köthe function spaces; recall that no singular L∞-centralizers exist on any reasonable Köthe
space [2] (cf. Proposition 2.3); see also [35]).

4.1. Examples.

(1) As we mentioned at the introduction, the methods in [10] actually produce disjointly
singular centralizers. In particular, it is shown [10, Proposition 5.4] that the Kalton-
Peck centralizer

K(x) = x log
|x|
‖x‖

is disjointly singular on any reflexive, p-convex Köthe function space, p > 1
(2) Given two Lorentz spaces Lp0,q0 , Lp1,q1 , it was proved in [4] that (Lp0,q0 , Lp1,q1)θ = Lp,q

for p−1 = (1 − θ)p0
−1 + θp1

−1 and q−1 = (1 − θ)q0
−1 + θq1

−1 with an associated
derivation

Ω(x) = q

(
1

q1
− 1

q0

)
K(x) +

(
q

p

(
1

q0
− 1

q1

)
−
(

1

p0
− 1

p1

))
κ(x)

Here K(·) is the Kalton-Peck map earlier defined and κ(·) is the so-called Kalton map
[20]; see also [4], given by κ(x) = x rx where rx is the rank function rx(t) = µ{s :
|x(s)| > |x(t)| or|x(s)| = |x(t)| and s ≤ t} (see [34]).

The map K is disjointly singular while κ has the property that every infinite di-
mensional subspace contains a further infinite dimensional subspace where it is trivial
[4], so it is clear that Ω is disjointly singular.

(3) A different set of examples will be presented now in C(K) or L∞-spaces. These
examples are relevant because in the category of Banach spaces no singular quasi-
linear map is possible on a space containing `1. In fact, notice that every short exact
sequence of Banach spaces 0 → Y → X → `1 splits since the quotient map X → `1
admits a bounded and linear right inverse. In particular, the associated twisted
sum for the Kalton-Peck quasi-linear map K1 : `1 y `1 is a non-locally convex quasi-
Banach space. In [26], Kalton and Roberts proved that every twisted sum of a Banach
space and an L∞-space is locally convex (being thus isomorphic to a Banach space).
We consider for the examples the spaces C[0, 1] and `∞. It is necessary to remark
that C[0, 1] is not a Köthe space and thus the example lives in the domain of Banach
lattices; see the comments after the Proposition 4.2.
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Proposition 4.2. There exist disjointly singular quasi-linear maps on C[0, 1] and `∞.

Proof. Let us consider first the case of C[0, 1]. As we have already remarked, one just needs
to construct a c0-singular map, that is, a quasi-linear map such that when restricted to every
subspace isomorphic to c0 is never trivial. Let ω : c0 → C[0, 1] be a nontrivial quasi-linear
map (see [7] for explicit examples). Let Γ be the set of all 2-isomorphic copies γ of c0

inside C[0, 1], which are necessarily 4-complemented in C[0, 1] via some projection πγ and let
αγ : γ → c0 be a 2-isomorphism. Define a quasi-linear map Υ : C[0, 1] → `∞(Γ, C[0, 1]) by
means of

Υ(f)(γ) = ω(αγπγ(f))

This map is c0-singular because if there is a copy of c0 in which Υ is trivial, that copy must
contains some γ ∈ Γ, on which Υ must be trivial too. But if f ∈ γ one has

Υ|γ(f)(γ) = ω(αγπγ(f)) = ω(αγf)

thus, if δγ : `∞(Γ, C[0, 1]) → C[0, 1] is the canonical evaluation at the coordinate γ we
have obtained δγΥ|γ = ωαγ . This map cannot be trivial since, otherwise, so it would be

ω = δγΥ|γα
−1
γ , which is not the case. But that means that Υ|γ cannot be trivial because

δγΥ|γ is not trivial.

A standard reduction (see [13]) allows one to find an equivalent quasi-linear map Ω :
C[0, 1] → `∞(Γ, C[0, 1]) having separable range. Since `∞(Γ, C[0, 1]) is a Banach algebra,
Ω can also be considered taking values in the closed subalgebra generated by [Ω(C[0, 1])],
which, being separable, is isometrically isomorphic to a C(K) for some metrizable compact
K by the classical Gelfand-Naimark theorem. When K is countable it is homeomorphic to
an interval of ordinals [0, α] for some countable ordinal α, otherwise by Milutin’s theorem
C(K) is isomorphic to C[0, 1]. Thus, Ω : C[0, 1] → C[0, 1] is a c0-singular quasi-linear map,
as desired.

