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Abstract

Minimization of the order-value function is part of a large family of problems involving
functions whose value is calculated by sorting values from a set or subset of other functions.
The order-value function has as particular cases the minimum and maximum functions of a
set of functions and is well suited for applications involving robust estimation. In this paper,
a first order method with quadratic regularization to solve the problem of minimizing the
order-value function is proposed. An optimality condition for the problem and theoretical
results of iteration complexity and evaluation complexity for the proposed method are pre-
sented. The applicability of the problem and method to parameter estimation problems with
outliers is illustrated.
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tions.
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1 Introduction

Generalized order-value functions, systematized in [17], are functions whose value f(z), for a
given x in the domain, depends on order relations on a set of the form {f;(x)};c;. One such
function is the order-value function of order p defined in [3, 4]. Given m functions fi,..., fm,
the value of the pth order-value function f at a point = in the domain corresponds to the value
at the pth position when the values fi(x), fa(x),..., fim(x) are ordered from smallest to largest.
It is important to note that, even if all f; are differentiable, f may be non-differentiable.
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For the particular choices p = 1 and p = m, we have that f(z) = min{ fi(z), fa(x), ..., fm(z)}
and f(z) = max{fi(x), fa(x),..., fm(x)}, respectively. If x is a vector of portfolio positions and
fi(x) represents the expected loss for choosing x under scenario ¢, then the order-value function
is the discrete value-at-risk (VaR) function, which is widely used in risk analysis; see [16]. If
each function f; represents the precision with which a certain model that depends on unknown
parameters x fits the ith observation, minimizing the pth order-value function is equivalent to
fitting the model’s x parameters by discarding the poorest fitted m — p observations. In gen-
eral, the order-value function is well suited for applications involving robust estimation, i.e.,
estimation techniques that are not affected by slight deviations in the data or from the idealized
premises.

In [3], it was introduced a steepest descent type method for the minimization of the pth
order-value function restricted to a closed and convex set. Convergence to points that satisfy a
weak optimality conditions was proven. In [4], stronger optimality conditions and a nonlinear
programming reformulation with equilibrium constraints of the problem were given. In [5], it
was introduced a quasi-Newton method that generalizes the method proposed in [3]. In [7], it
was proposed a global optimization strategy that combines multistart and a tunneling approach.
In [20], it was proved that the minimization of the order-value function is an NP-hard problem
in the strong sense in the case that constraints are given by a polytope.

In 2006, [19] introduced the idea of computational complexity in continuous optimization.
Since then, algorithms with complexity results have been developed for a wide variety of con-
tinuous optimization problems. See, for example, [9, [10]. In 2022, the first book [13] specifically
dedicated to the subject was released. This paper contributes to this line of research by propos-
ing a method that possesses complexity results for the problem of minimizing the order-value
function with box constraints.

The rest of this paper is organized as follows. In Section [2| the problem of minimizing the
order-value function and the proposed regularized method are defined. Section [3]is devoted to
the definition of an adequate optimality condition and to prove the well-definiteness, conver-
gence, and complexity results of the method. Illustrative numerical experiments are given in
Section 4} Conclusions and final remarks are given in the last section.

Notation. The symbol || - || denotes the Euclidean norm. For i = 1,...,n, ¢’ € R” denotes the
ith column of the identity matrix in R™*".

2 Quadratically regularized first-order method

Let f; : R" — R for i = 1,...,m be given. For a given p € {1,2,...,m}, the pth-order-value
function f: R™ — R is defined as

(@) = fiy@) (@), (1)
where the indices {i1(z),i2(x),...,im(x)} ={1,2,...,m} are such that
fir@) (@) < figy(2) < - < fi (@) (@), (2)

that is, f is such that f(z) corresponds to the value f;(x) which, when the values fi(x), fa(z), ...,
fm(z) are ordered from smallest to largest, is ranked in the pth position. In the present work,



we consider the order-value optimization (OVO) problem given by
Minimize f(x) subject to z € 2, (3)

where Q={z e R" [ <z <u},LLbueR"and {; <wu; fori=1,...,n.

