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Abstract Given two balanced compact subsets K and L of two Banach spaces X and Y
respectively such that every continuous m-homogeneous polynomial on X∗∗ and on Y ∗∗ is
approximable, for allm ∈ N, we characterize when the algebras of holomorphic germsH(K )

and H(L) are topologically algebra isomorphic. This happens if and only if the polynomial
hulls of K and L on their respective biduals are biholomorphically equivalent.
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1 Introduction

In 1932, Banach [4] proved that two compact metric spaces K and L are homeomorphic
if and only if the Banach spaces C(K ) and C(L) are isometrically isomorphic. Stone [16]
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generalized this result to arbitrary compact Hausdorff topological spaces, the well-known
Banach-Stone theorem. This result found a large number of extensions, generalizations and
variants in many different contexts, and some of them can be found in [12].

Recently, Carando andMuro [7] studied this theorem for the case of holomorphic functions
of bounded typeHb(U ), when every m-homogeneous polynomial on the bidual of one of the
spaces involved is approximable (see below for the definition). More precisely, they proved
that if the algebras Hb(U ) and Hb(V ), for U and V balanced open subsets of some Banach
spaces X and Y respectively, are algebra isomorphic then their dual spaces X∗ and Y ∗ are
isomorphic, the converse being true when the domains are the whole spaces, generalizing
a result of [6]. This is a Banach-Stone type theorem for holomorphic functions of bounded
type.

In [19], Vieira proved another Banach-Stone theorem for the algebras of holomorphic
functions Hb(U ) and Hb(V ). This result holds whenever U and V are balanced and m-
polynomially convex subsets (see definition below) of reflexive Banach spaces X and Y ,
respectively, for which all continuous m-polynomials are approximable (for all m).

Other algebras of holomorphic functions are studied by Vieira in [18,20].
Also, in [19] is obtained the same result for the algebras of holomorphic germs H(K )

and H(L), where K and L are balanced and m-polynomially convex compact subsets of
reflexive Banach spaces X and Y , respectively, such that every continuous m-homogeneous
polynomial on X and on Y is approximable, for all m ∈ N. In this paper we give a full
characterization of those algebra isomorphisms.

The result in [19] concerningH(K ) andH(L) rest on the characterizations of homomor-
phisms between Hb(U ) and Hb(V ) obtained in [19].

To obtain the result for nonreflexive Banach spaces we use new characterizations of
homomorphisms between Hb(U ) and Hb(V ) obtained in [7].

We refer to [11] or [15] for background information on infinite dimensional complex
analysis.

2 Preliminaires

Throughout this paper X and Y will always denote complex Banach spaces. We denote by
X∗∗ the bidual of X , and JX : X −→ X∗∗ denotes the canonical inclusion. We also denote
by BX the open unit ball of X and, for a given x ∈ X , r > 0, BX (x, r) denotes the open
ball of radius r centered at x . Let P(X) denote the normed space of all continuous complex
polynomials P : X −→ C, endowed with the norm ‖P‖ = sup{|P(x)| : ‖x‖ ≤ 1}. For
each m ∈ N, P(m X) denotes the subspace of P(X) of all m-homogeneous polynomials, and
P f (

m X) denotes the subspace ofP(m X) of allm-homogeneus polynomials of finite type, i. e.
finite linear combinations of products of m continuous linear functionals on X . We recall that
an m-homogeneous continuous polynomial on a Banach space X is called approximable if
it is in the norm-closure of P f (

m X).
Let U be an open subset of a Banach space X . We say that a set A ⊂ U is U -bounded

if A is bounded and there exists ε > 0 such that A + B(0, ε) ⊂ U . Every open set U
admits a fundamental sequence of U -bounded sets, (A j ) j∈N, such that each U -bounded set
is contained in some A j . For example, we can take A j = {x ∈ X : ‖x‖ ≤ j , d(x, X\U ) ≥
1
j }.
We will denote by Hb(U ) the algebra of all holomorphic functions f : U −→ C which

are bounded on every U -bounded set. Such functions are called holomorphic functions of
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bounded type. We denote by τb the topology on Hb(U ) of the uniform convergence on all
U -bounded sets. Then (Hb(U ), τb) is a Fréchet algebra.

