Probabilistic Logic Programming under the L-Stable Semantics

Denis D. Mauá¹ Fabio G. Cozman² Alexandro Garces³

¹Institute of Mathematics and Statistics University of São Paulo

> ²Escola Politécnica University of São Paulo

> > ³MIT

22nd International Workshop on Nonmonotonic Reasoning - Nov 2nd, 2024

- 1. Motivation
- 2. L-Stable Semantics
- 3. Probabilistic Answer Set Programming
- 4. New Complexity Results
- 5. Inference

Motivation: Inconsistencies in Probabilistic Logic Program

- Probabilistic Answer Set Program (PASP) eases the specification of intricate discrete statistical models involving relations, logical constraints, context-specific indepedence
- Interesting approach for Neurosymbolic Reasoning (probabilities are output of neural concept learners)
- Most semantics require consistency (no world is inconsistent)
- Knowledge base construction often produces inconsistencies (multiple experts, learned rules, unwanted worlds, etc)
- L-Stable Semantics gracefully handles inconsistencies while preserving essence of Distribution Semantics (Independent Probabilistic Facts + Logical Rules)
- ▶ This Work: Complexity and Inference for PASP under L-Stable semantics

Answer Set Programming

An answer set program is a finite set of extended disjunctive rules:

head1; head2; ...; headM :- pbody1, ..., pbodyN, not nbody1, ..., not nbodyO.

- rule is a fact if body is empty
- program is normal if very rule has one atom in head
- we disallow integrity constraints (i.e., empty head rules)

Example: 3-coloring

```
\label{eq:states} \begin{array}{l} \% = \textit{FACTS} \\ \texttt{node(1). node(2). node(3). node(4). edge(1,2). edge(2,3). edge(3,4). edge(1,4). edge(1,3). \\ \% = \textit{NORMAL RULE} \\ \texttt{conflict}(X,Y) \coloneqq \texttt{not conflict}(X,Y), edge(X,Y), \texttt{color}(X,C), \texttt{color}(Y,C). \\ \% = \textit{DISJUNCTIVE RULE} \\ \texttt{color}(X,\texttt{red}); \texttt{color}(X,\texttt{blue}); \texttt{color}(X,\texttt{green}) \coloneqq \texttt{node}(X). \end{array}
```

L-Stable Semantics For Propositional Programs

- Interpretation assigns true/false/undefined to each atom (total if no undefined atom)
- Rule is satisfied if body is false, if body and head are true, or if body and head are undefined
- A model satisfies all rules
- Partial stable model if minimal model of program reduct (replace false/true/undefined literals in bodies with false/true/undefined)
- Partial stable model is least undefined (L-Stable) if there is no partial stable model defining more atoms

a; b.

a :- not a.

b :- not b.

id	I(a), I(b)	$P/I - \{a; b\}$	MinModels(P/I)
1	(false, false)	$a \leftarrow true. \ b \leftarrow true.$	(true, true)
2	(false, undef)	$a \leftarrow true. \ b \leftarrow undef.$	(true, undef)
3	(false, true)	$a \leftarrow true. \ b \leftarrow false.$	(true, false)
4	(undef, false)	$a \leftarrow undef. \ b \leftarrow true.$	(undef, true)
5	(undef, undef)	$a \leftarrow undef. b \leftarrow undef.$	(true, undef), (undef, true)
6	(undef, true)	$a \leftarrow undef. \ b \leftarrow false.$	(true, false), (undef, true)
7	(true, false)	$a \leftarrow false. \ b \leftarrow true.$	(false, true)
8	(true, undef)	$a \leftarrow false. \ b \leftarrow undef.$	(true, undef), (false, true)
9	(true, true)	$a \leftarrow false. \ b \leftarrow false.$	(true, false), (false, true)

Distribution Semantics [Dantsin 1990, Poole 1993, Fur 1995, Sato 1995]

- Probabilistic Choices: Collection of fully independent categorical RV's
- Each realization generates an ASP program

Distribution Semantics [Dantsin 1990, Poole 1993, Fur 1995, Sato 1995]

- Probabilistic Choices: Collection of fully independent categorical RV's
- Each realization generates an ASP program

Random graph example: probabilistic program

node(1). node(2). node(3). 0.5::edge(1,2). 0.5::edge(2,3).

generates four programs, with probability $0.5 \times 0.5 = 0.25$ each:

node(1). node(2). node(3).

node(1). node(2). node(3). edge(2,3).

node(1). node(2). node(3). edge(1,2).

node(1). node(2). node(3). edge(1,2). edge(2,3).