We introduce hereafter a first-order method to tackle problem (3) which, at each step,
minimizes a quadratically regularized linear model of f(z). The specification of the algorithm
requires the following definitions. Given § > 0, for all z € €, we define

Iz, 0)={ie{1,2,...,m}| f(z) =0 < fi(zx) < f(z)+0}. (4)

For further reference, we define, for all x € Q, I(x) = I(z,0). In addition to § > 0, for given
o >0and T € (Q, we also define

o
V(z;z,0,0) Ezenllag% {Vfi(z) —E)}+§||m—fu2, (5)

The proposed method follows below.

Algorithm 1: Let 6 > 0, omin > 0, a € (0,1), v > 1, and 2° € Q be given. Initialize k < 0.
Step 1. Initialize j <— 0 and o ; = onin-
Step 2. Compute a; 1 as a solution to

Minimize ¥(z; 2", 8, 0, ;) subject to = € Q. (6)

Step 3. Consider condition
f(a) < f(z") = allz — 2" (7)

If with = = xmal does not hold, then set oy j11 = oy j, update j < j + 1, and go
to Step 2.

Step 4. Define zF*! = mfr’fal, o) = Ok, jk = j, update k < k + 1 and go to Step 1.

Remark. Theory requires :cmal to be a stationary point of @ such that \I/( trlal, x4, ok,;) < 0.
This can be achieved by any iterative method that generates a sequence with decreasmg value of
the objective function, starting from z*, since W(z*;2*,§, 0% ;) = 0. Moreover, ¥(z;2*, 5, oy ;)
is convex (a piecewise linear convex function plus a convex quadratic) and the constraints are
given by bounded box constraints. Therefore, every stationary point of @ is a global minimizer.
In other words, since the subproblem is simple, what the theory requires is equivalent to asking
that a:f;fal be a global minimizer of @, which is guaranteed to exist.



3 Convergence and complexity

In this section, we introduce an optimality condition C(d,€) for problem that depends on
the parameter ¢ and an optimality tolerance e. In the sequence, we show that Algorithm [2]1 is
well defined and present complexity results for obtaining an iterate that satisfies the optimality
condition C(d, €) for prescribed values of § > 0 and € > 0.

The three theorems that follow (Theorems and show that if x* is a local
minimizer of , then it is also a local minimizer of minimizing ¥ (x; z*,0,0), ¥(x;2*,0,0), and
U(z;z*,0,0) subject to x € Q for any § > 0 and o > 0, respectively. These results will be used
in the construction of the optimality condition C(4,¢€) for problem .

Assumption Al. Functions f1, fo, ..., fm are continuously differentiable for all x € Q.

Theorem 3.1. Suppose that Assumption holds. Let x* be a local minimizer of and
consider the problem minimize V(x;x*,0,0) subject to x € 2, i.e.

Minimize ‘H}?X) {Vfi(a*) (z —2*)} subject to x € Q. (8)
el (z*

Then, x* is a solution to .

Proof. Assume that the thesis is not true. Then there exists z € {2 such that

o AVSila") (@ = aT)} < max {Vfi@7) @ - at)} =0

This means that V fi(z*)T (x — 2*) < 0 for all i € I(z*). By Assumption fi is differentiable
for all i € I(z*), then we have that

o £+ 1@ = 2%) = £i@)

_ (T X
lim ; =Vfi(z") (x —z) <0,

for all ¢ € I(z*). Therefore, there exists ¢; > 0 such that f;(z* + t(z — 2*)) < fi(z*) for all
t € (0,1;]. Taking ¢ = min;ey(,+){f:}, we obtain that

filz* +t(x — 2%)) < fi(z") = f(a¥) for all i € I(x*) and ¢ € (0, ¢]. 9)