The case of `∞ has to be treated differently because the projections πγ do not exist now.
Start with picking a nontrivial quasi-linear map ω : c0 → `2, which can be constructed as
follows: pick the Kalton-Peck map K : `2 → `2 and a quotient map Q : C[0, 1] → `2. The
map KQ is not trivial (see [5, 7]). It cannot be locally trivial either since `2 is reflexive and
Proposition 3.2 would make it trivial. Thus, using [6, Theorem 2.1] there is a copy of c0

inside C[0, 1] via some isomorphic embedding j so that the restriction KQj is not trivial. Let
us simplify and call this map ω. Let Γ be the set of infinite sequences of finite subsets N.
Given such a sequence γ = (An) we will call γ = ∪An∈γA. Let also αγ : [1An ] → c0 be an
isometry. Define a quasi-linear map Υ : c0 → `∞(Γ, `2) as

Υ(x)(γ) = ωαγ(1γx)

The bidual map Υ∗∗ : `∞ → `∞(Γ, `2)∗∗ cannot be trivial either since `∞(Γ, `2) is comple-
mented in its bidual. If π denotes a projection, the map πΥ∗∗ : `∞ → `∞(Γ, `2) cannot be
trivial either. We define a new map Ω : `∞ → `∞(Γ× Γ, `2) in the form

Ω(x)(γ, γ′) = πΥ∗∗(1γx)(γ′)

This map Ω cannot be disjointly singular: if it becomes trivial on some γ then for x ∈ γ one
has

Ω(x)(γ, γ) = πΥ∗∗(1γx)(γ) = Υ(x)(γ) = ωαγ(1γx) = ωαγ(x)

This map cannot be trivial since αγ is an isomorphism and ω is not trivial. �



ON DISJOINTLY SINGULAR CENTRALIZERS 9

It is an open problem posed in [2] whether there exists a singular quasi-linear map Ω :
Lp → Lp for 0 < p < 2. Singular quasi-linear maps (not centralizers) Ω : Lp → Lp exist
for 2 ≤ p < +∞ (see [8, Theorem 2(c)]); observe that in this case the Kadec-Pe lczyński
alternative immediately yields that a quasilinear map Ω on Lp that is both disjointly singular
and `2-singular must be singular. Thus, we could also use a construction similar to that
in Proposition 4.2 to obtain singular maps in Lp, 2 ≤ p < +∞. None of these can be
L∞-centralizers, nonetheless.

The papers [15, 16, 17] study the behaviour of strictly singular operators in Banach lat-
tices by considering the more general notion of lattice singular operator (one for which no
restriction to an infinite dimensional sublattice is an isomorphism). Obviously, strict sin-
gularity implies lattice singularity and this implies disjoint singularity. The authors obtain
an interesting result [15]: Let X,Y be Banach lattices such that X has finite cotype and Y
admits a lower 2-estimate. Then an operator T : X → Y is strictly singular if and only if it
is disjointly singular and `2-singular. A non-vacuous centralizer version for this result is not
possible since Proposition 2.3 establishes that no L∞-centralizer can be `2-singular. It makes
however sense the question about conditions ensuring that a quasi-linear map on a Köthe
space that is simultaneously disjointly singular and `2-singular is necessarily singular.

4.2. Characterizations. Regarding characterizations, given a Köthe space K on S and a
quasi-linear map Ω : K → K the fact that the twisted sum space dΩK is not necessarily
a Köthe space complicates the characterization of disjointly singular maps in terms of the
quotient operator. This difficulty can be overcome for centralizers, which always admit a
version satisfying that supp Ωx ⊂ suppx for all x ∈ K. Although, as we have just said, the
space dΩK is not a Köthe space, its elements are couples of functions of L0; i.e., functions
S → C× C. The following definition makes sense:

Definition 4.3. A pair of nonzero elements f = (w0, x0), g = (w1, x1) of dΩK is said to be
disjoint if the functions f, g : S → C×C are disjointly supported. An operator τ : dΩK → K
is said to be disjointly singular if the restriction of τ to any infinite dimensional subspace
generated by a disjoint sequence of vectors is not an isomorphism.