Probabilistic Answer Set Programming Under L-Stable Semantics

Example: 2-colorability of random graph

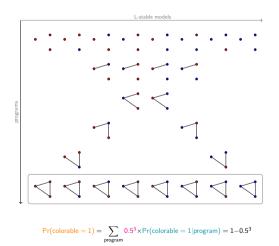
% graph has 3 nodes... node(1). node(2). node(3).

% and random edges. 0.5::edge(X,Y) :- node(X), node(Y), X < Y.

% color each node either red or blue color(X,red); color(X,blue) :- node(X).

% such that no two endpoints have same color conflict(X,Y) :- edge(X,Y), color(X,C), color(Y,C).

% graph is colorable iff no conflict conflict :- not conflict, conflict(X,Y). colorable :- not conflict.



Probabilistic Answer Set Programming: Probabilistic Semantics

$$\boxed{\mathsf{Pr}(\mathsf{atom}) = \sum_{\mathsf{program}} \frac{\mathsf{Pr}(\mathsf{program})}{\sum_{\substack{\mathsf{Distribution}\\\mathsf{Semantics}}} \sum_{\mathsf{model}\models\mathsf{atom}} \mathsf{Pr}(\mathsf{model}\mid\mathsf{program})}$$

Probabilistic Answer Set Programming: Probabilistic Semantics

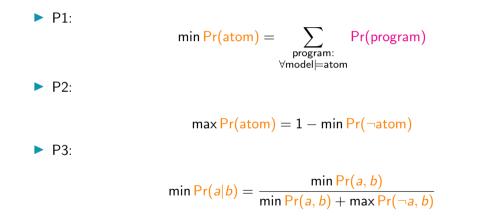
$$Pr(atom) = \sum_{program} \frac{Pr(program)}{\underset{Semantics}{\text{Distribution}}} \sum_{model \models atom} Pr(model \mid program)$$

Stratified: each induced program has exactly one model
 Pr(model | program) = 1

Consistent: induced programs have 1 or more models

- <u>Credal Semantics</u>: consider the credal set of all distributions Pr(model | program)
- ▶ <u>MaxEnt</u>: consider uniform Pr(model | program) = 1/#models(program)
- Plingo/LP^{MLN}: Renormalize over consistent programs

Credal Semantics: Properties



	С	$\Pr(\operatorname{program}(C))$	$LSModels(program(\mathcal{C}))$	
1	Ø	0.63	(false, false, undef, true), (false, false, true, undef)	
2	а	0.07	(true, false, true, undef)	
3	Ь	0.27	(false, true, undef, true)	
4	a, b	0.03	(true, true, true, true)	

- Credal Semantics yields $Pr(c) \in [0.1, 0.73]$
- MaxEnt Semantics yields Pr(c) = 0.415
- Both semantics assign Pr(not c) = 0

Inference Complexity under Stable Semantics

Credal Semantics: min Pr(atom|evidence)

- ▶ $PP^{\Sigma_2^{\rho}}$ -hard for propositional programs with disjunction and negation/aggregates
- PP^{NP}-hard for disjunction-free, aggregate-free propositional programs
- PP-hard for stratified propositional programs
- One step higher in Counting Hierarchy for relational programas with bounded-arity predicates (e.g., PP^{Σ^p₃}-hard for disjunctive programs)
- EXPTIME if predicate arity is unbounded
- MaxEnt Semantics: Pr(atom|evidence)
 - PP-hard, from stratified programs

Theorem (Mauá & Cozman, 2020)

If consistency in some logic programming language belongs to complexity class C, then probabilistic inference under the credal semantics in the corresponding probabilistic logic programming language belongs to PP^C.

 Consistency in propositional normal programs is Σ^p₂-complete [Eiter, Leone & Saccà 1998]

• Consistency in propositional disjunctive programs is Σ_3^p -complete [ELS 98]

Theorem

Deciding if there is an L-stable model satisfying a given atom for a normal program with bounded-arity predicates is Σ_3^p -hard.

Proof. Reduction from 3-QBF with least undefinedness encoding boolean quantifier. $\exists X_1, \dots, X_m \forall X_{m+1}, \dots, X_n \exists X_{n+1}, \dots, X_p \phi(X_1, \dots, X_p),$

Theorem

Deciding if there is an L-stable model satisfying a given atom for a disjunctive program with bounded-arity predicates is Σ_4^p -hard.

Proof. Reduction from 4-QBF using saturation and least undefinedness.