Let A ⊂ X be a bounded set. We define

̂A′′
P(X) :=

{

z ∈ X∗∗ : |AB(P)(z)| ≤ sup
A

|P|, for all P ∈ P(X)
}

,

where AB(P) denotes de Aron-Berner extension of P , see [2]. We also denote ̂AP(X) =
̂A′′
P(X) ∩ X .

A compact subset K of a Banach space X is called polynomially convex if ̂KP(X) = K .
Changing P(X) to P(m X) then it is said m-polynomially convex.

If U is an open subset of X , let (An)n∈N be a fundamental sequence of U -bounded sets.
Then we define

̂U ′′
P(X) :=

⋃

n∈N
(̂An)′′P(X).

In [7], it is shown that ̂U ′′
P(X) is an open subset of X∗∗. Moreover, the following extension

result is proved.

Theorem 1 [7, Proposition 3.3] Let U be a bounded and balanced open subset of a symmet-
rically regular Banach space X. Then there exists an AB-extension operator from Hb(U ) to
Hb(̂U ′′

P(X)).

By an AB-extension operator we mean a continuous homomorphism such that, for every
x ∈ U , there exists r > 0 such that AB( f ) coincides with the Aron-Berner extension of f on
BX∗∗(JX (x), r). A Banach space X is said to be (symmetrically) regular if every continuous
(symmetric) linear mapping T : X → X∗ is weakly compact. Recall that T is symmetric if
< T x, y >=< x, T y > for all x, y ∈ X .

In the next proposition we present some properties of the set ̂K ′′
P(X), when K is a compact

subset of a Banach space X .

Proposition 1 Let X be a Banach space, let K ⊂ X be a compact set and let Uk = K + 1
k BX ,

for all k ∈ N. Then

1. JX
(

̂KP(X)

) = ̂K ′′
P(X)

2. ̂K ′′
P(X) is a compact subset of

(

̂Uk
)′′
P(X)

3. ̂K ′′
P(X) = ⋂

k∈N
(

̂Uk
)′′
P(X)

.

Proof 1. By the Hahn-Banach theorem, it follows that ̂K ′′
P(X) ⊂ �

w∗
(K ), where � denotes

the absolutely convex hull andw∗ is theweak-star topologyw(X∗∗, X∗). So if z ∈ ̂K ′′
P(X),

then there exists a net (xα) ⊂ �(K ) such that xα
w∗−→ z. But since�(K ) is norm-compact,

there exists x ∈ X and a subnet (xβ) such that xβ
‖·‖−→ x . Then it follows that z = JX (x).

The other inclusion is obvious.
2. Since K is compact, it follows by [15, Proposition 11.1] that ̂KP(X) is compact. Then

the assertion follows by the previous item.
3. Recall that Uk = K + 1

k BX . Since ̂K ′′
P(X) ⊂ (̂Uk)

′′
P(X), for all k ∈ N, it follows that

̂K ′′
P(X) ⊂ ⋂

k∈N
(

̂Uk
)′′
P(X)

. To show the opposite inclusion, let us fix P ∈ P(X) and
denote by c = supK |P| and by ck = supUk

|P|. Observe that (ck)k∈N is a bounded
decreasing sequence. We will show that c = limk→∞ ck . Given ε > 0, since P is
uniformly continuous on K , there exists k ∈ N such that if ‖x − y‖ < 1

k then |P(x) −



226 D. García et al.

P(y)| < ε. So, let x ∈ K and xk ∈ BX (0, 1
k ). Then y = x + xk ∈ Uk and ‖x − y‖ < 1

k
hence |P(y)| < |P(x)| + ε. This shows that c ≥ infk∈N ck = limk→∞ ck . The other
inequality is obvious. Now let z ∈ ⋂

k∈N
(

̂Uk
)′′
P(X)