Recall that a Köthe function space K is maximal if whenever (fn) is an increasing sequence
of non-negative functions in K converging almost everywhere to f and supn ‖fn‖K <∞, then
f ∈ K and ‖f‖K = supn ‖fn‖K. It was pointed out by Kalton [23, p. 487] (see also [10, p.
4683]) that his definition of Köthe space implies that maximality condition. We shall use this
property in the proof of the next lemma to invoke a result from [10].

Lemma 4.4. A centralizer Ω on a Köthe space K is disjointly singular if and only if qΩ is
disjointly singular.

Proof. We choose the form qΩ : K⊕ΩK → K given by qΩ(v, u) = u. If Ω is trivial on the span
[un] of a disjointly supported sequence there is a linear map L : [un]→ K so that ‖Ω−L‖ ≤ C.
Since K is maximal, by [10, Lemma 3.17] there exists a linear map Λ : [un] → K such that
supp Λx ⊂ suppx and ‖Ω−Λ‖ ≤ C and thus (Λun, un) is a disjointly supported sequence for
which the restriction of qΩ to its closed linear span is an isomorphism since

‖
∑

λn(Λun, un)‖ =
∥∥∥Ω
(∑

λnun

)
−
∑

Λ(λnun)
∥∥∥+ ‖

∑
λnun‖ ≤ (C + 1)‖

∑
λnun‖.

In this way, qΩ disjointly singular implies Ω disjointly singular. To get the converse, assume
that qΩ is not disjointly singular, so there is a disjointly supported sequence (vn, un) in K⊕ΩK
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such that qΩ is an isomorphism on [(vn, un)]. This means that∥∥∥∑λnvn − Ω
(∑

λnun

)∥∥∥ ≤ C ∥∥∥∑λnun

∥∥∥
The linear map L(un) = vn verifies∥∥∥L(∑λnun

)
− Ω

(∑
λnun

)∥∥∥ =
∥∥∥∑λnvn − Ω

(∑
λnun

)∥∥∥ ≤ C ∥∥∥∑λnun

∥∥∥
�

Now we want to mimicry Proposition 2.2. Let K be a Köthe space and let Ω : K → L0 be
a centralizer. Given a finite sequence b = (bk)

n
k=1 ⊂ K we will follow [9] and define

∇[b]Ω = Aveε

∥∥∥∥∥Ω

(
n∑
k=1

εkbk

)
−

n∑
k=1

εkΩ(bk)

∥∥∥∥∥ ,
where the average is taken over all choices of signs ε = (εk)

n
k=1 ∈ {±1}n. The triangle

inequality holds for ∇[b]Ω: if Ω and Ψ are centralizers then ∇[b](Ω + Ψ) ≤ ∇[b]Ω +∇[b]Ψ. If
λ = (λk)k is a finite sequence of scalars and x = (xk)k a sequence of vectors of K, we write
λx to denote the finite sequence obtained by the non-zero vectors of (λ1x1, λ2x2, . . .).

Recall from [10, Definiton 3.10] that a centralizer Ω on a Köthe function space K is con-
tractive if supp Ω(x) ⊆ suppx for every x ∈ K. Our next result provides a characterization of
disjoint singularity for contractive centralizers in the Lp spaces. The contractive restriction
is not so severe, since every centralizer Ω on a Köthe function space K admits a contractive
centralizer ω such that Ω − ω is bounded ([22, Proposition 4.1]). Also it is easy to see that
the canonical centralizer induced by interpolation of Köthe spaces is contractive, see [10].

Proposition 4.5. A contractive centralizer Ω defined on Lp is not disjointly singular if and
only if there is a disjointly supported normalized sequence u = (un) and a constant C > 0
such that for every λ = (λk) ∈ c00 one has

∇[λu]Ω ≤ C‖λ‖p.

The proof follows from the following three lemmas.

Lemma 4.6. Let Ω be a contractive centralizer on a Köthe space K satisfying an upper p-
estimate, and let u = (un)n be a disjointly supported normalized sequence of vectors. Suppose
that the restriction of Ω to the closed linear span [un] is trivial. Then there is a constant
C > 0 such that

∇[λu]Ω ≤ C‖λ‖p

for every λ = (λk)k ∈ c00.