Moreover, for all j € {1,2,...,m} \ I(z*), if ¢ is sufficiently small, by the continuity of the
functions f1,..., fm, one has that

fi(@* +t(z — 7)) < fi(a* + t(z — 2¥)) whenever i € I(z*) and f(z*) < f;(z*)  (10)
and

filz® +t(x — 1) > fi(a" +t(x — %)) whenever i € I(z*) and f(z*) > f;(=*).  (11)
Inequalities (I0) say that if j & I(z*), i € I(z*), and fj(z*) > fi(2*) = f(z*) then, for ¢ small

enough, f;(z* +t(x —a*)) > fi(z* +t(x — 2¥)), i.e. the (strict) inequality is preserved from x*
to x* + t(x — z*). Inequalities are analogous for the case fj(z*) < fi(z*) = f(2*). This
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means that the set of positions occupied by the values { fi(x* +#(z — 2*)) }icr(z+), in the smallest
to largest ranking of the values {f;(«* +t(x — 2*))},, is equal to the set of positions occupied
by the values {fi(2*)}icr(z+) in the smallest to largest ranking of the values {f;(z*)}2;. This
set includes i,(2* + t(x — 2*)). This implies that for every ¢ small enough there exists i € I(z*)
such that i = i,(2z* 4+ t(z — 2*)), i.e. i € I(2*) such that

fila™ +t(x = 2%) = fiy@ t@—ary (@ + H(z —27)) = f(a” + t(z —27)).

Therefore, for all ¢ small enough, by (9), f(z* +t(z — z*)) < f(z*). Since z and z* belong to ,
which is convex, z* +t(x —x*) € Q for all ¢t € [0,1] and, in particular, for all ¢ sufficiently small.
Hence, z* can not be a local minimizer of . ]

Theorem 3.2. Suppose that Assumption holds. Let z* be a local minimizer of , o >0,
and consider the problem minimize V(x;x*,0,0) subject to x € §, i.e.

Minimize m?x {Vfi(z )z — *)} + %Hm — 2*||? subject to x € Q. (12)
el

Then, x* is a solution to .
Proof. Assume that the thesis is not true. Then there exists z € ) such that

e (V@) (0 = ot} + Sl — oI < max (Vi) @ = o)} + et =P =0,

that is,
max {Vf;(z*)T(z —2%)} < —%Haj —z*|? <o.

In other words, there exists x € € such that U(z;2*,0,0) < 0. But this is impossible because,
by the Theorem x* is a solution to and ¥(x*;2*,0,0) = 0. O

Theorem 3.3. Suppose that Assumption holds. Let x* be a local minimizer of , o >0,
d >0, and consider the problem minimize V(z;x*,0,0) subject to x € Q, i.e.

Minimize max {Vf;(z*)"(z —2*)} + g||aﬁ — 2*||? subject to x € Q. (13)
iel(x*,0) 2

Then, x* is a solution to .
Proof. Assume that the thesis is not true. Then there exists z € 2 such that
max {Vfila® ) (x— %)} + %Hx — |2 <.
Therefore, for all i € I(z*,9),
Viia) (@ = %) + Sz — "> <0,
which, since I(z*) C I(z*,¢), implies that
Viia) (@ = %) + Sz —a"|* <0,

for all ¢ € I(z*). But, by Theorem this is impossible. O



The following theorem (Theorem (3.4)), which requires some technical lemmas and assump-
tions, is the theorem that motivates the definition of the optimality condition C(d,€) for prob-

lem .

Definition 3.1. Let ¢ : R™ — R"™ be continuously differentiable and consider the feasible set
C={z€R"|c(z) <0}. We say that z € C verifies the Mangasarian-Fromovitz Constraint
Qualification (MFCQ) if there exists d € R™ such that

Vei(2)Td < 0 for alli € {1,...,m} such that c;(z) = 0.

Definition 3.2. Given q € N, we define the unit simplex Zq C R? by

Y= {)\ER‘I] Z?le\j =1and X\; >0 for j = 1,...,q}.
Lemma 3.1. Consider the problem

Minimize max wi(x) subject to x € Q, (14)
1€

where I C N is a finite set of indices and p; : R™ — R is continuously differentiable for alli € T.
Assume that x* € Q is a local minimizer of . Then, there exist p € ZII\ and V', V" € R%

such that >,z wiVei(a*)+> 0 (Vi—vi)et = 0 and (4;—a})vf = (z]—u)v =0 fori=1,...,n.
Proof. Let z* be a local minimizer of (14)). Then, (z*, max;cz ¢;(z*)) € R"™! is the solution to
Minimize y subject to p;(z) <y for all : € Z and z € Q.

