Abstract
There is a large number of user reviews on the internet with valuable information on services, products, politics and trends. There is both scientific and economic interest in the automatic understanding of such data. Sentiment classification is concerned with automatic extraction of opinions expressed in user reviews. Unlike standard text categorization tasks that deal with the classification of documents into subjects such as sports, economics and tourism, sentiment classification attempts to tag documents with respect to the feelings they express. Compared to the accuracy of standard methods, sentiment classifiers have shown poor performance. One possible cause of such a poor performance is the lack of adequate representations that lead to opinion discrimination in a concise and machine-readable form. Topic Models are statistical models concerned with the extraction of semantic information hidden in the large number of data available in text collections. They represent a document as a mixture of topics, probability distributions over words that represent a semantic concept. According to Topic Model representation, words can be substituted by topics able to represent concisely its meaning. Indeed, Topic Models perform a data dimensionality reduction that can improve the performance of text classification and information retrieval techniques. In sentiment classification, they can provide the necessary representation by extracting topics that represent the general feelings expressed in text. This work presents a study of the use of Topic Models for representing and classifying user reviews with respect to their feelings. In particular, the Latent Dirichlet Allocation (LDA) model and four extensions (two of them developed by the author) are evaluated on the task of aspect-based sentiment classification. The extensions to the LDA model enables us to investigate the effects of the incorporation of additional information such as context, aspect rating and multiple aspect rating into the original model.
Type