Proof. If the restriction of Ω to [un] is trivial then there is a linear map L : [un]→ K so that
‖Ω−L‖ ≤ C < +∞. From [10, Lemma 3.17] we can take such L so that suppL(x) ⊂ suppx.
Then for every λ ∈ c00∥∥∥∥∥Ω

(
n∑
i=1

λiui

)
− L

(
n∑
i=1

λiui

)∥∥∥∥∥ ≤ C
∥∥∥∥∥

n∑
i=1

λiui

∥∥∥∥∥
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which implies that∥∥∥∥∥Ω

(
n∑
i=1

λiui

)
−

n∑
i=1

Ω(λiui)

∥∥∥∥∥ =

∥∥∥∥∥Ω

(
n∑
i=1

λiui

)
− L(

n∑
i=1

λiui) +
n∑
i=1

λiLui −
n∑
i=1

λiΩui

∥∥∥∥∥
≤ C

∥∥∥∥∥
n∑
i=1

λiui

∥∥∥∥∥+

∥∥∥∥∥
n∑
i=1

λi(Ω− L)ui

∥∥∥∥∥ ,
hence

∇[λu]Ω ≤ C ′‖λ‖p
�

Lemma 4.7. Let Ω be a contractive centralizer on a Köthe space K. Then there exists a
constant c > 0 such that for every disjointly supported normalized sequence (vi) in K and
every n ∈ N, we have∥∥∥∥∥Ω

(
n∑
i=1

vi

)
−

n∑
i=1

Ω(vi)

∥∥∥∥∥ ≤ c

∥∥∥∥∥
n∑
i=1

vi

∥∥∥∥∥+∇[(vi)n1 ]Ω.

Proof. Let (εi) be a sequence of signs. Let v =
∑n

i=1 vi and
∑n

i=1 εivi = εv for some function
ε taking values ±1.

∥∥∥∥∥Ω(εv)− ε
n∑
i=1

Ω(vi)

∥∥∥∥∥ ≤ ‖Ω(εv)− εΩ(v)‖+

∥∥∥∥∥εΩ(v)− ε
n∑
i=1

Ω(vi)

∥∥∥∥∥
Thus the centralizer Ω verifies for some constant c > 0,∥∥∥∥∥Ω(εv)− ε

n∑
i=1

Ω(vi)

∥∥∥∥∥ ≤ c‖v‖+

∥∥∥∥∥Ω(v)−
n∑
i=1

Ω(vi)

∥∥∥∥∥
Since Ω is contractive, then also the Ω(vi) are disjointly supported. Applying to εivi instead
of vi, ∥∥∥∥∥Ω(v)−

n∑
i=1

Ω(vi)

∥∥∥∥∥ ≤ c‖v‖+

∥∥∥∥∥Ω

(
n∑
i=1

εivi

)
−

n∑
i=1

εiΩ(vi)

∥∥∥∥∥
By taking the average, we obtain∥∥∥∥∥Ω(v)−

n∑
i=1

Ω(vi)

∥∥∥∥∥ ≤ c‖v‖+∇[(vi)ni ]Ω

�

Lemma 4.8. Let Ω be a contractive centralizer on a Köthe space K satisfying a lower q-
estimate, and let u = (un)n be a disjointly supported normalized sequence of vectors. Suppose
that there is a constant C > 0 such that

∇[λu]Ω ≤ C‖λ‖q

for every λ = (λk)k ∈ c00. Then the restriction of Ω to the closed linear span [un] is trivial.
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Proof. Let λ = (λk)k ∈ c00 and (εi) be a sequence of signs. It follows from the previous
lemma that for some constant c > 0 and every n ∈ N∥∥∥∥∥Ω

(
n∑
i=1

λiui

)
−

n∑
i=1

Ω(λiui)

∥∥∥∥∥ ≤ c

∥∥∥∥∥
n∑
i=1

λiui

∥∥∥∥∥+∇[λu]Ω ≤ c

∥∥∥∥∥
n∑
i=1

λiui

∥∥∥∥∥+ C‖λ‖q

Since K satisfies a lower q-estimate∥∥∥∥∥Ω

(
n∑
i=1

λiui

)
−

n∑
i=1

Ω(λiui)