Let d € R™™! be given by
-1, il =0,
dj = 1, if :C;

0, otherwise,

:u]-7

for j=1,...,n plus
dp+1 = max {[Vgpi(w*)]T (di, ... ,dn)} + 1.
€L

This d shows that (z*, max;ez @;(x*)) satisfies MFCQ with respect to ¢ : R* x R — Rl given
by ¢i(x,y) = pi(x) —y for all ¢ € Z. Thus, the thesis follows using the KKT conditions for the
problem above. O

The corollary below will be used later in the complexity results.

Corollary 3.1. Suppose that Assumption[Ad] holds. Then, for every k and j =0,. .., ji, there
exist € Y3 p(uk 5 and vhvt € RY such that (¢; — [xf£ija1]i)Vf = ([:cfrfad]Z —u;)) vt = 0 for
i=1,...,n and

Tl DI U ) LR SR AL (15)



Proof. The thesis follows from Lemma [3.1{ considering ¢;(z) = V f;(2%)T (x — 2%) + (04 /2) ||z —
2¥||2. Assumption [A1]is used to guarantee the existence of V f;(x*) fori =1,...,m. O

Theorem 3.4. Suppose that Assumption holds. Assume that x* is a local minimizer of .
Given 6 = 0, there exist (1 € 3 11, 5 and vh vt € R such that (6; — o} )vf = (zf — u;)v =0
fori=1,....,n and

Z wiV fi(z*) + i (VZ“ - Vf) el =0. (16)
i=1

iel(x*,0)

Proof. Let z* a local minimizer of and § > 0. By Theorem x* is a solution to
Minimize ¥(x;z*,d,0) subject to z € Q,

for any ¢ > 0. Then, by Lemma there exist u € 2\1(1*75)| and v, v € R’ such that
(b — )i = (zf —w)v =0fori=1,...,n and
o - »
> WV VA @ -2+ Pl -2t ]|+ 3 (w-vf) e =0,
T=x*

i€l(z*,0) =1
from which follows. O

Theorem leads to the definition of the following approximate necessary optimality con-
dition.

Definition 3.3. We say that x satisfies the approximate optimality condition C(J,¢€) if there
erist L € 315 AN v vt € RY such that (0 — x;)vf = (z; —w)v =0 fori=1,...,n and

n

Z wiV fi(x) + Z (1/1“ — Vf) el <e (17)

i€l(x,9) i=1

From here to the end of the section, we are devoted to show an upper bound for the cost of
Algorithm 1, in terms of iterations and function evaluations, to, given e > 0, find an iterate z*
that satisfies the approximate optimality condition C'(d, €). We will also show that Algorithml
is well defined in the sense that the inner loop defined by Steps 2 and 3 terminates in a finite
number of steps that does not depend on either &k or €. A few assumptions and technical lemmas
precede the main results.

Assumption A2. For allk and j =0, ..., ji, the associated Lagrange multipliers v* and v* of
Corollary are such that maX{,-:Lm’n}ﬂVf — v} is bounded by a constant ¢, which depends
neither on k nor on j.

Note that MFCQ guarantees that, for every k and j € {0,...,jx}, the associated Lagrange
multipliers v* and v* of Corollary [3.1| are bounded by a constant (see [I5]), which in turn implies
that maX{i:L‘_”n}ﬂVf — 1"} is bounded by a constant. Assumption says that there exists a
constant for all k£ and j € {0,...,jr} which depends neither on k nor on j.



Assumption A3. ||V fi(2)|, [V ()], .-, |V fm(x)] are bounded from above by a constant cy
for all x € ).