. Then |AB(P)(z)| ≤ ck , for all k ∈ N,

which implies that |AB(P)(z)| ≤ c = supK |P|, and then z ∈ ̂K ′′
P(X). �


We thank Daniel Carando for pointing out item (1) of the previous proposition.
Let X be a Banach space, and K ⊂ X a compact set. We define the algebra

h(K ) =
⋃

{H(U ) : U ⊃ K is open in X}.
Let f1, f2 ∈ h(K ) and U1, U2 be open subsets of X with K ⊂ U1 and K ⊂ U2, such that
f1 ∈ H(U1) and f2 ∈ H(U2). We say that f1 and f2 are equivalent (and we write f1 ∼ f2)
if there is an open set W ⊆ X with K ⊂ W ⊆ U1 ∩ U2 such that f1 = f2 on W . Then ∼ is
an equivalence relation in h(K ) and we denote H(K ) = h(K )/ ∼. The elements of H(K )

are called holomorphic germs. Finally, we endow H(K ) with the locally convex inductive
topology of the locally convex algebras (H(U ), τω), where U varies among the open subsets
of X such that K ⊂ U , and we denote

(H(K ), τω) = lim−→U⊃K (H(U ), τω).

It has been proved [14, Theorem 7.1] that H(K ) is a locally m-convex topological algebra.
We recall that a topological algebra is called locally m-convex if there exists a basis for the
neighborhoods of the origin consisting of convex sets with V 2 ⊂ V .

Let Un = K + 1
n BX , for all n ∈ N. Then

(H(K ), τω) = lim−→n∈NHb(Un). (1)

Actually we are going to use (1) as definition of τω.
We will denote by in the canonical inclusion in : Hb(Un) ↪→ H(K ), for each n ∈ N. [ f ]

will denote the elements of the algebra H(K ), i.e., [ f ] ∈ H(K ) if and only if there exists
n ∈ N such that f ∈ Hb(Un).

We refer to [5,11] or [14] for background information on the algebras of holomorphic
germs.

One of the keys of the main result of this paper is the following proposition.

Proposition 2 Let X be a Banach space such that every polynomial on X∗∗ is approximable,
and let K ⊂ X be a balanced compact set. Then the algebras H(K ) and H(̂K ′′

P(X)) are
topologically algebra isomorphic.

Proof Given [ f ] ∈ H(K ) there exists k ∈ N such that f ∈ Hb(Uk). Since every polynomial
on X∗∗ is approximable, then X must be symetrically regular [7]. Now consider AB( f ) ∈
Hb

(

(̂Uk)
′′
P(X)

)

, given by Theorem 1. Thenwe define T : H(K ) −→ H(

̂K ′′
P(X)

)

by T ([ f ]) =
[AB( f )]. It is not difficult to see that T is well defined, linear and injective. To show that T is
surjective, let [g] ∈ H(

̂K ′′
P(X)

)

. Then there exists k ∈ N such that g ∈ Hb
(

̂K ′′
P(X) + 1

k BX∗∗
)

.

Let l ≥ k be such that ̂K ′′
P(X) + 1

l BX∗∗ ⊂ (̂Uk)
′′
P(X). Since every polynomial on X∗∗ is

approximable, we have that g ∈ Hw∗u
(

̂K ′′
P(X) + 1

l BX∗∗
)

. For z ∈ ̂K ′′
P(X) + 1

l BX∗∗ , we can
apply Lemma 2.1 of [3] to the restriction of g to a suitable ball, to obtain that dn(g)(z) is aw∗-
continuous polynomial, for every n. By [21, Theorem 2] we can conclude that g = AB( f ),
where f = g ◦ JX |Ul .



Banach-Stone theorem for algebras of… 227

It remains to show that T is an algebra isomorphism. By the definition of T , we have that
the following diagram commutes, for all k ∈ N

H(K )
T−−−−→ H(

̂K ′′
P(X)

)

ik




⏐

⏐




⏐

⏐
jk

Hb(Uk)
AB−−−−→ Hb

((

̂Uk
)′′
P(X)

)

where ik and jk denote the canonical inclusions. Now, since AB is continuous, it follows that
T is continuous. To see that T −1 is continuous, just observe that T −1([g])=[g ◦ JX |Ul ]. �


3 Banach-Stone theorems

Let X and Y be Banach spaces, K ⊂ X and L ⊂ Y be compact sets. We say that K and L
are biholomorphically equivalent if there exist open sets U ⊂ X and V ⊂ Y with K ⊂ U
and L ⊂ V and a biholomorphic mapping ϕ : U −→ V such that ϕ(K ) = L .

We will need the next theorem, due to Grothendieck (see [13]).