∥∥∥∥∥ ≤ C ′

∥∥∥∥∥
n∑
i=1

λiui

∥∥∥∥∥
Then ‖Ω− L‖ ≤ C ′, where L is a linear map such that L(ui) = Ω(ui). �

5. Disjoint super singularity

It is part of the folklore that ultrapowers of Banach lattices are again Banach lattices.
Thus, it makes sense to define an operator T : K → Y to be super-disjointly singular if
every ultrapower of T is disjointly singular; this means that for every sequence of subspaces
En ⊆ K that are generated by disjointly supported elements and so that dimEn = n there is
a sequence (Fn) of subspaces, Fn ⊂ En generated by disjointly supported elements such that
dimFn → ∞ and lim ‖T|Fn‖ → 0. To transplant these ideas to the domain of quasi-linear
maps Ω on Köthe function spaces it will be useful to define the modulus of superdisjoint
singularity of a quasi-linear map Ω as

ψΩ(n) = inf dist(Ω|En , L(En, Y )),

where the infimum is taken over all n-dimensional subspaces En of K generated by disjointly
supported vectors. One has:

Lemma 5.1. Let Ω : K → Y be a quasi-linear map defined on a Köthe space. The following
are equivalent

(1) All ultrapowers of Ω are disjointly singular.
(2) limψΩ(n) = +∞.

If Ω is a centralizer, the conditions above are equivalent to
(3) The quotient map qΩ is super-disjointly singular.

Proof. Condition (1) says that there does not exist c > 0 and a sequence of finite dimensional
subspaces Fn of Y ⊕Ω K such that En = qΩ(Fn) is generated by disjointly supported vectors
so that ‖qΩ(x)‖ ≥ c‖x‖ for every x ∈ ∪Fn. But if Ω is C-trivial on En, which is generated by
the disjointly supported vectors [ui]

n
i=1 then we claim that there is a linear map Ln : En → K

such that supp Ln(x) ⊆ supp x for every x ∈ En and ‖Ω|En − Ln‖ ≤ C: Indeed assume L is
linear such that ‖(Ω − L)|En‖ ≤ C, and let G be the finite group of units generated by the
vectors vi that take value 1 on the support of ui and −1 elsewhere); then it is enough to pick
Ln(x) = Avev∈G vL(vx). The rest of the argument goes as in Lemma 4.4. Done that, ΩU is
trivial on (En)U, which yields the equivalence between (1) and (2). The equivalence with (3)
follows from Lemma 4.4. �

Definition 5.2. A quasi-linear map (resp. a centralizer) Ω : K → Y on a Köthe space is
said to be super disjointly singular if it satisfies the two (resp. three) equivalent conditions in
the Lemma 5.1.

It is clear that both singularity and super disjoint singularity imply disjoint singularity.
We will present two proofs for the following fact.
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Proposition 5.3. The Kalton-Peck map K on Lp is super disjointly singular for 1 < p <∞.

Proof. Assume there exist a linear map L : En → Lp, where En is spanned by a finite sequence
u = (ui), and a constant C > 0 so that ||K|En −L|| ≤ C. By the proof of the previous lemma
we may assume that supp L(ui) ⊆ supp ui for all i. Put Ω′ = K|En − L to get

p−1n1/p log n ≤ ∇[u]K = ∇[u]Ω
′ ≤ Aveε‖Ω′(

∑
εiui)‖+ Aveε‖

∑
εiΩ
′ui‖ ≤ 2Cn1/p,

which is impossible. �

Two functions f, g : N → R+ are called equivalent, and denoted f ∼ g, if 0 <
lim inf f(n)/g(n) ≤ lim sup f(n)/g(n) < +∞. We recall from [10] the parameter

MK(n) = sup{‖x1 + . . .+ xn‖ : x1, . . . , xn disjoint in the unit ball of K}.

The interest of this parameter lies in [10, Proposition 5.3]:

Proposition 5.4. Let (X0, X1) be an interpolation couple of two Köthe function spaces so
that MX0 and MX1 are not equivalent. Let 0 < θ < 1. Assume that Xθ is reflexive, that
MW ∼MXθ for every infinite-dimensional subspace generated by a disjoint sequence W ⊂ Xθ,

and MXθ ∼M
1−θ
X0

M θ
X1

. Then Ωθ is disjointly singular.