Lemma 3.2. Suppose that Assumptions[A1],[A2, and[A3 hold. Then, for allk and j =0,..., ji,
there exist c, > 0, which depends neither on k nor on j, such that

b — 2| < /o . (18)

||xtrial

Proof. By Corollary [3.1] and Assumption [A3] we have that

. 1 n
k, k ’
||$tri]al -z H < — Z vy — yly +eov| .
O%k,j i1
By Assumption holds with ¢, = nc, + cy. -

Assumption A4. All the gradients V f; satisfy a Lipschitz condition, that is, there exists L > 0
such that, fort=1,...,m and all z,y € (Q,

IV fi(y) = Vi(@)| < Llly — |- (19)

As a consequence of Assumption [A4] for i =1,...,m and all z,y € Q,

[7:w) — [fi@) + V@) (0~ 2)]| < Elly — (20)
In particular, for ¢ = 1,...,m and all z,y € ,
Fily) < Filw) + Vi) (g — ) + 2y — (21)

See, for example, [10].

Lemma 3.3. ([3, Lemma 2.1]) Let ay,...,a, € R, by,...,b, € R, § > 0, and {i1,...,i,} =
{1,...,r} be such that ay < --- < ap, bj < aj— B forj=1,...,r, and by < --- < b;,. Then,
bi, <aq—pB forqg=1,...,r.

Proof. By hypothesis, we have that, for any ¢ € {1,...,7},

bi, < ai,—f

q

biq < biq+1 < Aigy1 — B
bi, < by, < <b, <a, -0
Therefore, b;, < min{a;,,ai,,,,-..,a;} — . Since the set {a;,, i, ,...,a;.} has r —q+1

elements, then there exist ¢ € {1,...,q} such that ag € {a;,,a;,,...,a; }. Thus,
biq Sa(j_ﬁgaq_ﬁv

as we wanted to prove. O



Lemma 3.4. Suppose that Assumptions and [A7) hold. For every k and j = 0,...,jk, if
or; = L+ 2a, then

f ( trlal) fl( ) - Oéthrlal - kaZ’ (22)
for all i € I(x*,6).

Proof. By (21), which is implied by Assumption if i € I(x*,), then

; L
k,j k,
f (xtrfal) S fl (xk) + sz (xk)T(xtri]al - xk) ||xtr1al k||2

k,j k, k,j O'k
= fz(xk) + vfi(xk)T(xtri]al - xk) + : Tl — kH2 —d ” trlal ka2

2 ‘xtrial 7”‘%.131‘131
But the objective function of @, defined in , vanishes if z = 2*. Therefore,
Vi (2R —aky 4 2 ’J o — a®)|2 <0 for all i € I(z¥,0).
Thus,
fz( trlal) f7’($k) 7] || trlal - ka2 7thr1al - xk”2 fOI‘ a‘ll i € I(gjka 5)
So, if o3, ; > L + 20, then we have that
filx trlal) fi(zF) — ameal 2¥|? for all i € I(z*,9).
O

The next theorem, together with the fact that, for all k, the initial value of the regularization
parameter is equal to oy > 0 and, whenever a new value is calculated, its value is multiplied
by v > 1, is what shows that the loop defined by Steps 2 and 3 is executed a finite number of
times per iteration.

Theorem 3.5. Suppose that Assumptions [A3 and [A4] hold. Then, for all k and j =

07 cee ajkﬁ Zf
oy,; > max { L+ 2a,9¢2/(26)} (23)

then xtrlal satisfies (|7 .

Proof. Assume that oy, ; > L+2«. By the Cauchy-Schwarz inequality, Assumptions [A3and

and in Lemma

Fel) — )] < =+ 2% ori 1,
i\ L or 1= , M.
(i) = i) < Orj 207
Note that L < o ;. Then,
3c2 )
fz( trlal) fz(xk)‘ < 20';]' fori=1,...,m.

ch2



Therefore, if o ; > max{L +2a,9¢2/(28)}, then we have that

filz mal) filzM| < S fori=1,...,m. (24)

Thus, for j =1,...,p,

g )
Fisan @ed) < fiyan(@) + 3 < flab) + 5

and, for j =p,...,m,

iy @) > Ty @) = 3 2 f04) — 2.

