Probabilistic Logic Programming under the L-Stable Semantics

Denis D. Mauá¹ Fabio G. Cozman² Alexandro Garces³

1 Institute of Mathematics and Statistics University of São Paulo

> ²Escola Politécnica University of São Paulo

> > ³MIT

22nd International Workshop on Nonmonotonic Reasoning – Nov 2nd, 2024

- 1. Motivation
- 2. L-Stable Semantics
- 3. Probabilistic Answer Set Programming
- 4. New Complexity Results
- 5. Inference

Motivation: Inconsistencies in Probabilistic Logic Program

- ▶ Probabilistic Answer Set Program (PASP) eases the specification of intricate discrete statistical models involving relations, logical constraints, context-specific indepedence
- ▶ Interesting approach for Neurosymbolic Reasoning (probabilities are output of neural concept learners)
- Most semantics require consistency (no world is inconsistent)
- ▶ Knowledge base construction often produces inconsistencies (multiple experts, learned rules, unwanted worlds, etc)
- ▶ L-Stable Semantics gracefully handles inconsistencies while preserving essence of Distribution Semantics (Independent Probabilistic Facts $+$ Logical Rules)
- This Work: Complexity and Inference for PASP under L-Stable semantics

Answer Set Programming

An answer set program is a finite set of extended disjunctive rules:

head1; head2; ...; headM :- pbody1, ..., pbodyN, not nbody1, ..., not nbodyO.

- \blacktriangleright rule is a fact if body is empty
- ▶ program is normal if very rule has one atom in head
- \triangleright we disallow integrity constraints (i.e., empty head rules)

Example: 3-coloring

 $% - FACTS$ $node(1)$. $node(2)$. $node(3)$. $node(4)$. $edge(1,2)$. $edge(2,3)$. $edge(3,4)$. $edge(1,4)$. $edge(1,3)$. % − NORMAL RULE $conflict(X,Y) - not conflict(X,Y), edge(X,Y), color(X,C), color(Y,C).$ % − DISJUNCTIVE RULE $color(X,red); color(X,blue); color(X,green) - node(X).$

L-Stable Semantics For Propositional Programs

- Interpretation assigns true/false/undefined to each atom (total if no undefined atom)
- Rule is satisfied if body is false, if body and head are true, or if body and head are undefined
- ▶ A model satisfies all rules
- ▶ Partial stable model if minimal model of program reduct (replace false/true/undefined literals in bodies with false/true/undefined)
- ▶ Partial stable model is least undefined (L-Stable) if there is no partial stable model defining more atoms

a; b.

a :- not a.

 $b - not b$.

Distribution Semantics [Dantsin 1990, Poole 1993, Fur 1995, Sato 1995]

- ▶ Probabilistic Choices: Collection of fully independent categorical RV's
- Each realization generates an ASP program

Distribution Semantics [Dantsin 1990, Poole 1993, Fur 1995, Sato 1995]

- ▶ Probabilistic Choices: Collection of fully independent categorical RV's
- Each realization generates an ASP program

Random graph example: probabilistic program

 $node(1)$. $node(2)$. $node(3)$. $0.5::edge(1,2)$. $0.5::edge(2,3)$.

generates four programs, with probability $0.5 \times 0.5 = 0.25$ each:

 $node(1) \node(2) \node(3)$. $node(3)$. $node(4) \node(2) \node(3)$. $node(2) \node(3)$. $node(3) \node(4)$. $node(5) \node(5)$. $node(6) \node(7)$. $node(8) \node(8)$. $node(9) \node(9)$. $node(1) \node(1)$. $node(2) \node(1)$. $node(3) \node(1)$. $node(1) \node(2)$. $node(3) \node(3)$. $node(4) \node(4)$. $node(5) \node(5)$. $node(6) \node($

 $node(1) \node(2) \node(3) \edge edge(2,3).$ $node(1) \node(1) \node(2) \node(3) \edge edge(1,2).$ $edge(2,3).$

Probabilistic Answer Set Programming Under L-Stable Semantics

Example: 2-colorability of random graph

% graph has 3 nodes... node(1). node(2). node(3).

% and random edges. 0.5 : $edge(X, Y)$:- node (X) , node (Y) , $X < Y$.

% color each node either red or blue $color(X,red); color(X,blue): node(X).$

% such that no two endpoints have same color $conflict(X, Y) - edge(X, Y), color(X, C), color(Y, C).$

% graph is colorable iff no conflict conflict :- not conflict, conflict (X, Y) . colorable :- not conflict.

 $Pr(\text{colorable} = 1) = \sum 0.5^3 \times Pr(\text{colorable} = 1 | \text{program}) = 1 - 0.5^3$ program

Probabilistic Answer Set Programming: Probabilistic Semantics

Probabilistic Answer Set Programming: Probabilistic Semantics

$$
\boxed{\text{Pr}(\text{atom}) = \sum_{\substack{\text{program} \\ \text{Sematics}}} \text{Pr}(\text{program}) \sum_{\substack{\text{Motribution} \\ \text{model} \models \text{atom}}} \text{Pr}(\text{model} \mid \text{program})}
$$

▶ Stratified: each induced program has exactly one model \triangleright Pr(model | program) = 1

▶ Consistent: induced programs have 1 or more models

- \triangleright Credal Semantics: consider the *credal set* of all distributions $Pr(\text{model} | \text{program})$
- \triangleright MaxEnt: consider uniform Pr(model | program) = $1/\text{\#models(program)}$

 \blacktriangleright Plingo/LP^{MLN}: Renormalize over consistent programs

Credal Semantics: Properties

 $0.1::a.$ $0.3::b.$ $c - a$. $d - b$. c ; d . c - not c . d - not d .