We observe that:

Lemma 5.5. Let X be a Köthe space. Then MX ∼MXU

Proof. Since X ⊂ XU it is clear that MX ≤ MXU
. Given n, pick uk = [uki ] ∈ XU for

1 ≤ k ≤ n, disjointly supported so that MXU
(n) ∼ ‖u1 + · · · + un‖ (we can freely assume

that all uki are norm one elements). Since ut and us are disjointly supported this means
that the set of all i so that usi and uti are disjointly supported belongs to U. And the
same for the set A of all i so that all {uki , 1 ≤ i ≤ n} are disjointly supported. Since
B = {j : ‖u1(j) + · · ·+ un(j)‖ ≥MXU

(n)− ε} ∈ U, also A∩B ∈ U. Thus, for any i ∈ A∩B
we have MXU

(n)− ε ≤ ‖u1(i) + · · ·+ un(i)‖ ≤MX(n). �

In the case of Köthe spaces, complex interpolation is actually simple factorization. Recall
that given two Köthe function spaces Y,Z we define the space

Y Z = {yz : y ∈ Y, z ∈ Z}

endowed with the quasi-norm ‖x‖ = inf ‖y‖Y ‖z‖Z where the infimum is taken on all factor-
izations as above. Now, assuming that one of the spaces X0, X1 has the Radon-Nikodym
property, the Lozanovskii decomposition formula allows us to show (see [24, Theorem 4.6])

that the complex interpolation space Xθ is isometric to the space X1−θ
0 Xθ

1 , with

‖x‖θ = inf{‖y‖1−θ0 ‖z‖θ1 : y ∈ X0, z ∈ X1, |x| = |y|1−θ|z|θ}.

If a0(x), a1(x) is an (1 + ε)-optimal Lozanovskii decomposition for x then it is standard (see
[10]) that

(1) Ωθ(x) = x log
|a1(x)|
|a0(x)|

.

Lemma 5.6. Let (X0, X1) be a couple of Köthe function spaces with non trivial concavity.
Let U be an ultrafilter on N then (Xθ)U = ((X0)U, (X1)U)θ and (Ωθ)U = (ΩU)θ.
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Proof. According to [33], given an interpolation couple (A,B) of Köthe spaces with non-
trivial concavity their ultrapowers (AU, BU) form an interpolation couple. The point now is

to show that (X1−θ
0 Xθ

1 )U = (X0)1−θ
U (X1)θU. Indeed, given [xi] ∈ (X1−θ

0 Xθ
1 )U pick an almost

optimal factorization xi = yizi and then [xi] = [yi][zi] is an almost optimal factorization.

Conversely, if x ∈ (X0)1−θ
U (X1)θU and set x = [yi][zi] an almost optimal factorization then

of course that xi = yizi is not an almost optimal factorization for xi, but it is so when the
indices i belong to a certain element of U, and thus [xi] ∈ (Xθ)U. The assertion about the
induced centralizer follows from this. �

To apply the general criteria proved in [10] (see below) we need to analyze the estimate
MW associated to any subspace W generated by a sequence of disjoint vectors of (Xθ)U. As
a rule, it is false that the ultrapower of the interpolated space is the interpolated between
ultrapowers. To overcome this we concentrate first on the test case in which Xθ is an Lp(µ)-

space. In this situation MW (n) ∼ n1/p for all subspaces W of (Xθ)U generated by disjointly
supported vectors, and from Proposition 5.4 we deduce:

Proposition 5.7. Let (X0, X1) be an interpolation couple of two Köthe function spaces and
let 0 < θ < 1 so that Xθ is an Lp(µ)-space. If

(2) lim sup

(∣∣∣∣log
MX0(n)

MX1(n)

∣∣∣∣ n1/p

MX0(n)1−θMX1(n)θ

)
= +∞,

then the induced centralizer Ωθ on Xθ is super disjointly singular

Proof. Thanks to Lemma 5.5 we observe that the hypotheses and Proposition 5.4 imply that
the centralizer (ΩU)θ is disjointly singular. By Lemma 5.6 we conclude that Ωθ is super
disjointly singular. �

This provides the second proof that the Kalton-Peck centralizer is super disjointly singular
on Lp-spaces. In the case of Köthe spaces on a discrete measure space (i.e. the unconditional
basis case), as a consequence of the fact that (disjoint) singularity and ”block” singularity
are equivalent, the conclusion of Proposition 5.7 still holds if one replaces the parameter MX

by the parameter M s
X , where the supremum is over successive vectors instead of disjointly

supported. Therefore:

• If S denotes the Schlumprecht space then (S, S∗)1/2 = `2 then the associated cen-
tralizer is super disjointly singular. Since these are Köthe sequence spaces, it is also
singular. This follows from the estimates M s

S (n) = n and M s
S∗(n) ∼ log2(n).