Theorem 2 [13] Let F be a Hausdorff locally convex space which is the union of an increas-
ing sequence of Fréchet spaces (Fn)n∈N and assume that each inclusion in : Fn −→ F is
continuous. Let T : E −→ F be a continuous linear mapping of a Fréchet space E into
F. Then there exists n ∈ N and a continuous linear mapping Tn : E −→ Fn such that
in ◦ Tn = T .

We will denote, as before, Un = K + 1
n BX , for all n ∈ N and Vm = L + 1

m BY for all
m ∈ N. The mappings in and jm will be the canonical inclusions in : Hb(Un) ↪→ H(K ) and
jm : Hb(Vm) ↪→ H(L), for each n, m ∈ N.

Remark 3 Let X and Y be Banach spaces. Let K ⊂ X and L ⊂ Y be compact sets. Let
us observe that if given a continuous homomorphism A : H(K ) −→ H(L) and an open
set U with K ⊂ U such that we can find an open set V with L ⊂ V and a continuous
homomorphism B : Hb(U ) −→ Hb(V ) satisfying that the following diagram commutes

H(K )
A−−−−→ H(L)

i




⏐

⏐




⏐

⏐
j

Hb(U )
B−−−−→ Hb(V )

where i and j are the corresponding canonical injections, then, given any other open set W
such that L ⊂ W ⊂ V and defined ˜B( f ) := B( f )|W for f ∈ Hb(U ), where B( f )|W is the
restriction of B( f ) to W , the diagram

H(K )
A−−−−→ H(L)

i




⏐

⏐




⏐

⏐
j

Hb(U )
˜B−−−−→ Hb(W )

commutes too.

Next we present the main theorem of the article, which is a Banach-Stone type theorem
for algebras of holomorphic germs.
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Theorem 4 Let X and Y be Banach spaces such that every continuous m-homogeneous
polynomial on X∗∗ and on Y ∗∗ is approximable, for all m ∈ N. Let K ⊂ X and L ⊂ Y be
balanced compact sets. Then the following conditions are equivalent.

1. H(K ) and H(L) are topologically algebra isomorphic.
2. ̂K ′′

P(X) and ̂L ′′
P(Y ) are biholomorphically equivalent.

3. H(̂K ′′
P(X)) and H(̂L ′′

P(Y )) are topologically algebra isomorphic.

Proof (1)⇒ (2) Let T : H(K ) −→ H(L) be a topological algebra isomorphism. By
Theorem 2 ( see also [9, Theorem 3.1]), for each k ∈ N there exist mk ∈ N and a continuous
homomorphism Tk : Hb(Uk) −→ Hb(Vmk ) such that T ◦ ik = jmk ◦ Tk and actually, by
Remark 3, the sequence (mk) can be chosen to be strictly increasing. Then the following
diagram is commutative.

H(K )
T−−−−→ H(L)

ik




⏐

⏐




⏐

⏐
jmk

Hb(Uk)
Tk−−−−→ Hb(Vmk )

Since Tk ismultiplicative, it follows from [7, Lemma 4.6] that there is a holomorphicmapping
ϕk : (

V̂mk

)′′
P(Y )

−→ (

̂Uk
)′′
P(X)

such that Tk( f ) = f̄ ◦ ϕk , for all f ∈ Hb(Uk), where the

bar denotes the extension given by Theorem 1. Applying the same argument for S = T −1,
beginning with Hb(Vmk ), we find an integer nk , that again by Remark 3, it can be chosen

strictly bigger than nk−1 and a holomorphic mapping ψk : (

̂Unk

)′′
P(X)

−→ (

V̂mk

)′′
P(Y )

such
that

H(L)
S−−−−→ H(K )

jmk




⏐

⏐




⏐

⏐
ink

Hb(Vmk )
Sk−−−−→ Hb(Unk )

is commutative, where Sk : Hb(Vmk ) −→ Hb(Unk ) is such that Sk(g) = ḡ ◦ ψk , for all
g ∈ Hb(Vmk ).