This means that p elements of the set { f1(x tle) fg(xtrlal) o fm(x tml)} are less than or equal
to f(z¥) +3/3 and that m — p+ 1 elements of that set are greater than or equal to f(z*) —§/3.
Then, at least one element satisfies both inequalities and, when ranked from smallest to largest,
one of those values satisfying the two inequalities must be the value at the p-th position. As a

consequence, f, (k7 )(:L‘frfal) =f (xfrfal) satisfies both inequalities, i.e.
P\*“trial
k g k.j k 0
f(x)_ggf($trial)§f(x)+§' (25)
By and the definition of I(-,-) in (4), ip(xﬁ’f;l) € I(z*,6). Let us write

I(zF,6) = {ir, ... i} = {i}, ... ik},

where

fu(@F) <o < fi(a®) and i (apd)) <o < fa (2l

Let j be such that f;(z*) < f(z*)—4. Then, by 24), f;(z trlal ) < fi(@®)+6/3 < f(z¥)—26/3 <
f(x*). This means that the indices j & I(z k ,0) such that f;(z*) < f(2*) are the same as the
indices j ¢ I(2*,5) such that fj(z trlal) < f(«*). Analogously, the indices j ¢ I(z*, ) such that
fi(@*) > f(2*) are the same as the indices j € I(z*, ) such that f;(z trlal) > f(x*). Therefore,
if g € {1,...,7} is such that i,(2%) = i,, then i,(z fmjal) g
By Lemma [3.4]

Fiy (i) < fiy (%) = alledy —Ik\l2
for j = 1,...,r. Therefore, by Lemma taking 8 = a||a:
bj = fi;(w tml) for j =1,...,r, we have that

k
f (:‘Utrlal) fl]( ) - a||$tr1a1 - H2

for j = 1,...,r. In particular, it holds for the index ¢ € {1,...,7} of the previous paragraph
such that i,(z%) = i, and iy(zi7 ) =il y- Therefore,

trial

k, k k
f(xtrljal) < f($ ) - athrlal ||2

as we wanted to prove. O

ka2, a; = f,](a:k) and

trial
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The theorem below shows that Algorithm 1 requires O (6 2¢~2) iterations and O(|log(d)|)
functional evaluations per iteration to find a point that satisfies the C'(d, €) optimality condition
of problem .

Theorem 3.6. Suppose that Assumptions [A3 and [A7] hold and there exists fiow € R such
that f(x) > fiow for all x € Q. Then, oy is such that

o < ymax{L + 2a,9¢2/(26)}, (26)

where ¢, is a constant that depends on ¢, and cy, and at most

{1 +log, <JZRH>J (27)

functional evaluations are done to get . Moreover, the number of iterations k at which C(J, €)
is not satisfied by x* is bounded above by

KVQ max{L + 2a, 963/(25)}2> (f(xo) - fm)J ‘

(28)

« €2

Proof. Applying Theorem and follow from and the fact that, at Step 3,
Algorithm 1 updates the regularization parameter by multiplying its value by ~y if does not
hold.

For the second part, let K C N be the set of indices k such that C(d,¢€) is not satisfied

by z**1. By the mechanism of Algorithm 17 aF = ghd where a7 is a solution to (6) and

trial? tria
satisfies . Then, on the one hand, by Corollary for each k € K, there exist p1 € mek 5)|
and vf,v* € R such that (¢; — Pyt = (aF — )t =0fori=1,...,n and
1 n
2P — b = o Z <Vf - V?) e — Z pi V fi(a®) |
= ieI(z* 5)
ie.