• Let Lp0,p1 , Lp1,q1 be Lorentz function spaces. Then, (Lp0,p1 , Lp1,q1)θ = Lp,q as in
Section 4.1 and the associated centralizer is singular when q0 6= q1 and super disjointly
singular when min{p0, p1} 6= min{p1, q1} as it follows from the estimate MLp,q(n) =

n
1

min{p,q} . Observe that in this case we require a variation of Proposition 5.7: it is
not true now that “Xθ is an Lp(µ)-space”; rather “Xθ is an Lp,q(µ)-space” and thus
their subspaces generated by disjointly supported vectors are `p,q, whose parameters
are the same as those of Lp,q.

Although it is easy to believe that disjoint singularity implies super disjoint singularity, it
is not so:

Proposition 5.8. There are singular centralizers on `2 that are not super disjointly singular.
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Proof. Let 1 ≤ p1 < p0 ≤ ∞ and 0 < θ < 1. For p−1 = (1 − θ)p−1
1 + θp−1

0 . It follows from
[12, Theorem 3.4] that (`p0(

⊕
`n2 ), `p1(

⊕
`n2 ))θ = `p(

⊕
`k2) with associated centralizer

Ω(x) =

((
p

p1
− p

p0

)
log

(
‖xk‖2
‖x‖

)
xk
)
k

.

The map Ω is not super disjointly singular since Ω(x) = 0 for every x ∈ `k2 and every k ∈ N.
Let us take p = 2 at θ = 1/2, and denote by Ω the respective centralizer on the Hilbert
space. We show that Ω is singular. Suppose that Ω is trivial on an infinite dimensional
subspace W ⊆ `2(

⊕
`n2 ). By a perturbation argument (see [9, Lemma 5.6]) we may assume

that W = [yn] for a normalized successive vectors with respect to the natural FDD. For
every n ∈ N, we write yn =

∑
j∈Jn ynj , where each ynj belongs to a summand and they are

successive. Hence for a norm one vector
∑

n αnyn (i.e. when (αn) ∈ `2)

Ω

(∑
n

αnyn

)
= Ω

∑
n

∑
j∈Jn

αnynj


= c

∑
n

∑
j∈Jn

log(‖αnynj‖2)αnynj

= c
∑
n

αn log(|αn|)yn + c
∑
n

∑
j∈Jn

αn log(‖ynj‖2)ynj .

The right-hand side is a linear map on W and then trivial. Since we are considering the
`2-sum of the vectors (yn), the first summand is just the Kalton-Peck map defined on (yn)
instead of the canonical basis. Hence the left-hand side is not trivial, and so the sum above.
We then get a contradiction by assuming Ω trivial on W . �

Remark 5.9. Also for p1 < p0 < 2 and 0 < θ < 1 the centralizer Ω of Proposition 5.8 is
disjointly singular by Proposition 5.4

A few more precise estimates can be presented. Observe first that given a centralizer
Ω : K y K on a Köthe function space then for n disjoint vectors (ui)

n
i=1 in the unit sphere

one has ∥∥∥∥∥Ω(

n∑
i=1

ui)−
n∑
i=1

Ω(ui)

∥∥∥∥∥ ≤ ‖Ω|[u1,...,un] − L‖

∥∥∥∥∥
n∑
i=1

ui

∥∥∥∥∥
for any linear map L : [un]→ K. Let us invoke now the estimate [10, Proposition 5.1]: given
two Köthe spaces (X0, X1) (on the same base space), fixing 0 < θ < 1 and considering Ωθ

the induced centralizer on Xθ = X1−θ
0 Xθ

1 then∥∥∥∥∥Ωθ

( n∑
i=1

ui
)
−

n∑
i=1

Ωθ(ui)− log
MX0(n)

MX1(n)

( n∑
i=1

ui

)∥∥∥∥∥ ≤ 3
MXθ(n)

max{θ, 1− θ}
.