- ▶ Credal Semantics yields $Pr(c) \in [0.1, 0.73]$
- \blacktriangleright MaxEnt Semantics yields $Pr(c) = 0.415$

 \triangleright Both semantics assign Pr(not c) = 0

Inference Complexity under Stable Semantics

▶ Credal Semantics: min Pr(atom|evidence)

- \blacktriangleright PP^{Σ_2^{ρ}}-hard for propositional programs with disjunction and negation/aggregates
- ▶ PP^{NP}-hard for disiunction-free, aggregate-free propositional programs
- \blacktriangleright PP-hard for stratified propositional programs
- One step higher in Counting Hierarchy for relational programas with bounded-arity predicates (e.g., $PP^{\Sigma_3^p}$ -hard for disjunctive programs)
- \blacktriangleright EXPTIME if predicate arity is unbounded
- ▶ MaxEnt Semantics: Pr(atom|evidence)
	- ▶ PP-hard, from stratified programs

Theorem (Mauá & Cozman, 2020)

If consistency in some logic programming language belongs to complexity class C, then probabilistic inference under the credal semantics in the corresponding probabilistic logic programming language belongs to PPC.

▶ Consistency in propositional normal programs is Σ_2^p -complete [Eiter, Leone & Saccà 1998]

▶ Consistency in propositional disjunctive programs is Σ_3^p -complete [ELS 98]

Theorem

Deciding if there is an L-stable model satisfying a given atom for a normal program with bounded-arity predicates is Σ_3^p $\frac{p}{3}$ -hard.

Proof. Reduction from 3-QBF with least undefinedness encoding boolean quantifier. $\exists X_1, \ldots, X_m \forall X_{m+1}, \ldots, X_n \exists X_{n+1}, \ldots, X_n \phi(X_1, \ldots, X_n),$

Theorem

Deciding if there is an L-stable model satisfying a given atom for a disjunctive program with bounded-arity predicates is Σ^p_4 $_{4}^{p}$ -hard.

Proof. Reduction from 4-QBF using saturation and least undefinedness.

Corollary

Probabilistic inference in propositional disjunctive programs under the credal L-stable semantics predicates is $PP^{\sum_{3}^{p}}$ -complete.

Corollary

Probabilistic inference in normal probabilistic programs with bounded-arity predicates under the credal L-stable semantics is $PP^{\sum_{3}^{p}}$ -complete.

Corollary

Probabilistic inference in disjunctive probabilistic programs with bounded-arity predicates under the credal L-stable semantics is $PP^{\sum_{4}^{p}}$ -complete.

Contributions: Complexity under MaxEnt L-Stable Semantics

- ▶ Theorem of Mauá & Cozman 2021 doesn't apply for MaxEnt semantics (AFIK)
- ▶ Hence need of more direct proof
- ▶ Lack of inner decision problem makes result challenging

Contributions: Complexity under MaxEnt L-Stable Semantics

- ▶ Theorem of Mauá & Cozman 2021 doesn't apply for MaxEnt semantics (AFIK)
- ▶ Hence need of more direct proof
- Lack of inner decision problem makes result challenging

Theorem

Deciding whether the probability of an atom exceeds a given threshold under the MaxEnt semantics for propositional disjunctive programs is PP-complete when the L-stable models of any induced logic program are efficiently enumerated.

Proof. Hardness follows from stratified programs. Membership: Use no. of models to build Turing machine.

Theorem

Deciding if the probability of an atom exceeds a given threshold under the MaxEnt semantics for disjunctive programs with bounded-arity predicates is in PPPP.

Proof. Build Turing machine and count with precision proportional to input size. Use integer gap to decide.

Theorem

Deciding if the probability of an atom exceeds a given threshold under the MaxEnt semantics for propositional normal programs is PP^{NP}-hard, even if all atoms are defined.

Proof. Reduction from MAJ-E-SAT using integer gap in count to decide E-SAT part.

Probabilistic Inference under the L-Stable Semantics

Janhunen et al. 2006's Translation from L-stable to Stable

We have implemented the inference algorithm in our comprehensive neuro-probabilistic-logic framework called dPASP:

```
http://github.com/kamel-usp/dpasp
```
Inconsistent example program:

 $person(1..4).$ $0.1::asthma(X).$ $0.3::stress(X).$ $0.3::influences(1,2).$ $0.6::influences(2,1).$ 0.2 ::influences $(2,3)$. 0.7 ::influences $(3,4)$. $0.9:$: influences $(4,1)$. 0.6 :: $inh_stress(X)$. 0.6 : $inh_smokes(X)$. $smokes_pos(X) - stress(X)$, not inh stress (X) . $asthma(X) - smokes(X), not inh-smokes(X).$ $smokes_pos(X) - influences(Y,X)$, $smokes(Y)$. $smokes_neg(X) - asthma(X)$. $smokes(X) - smokes_pos(X)$, not smokes_neg(X).

- ▶ L-Stable semantics is less undefined
- ▶ Preserves independence of probabilistic choices

Probabilistic Logic Programming under the L-Stable Semantics Denis D. Mauá, Fabio G. Cozman and Alexandro Garces Email: <ddm@ime.usp.br>