Since both diagrams are commutative, it follows that ik = ink ◦ Sk ◦ Tk , for all k ∈ N.
Then for f ∈ X∗ ⊆ Hb(Uk) we have that [ f ] = [Sk(Tk( f ))], and therefore by the Identity
Principle we have the equality f = Sk(Tk( f )) on Unk . Hence f̄ = Sk(Tk( f )) on

(

̂Unk

)′′
P(X)

,

that is, f̄ = f̄ ◦ϕk ◦ψk on
(

̂Unk

)′′
P(X)

, for all f ∈ X∗. This shows that for each z ∈ (

̂Unk

)′′
P(X)

,

we have that z( f ) = (ϕk ◦ ψk)(z)( f ), for all f ∈ X∗, that is, ϕk ◦ ψk : (

̂Unk

)′′
P(X)

−→
(

̂Uk
)′′
P(X)

is the inclusion mapping.
Observe now that T ([ f ]) = [T1( f )] = [Tk( f )], for all f ∈ X∗. Since Vmk is connected,

we conclude that T1( f ) = Tk( f ) on Vmk , and then f ◦ ϕ1 = T1( f ) = Tk( f ) = f ◦ ϕk , for

all f ∈ X∗. Hence ϕ1 = ϕk on
(

V̂mk

)′′
P(Y )

. By the same arguments we prove that ψ1 = ψk

on each
(

̂Unk

)′′
P(X)

.

Next we are going to show that ϕ1(̂L ′′
P(Y )) ⊂ ̂K ′′

P(X). By Proposition 1(2), we have that
̂L ′′
P(Y ) ⊂ (

V̂mk

)′′
P(Y )

and henceϕ1(̂L ′′
P(Y )) ⊂ ϕ1(

(

V̂mk

)′′
P(Y )

) = ϕk(
(

V̂mk

)′′
P(Y )

) ⊂ (

̂Uk
)′′
P(X)

,

for all k ∈ N. Then it follows that ϕ1(̂L ′′
P(Y )) ⊂ ⋂

k∈N
(

̂Uk
)′′
P(X)

= ̂K ′′
P(X), where the last
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equality follows by Proposition 1(3). And by the same arguments we show thatψ1(̂K ′′
P(X)) ⊂

̂L ′′
P(Y ).

If we set V = ϕ−1
n1

(

(̂Un1)
′′
P(X)

)

, U = ψ−1
1

(

(V̂mn1
)′′P(Y )

)

, ϕ = ϕn1 |V : V −→ U and
ψ = ψ1|U : U −→ V , then we have that ϕ and ψ are bijective holomorphic functions such
that ϕ−1 = ψ , and ϕ(̂L ′′

P(Y )) = ̂K ′′
P(X).

(2)⇒ (3) Since the compact sets ̂K ′′
P(X) and ̂L ′′

P(Y ) are biholomorphically equivalent,

by the same arguments of [18, Theorem 16], we can show that the algebras H(

̂K ′′
P(X)

)

and

H(̂L ′′
P(Y )) are topologically isomorphic.

(3)⇒ (1) Follows by Proposition 2. �

By using the notion of polynomially convex we can state the following corollary.

Corollary 1 Let X and Y be reflexive Banach spaces such that every continuous m-
homogeneous polynomial on these spaces is approximable, for all m ∈ N, and let K ⊂ X and
L ⊂ Y be balanced and polynomially convex compact sets. Then the following conditions
are equivalent.

1. The algebras H(K ) and H(L) are topologically isomorphic.
2. The compact sets K and L are biholomorphically equivalent.

Corollary 1 is a generalization of Theorem 3.8 of [19].
Finally we are going to give examples of Banach spaces satisfying conditions of Theorem

4.

Examples 5 1. In [17], Tsirelson constructed a reflexive Banach space X , with an uncon-
ditional Schauder basis, that does not contain any subspace which is isomorphic to c0 or
to any �p , 1 ≤ p ≤ ∞. R. Alencar, R. Aron and S. Dineen proved in [1] that P f (

m X) is
norm-dense in P(m X), for all m ∈ N. This space is known as Tsirelson space.

2. In [8], Casazza et al. constructed a nonreflexive Banach space X that does not contain
any subspace which is isomorphic to c0 or to any �p , (see also [11, Example 2.43]).
This space is known as Tsirelson-James space. In [10, Lemma 19], it is shown that every
continuous m-homogeneous polynomial on X∗∗ is approximable.

The Tsirelson space, Examples 5(1), is the main example of a space satisfying conditions
of Corollary 1. We see that Theorem 4 improves [19, Theorem 3.8] not only in the geometric
aspect of the compact set K , but is valid for a greater class of Banach spaces, as Examples 5
shows.
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