Therefore, in the same conditions as above, we get∣∣∣∣log
MX0(n)

MX1(n)

∣∣∣∣
∥∥∥∥∥

n∑
i=1

ui

∥∥∥∥∥ ≤ ‖(Ωθ)|[u1,...,un] − L‖

∥∥∥∥∥
n∑
i=1

ui

∥∥∥∥∥+ 3
MXθ(n)

max{θ, 1− θ}
.

Let us define a new parameter

mK(n) = inf{‖x1 + . . .+ xn‖ : x1, . . . , xn disjoint in the unit sphere of K}.
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We obtain ∣∣∣∣log
MX0(n)

MX1(n)

∣∣∣∣mXθ(n) ≤
∥∥(Ωθ)|[u1,...,un] − L

∥∥MXθ(n) + 3
MXθ(n)

max{θ, 1− θ}
.

Since this holds for all disjoint vectors u1, . . . , un in the sphere, we deduce∣∣∣∣log
MX0(n)

MX1(n)

∣∣∣∣mXθ(n) ≤ ψΩθ(n)MXθ(n) + 3
MXθ(n)

max{θ, 1− θ}
,

which yields ∣∣∣∣log
MX0(n)

MX1(n)

∣∣∣∣ mXθ(n)

MXθ(n)
− 3

max{θ, 1− θ}
≤ ψΩθ(n).

Observe that mK(n)MK∗(n) ≥ n for every Köthe function space. In particular:

• For Ω1/2 the centralizer obtained on `2 = (S,S∗)1/2 when S is the Schreier space, one
gets

|log n− log log n| − 6 ≤ ψΩ1/2
(n)

which shows that also the centralizers Ω1/2 are super-disjointly singular.
• In general, under a few minimal conditions on a Köthe function space K with base

space S one has (K,K∗)1/2 = L2(S) (see [10, Proposition 6.2]), and thus if MK and
MK∗ are not equivalent then the induced centralizer on L2(S) is super disjointly
singular.
• For Kp the Kalton-Peck map on Lp obtained from X0 = L1, X1 = L∞ and θ = 1/p∗

one gets

log n− 3

min{θ, 1− θ}
≤ ψKp(n)

which, as promised, shows again that Kp is super disjointly singular.
• Assume more generally that p > 1 and K is a p-convex Köthe space with base space
S. Then K = (L∞(S),Kp)1/p, where Kp denotes the p-concavification of K, and [10,
Proposition 3.7], this induces as centralizer the map pK, where K(f) = f log(|f |/‖f‖)
is the Kalton-Peck map on K. Since MKp(n) = MK(n)p, we obtain the following
criteria for the super DSS property of Kalton-Peck map:

| logMK(n)|mK(n)

MK(n)
− 3/p

max{1/p, 1/p′}
≤ ψK(n)

• If for example S(p) is the p-convexification of Schreier space then since MS(p)(n) =

MS(n)1/p = n1/p and ms
S(p)(n) = mS(n)1/p = (n/ log n)1/p we obtain

1

p
| log n|1/p′ − 3/p

max{1/p, 1/p′}
≤ ψK(n)

and deduce that Kalton-Peck map is super disjointly singular on S(p).
• The same estimates hold, in the case of Köthe sequence spaces, using the successive

vectors versions M s
X(n), ms

X(n) and ψsX(n) of the parameters and of the modu-

lus. So for example, if S(p) is the p-convexification of Schlumprecht space then since
M s

S(p)(n) = n1/p and ms
S(p)(n) = (n/ log n)1/p we also obtain

1

p
| log n|1/p′ − 3/p

max 1/p, 1/p′
≤ ψsK(n)

and deduce that Kalton-Peck map is ”super successively singular”, therefore disjointly
singular, hence singular on S(p).
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[35] J. Suárez de la Fuente, The Kalton-Peck centralizer on Lp[0, 1] is not strictly singular, Proc. Amer. Math.
Soc., 141 (2013) 3447 – 3451
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Paulo, rua do Matão 1010, 05508-090 São Paulo SP, Brazil, and Equipe d’Analyse Fonctionnelle,
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