Contributions: Complexity under Credal L-Stable Semantics

Corollary

Probabilistic inference in propositional disjunctive programs under the credal L-stable semantics predicates is $PP_{3}^{\Sigma_{3}^{p}}$ -complete.

Corollary

Probabilistic inference in normal probabilistic programs with bounded-arity predicates under the credal L-stable semantics is $PP^{\Sigma_3^p}$ -complete.

Corollary

Probabilistic inference in disjunctive probabilistic programs with bounded-arity predicates under the credal L-stable semantics is $PP^{\Sigma_4^{\rho}}$ -complete.

Contributions: Complexity under MaxEnt L-Stable Semantics

- Theorem of Mauá & Cozman 2021 doesn't apply for MaxEnt semantics (AFIK)
- Hence need of more direct proof
- Lack of inner decision problem makes result challenging

Contributions: Complexity under MaxEnt L-Stable Semantics

Theorem of Mauá & Cozman 2021 doesn't apply for MaxEnt semantics (AFIK)

- Hence need of more direct proof
- Lack of inner decision problem makes result challenging

Theorem

Deciding whether the probability of an atom exceeds a given threshold under the MaxEnt semantics for propositional disjunctive programs is PP-complete when the L-stable models of any induced logic program are efficiently enumerated.

Proof. Hardness follows from stratified programs. Membership: Use no. of models to build Turing machine.

Theorem

Deciding if the probability of an atom exceeds a given threshold under the MaxEnt semantics for disjunctive programs with bounded-arity predicates is in PP^{PP}.

Proof. Build Turing machine and count with precision proportional to input size. Use integer gap to decide.

Theorem

Deciding if the probability of an atom exceeds a given threshold under the MaxEnt semantics for propositional normal programs is PP^{NP}-hard, even if all atoms are defined.

Proof. Reduction from MAJ-E-SAT using integer gap in count to decide E-SAT part.

Probabilistic Inference under the L-Stable Semantics

Janhunen et al. 2006's Translation from L-stable to Stable

 a ; b.
 a ; b.
 a ; b.

 a :- not a.
 a :- not _a.
 _a :- not a.

 b :- not b.
 b :- not _b.
 _b :- not b.

id	$I(a), I(\underline{a}), I(b), I(\underline{b})$ $P/I - P'$		MinModels(P/I)				
3	(false, false, true, true)	$a \leftarrow true. \underline{a} \leftarrow true. b \leftarrow false. \underline{b} \leftarrow false.$	(true, true, false, false)				
6	(false, true, true, true)	$a \leftarrow false. \underline{a} \leftarrow true. b \leftarrow false. \underline{b} \leftarrow false.$	(true, true, false, false), (false, true, true, true)				
7	(true, true, false, false)	$a \leftarrow false$. $\underline{a} \leftarrow false$. $b \leftarrow true$. $\underline{b} \leftarrow true$.	(false, false, true, true)				
8	(true, true, false, true)	$a \leftarrow false. \underline{a} \leftarrow false. b \leftarrow false. \underline{b} \leftarrow true.$	(true, true, false, true), (false, false, true, true)				
9	(true, true, true, true)	$a \leftarrow false$. $\underline{a} \leftarrow false$. $b \leftarrow false$. $\underline{b} \leftarrow false$.	(true, true, false, false), (false, false, true, true)				
Note: stom is undefined iff x and x disagree							

Note: atom is undefined iff x and \underline{x} disagree

We have implemented the inference algorithm in our comprehensive neuro-probabilistic-logic framework called dPASP:

```
http://github.com/kamel-usp/dpasp
```

Inconsistent example program:

person(1..4). 0.1::asthma(X). 0.3::stress(X). 0.3::influences(1,2). 0.6::influences(2,1). 0.2::influences(2,3). 0.7::influences(3,4). 0.9::influences(4,1). 0.6::inh_stress(X). 0.6::inh_smokes(X). smokes_pos(X) :- stress(X), not inh_stress(X). asthma(X) :- smokes(X), not inh_smokes(X). smokes_pos(X) :- influences(Y,X), smokes(Y). smokes_neg(X) :- asthma(X). smokes(X) :- smokes_pos(X), not smokes_neg(X).

Semantics	$\Pr(smokes(X) = undef)$			
	1	2	3	4
smProbLog	0.2223	0.2223	0.2223	0.2223
L-stable	0.1548	0.0828	0.0599	0.0909

- L-Stable semantics is less undefined
- Preserves independence of probabilistic choices

Probabilistic Logic Programming under the L-Stable Semantics <u>Denis</u> D. Mauá, Fabio G. Cozman and Alexandro Garces Email: ddm@ime.usp.br