1 n )

k k k ¢

||z g H:—Uk E wi V fi(z%) + E <V§L—yi)ez ,
i=1

icl(xk.5)
and, by and the fact that C(6,¢) does not hold at 2*+1, it holds

€
ymax{L + 2a,9¢2/(26)}

On the other hand, since for each k € K, z**! satisfies , we have that

||5L‘k+1 . ka >

€

2
ymax{L + 2a, 90%/(25)}) )

F() < flab) —a (

Summing for all £ € K,

2
Z (f(xk) - f(xkﬂ)) > |Klo (’ymaX{L + 2606790325/(25)}) .

keK
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Since f(x) > fiow for all z € R™,

€

2
ymax{L + 2,9 C%/(25)}> ’

from which follows. O

%) = fiow > |K]a (

Algorithm 1 defines at each iteration k a regularization parameter op > omin > 0, i.e.,
bounded away from zero. Specifically, the first trial oy ¢ is an arbitrary value not smaller than
Omin that is then successively multiplied by v. In practice, it may be adequate the first trial oy, o
at iteration k > 1 to be a fraction of o;_;. In this case, each o} > Uﬁnna but it may be the case
that o*. — 0. For such a modified version of Algorithm 1, with a slightly different analysis

than the one performed in Theorem similar complexity bounds can also be obtained; see [8,
§4].

4 Numerical illustration

In this section, we illustrate how the OVO problem, and in particular the method proposed
in this paper to solve it, can be used for model fitting in the case where observations contain
outliers. Let y(t,z) be a model with unknown parameters x € Q C R" and let (¢;,y;) for
i=1,...,m be a data set containing an unknown number o < m of outliers. Let us define

filw) = 5 (ol ) — i),

for i = 1,...,m. For o given, the OVO problem consisting of solving with f(z) defined
as in with p = m — o corresponds to finding parameters x € {2 that minimize the largest
squared error of p observations by discarding o observations considered outliers. Given that the
number of outliers is unknown, the methodology consists of solving a sequence of OVO problems
with increasing values of o, starting from a known lower bound. It will be seen that a sudden
drop in the optimal value of f as a function of o will clearly identify the number of outliers.
In Section we consider the epidemiological model introduced in [14]. In Section we
consider the model analyzed in [6, §7.2.1]. In Section we consider the model analyzed in [3]
§4]. The experiments in Sections and allow to compare the introduced method with
other existing alternatives. In addition, the experiments in Section show that the proposed
method is scalable for increasing amounts of data.
As suggested in the proof of Lemma subproblem @ of Step 2 is reformulated as

Ok,j

5 |z—2¥||? <y for all i € I(z*,8) and z € Q. (29)

Minimize y subject to V f;(*)T (z—2*)+

We opted for this reformulation because its resolution provides, besides a solution xfr’fél, the
associated Lagrange multipliers p, ¢, and v* required to check the optimality condition C(4, ).
As stopping criterion, we checked the satisfaction of the optimality condition C(d, €) in-between
Steps 3 and 4. For the stopping criterion, we considered ¢ = 10™*. The e tolerance value is

standard when using first order methods. In Algorithml, we considered iy = 0.1, o = 1078,
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and v = 5. The value of these three parameters is quite standard in the literature of methods
using regularized models and the method is not very sensitive to variations in these parameters.
The choice of ¢ is more difficult. It is dimensional, depends on the problem, and was chosen
by trial and error for each of the three applications separately. Basically, if ¢ is “small”, few
functions f; will be considered in the computation of the next iterate, and this may cause
the next iterate to fail the sufficient descent criterion (in which other f; not considered in its
computation will have an effect). On the other hand, if § is “large”, many f; are considered in
the computation of the next iterate, and since it is more difficult to find a descent direction for
many f; simultaneously, the next iterate stays very close to the current iterate. Either way, it
is possible that the use of an “inappropriate” d will produce short steps far from the solution
and this will increase the total number of iterations. Therefore, the choice of an “appropriate”
0 is based on observing the number of iterations the algorithm performs for different ¢ choices
in {1071,1072,1073}. In Sections and we ended up considering 6 = 1073, while in
Section £.3] we considered § = 0.1.

Algorithm 1 was implemented in Fortran. Problem is a smooth nonlinear program-
ming problem and we chose to solve it with Algencan. Algencan [2 11, [12] is a safeguarded
augmented Lagrangian method introduced in [I} 2]. Its convergence theory, properties and usage
are described in detail in [IT]. Complexity results and an extensive numerical comparison with
another state-of-the-art method for nonlinear programming can be found in [I2]. In this work
we use Algencan with all its default parameters.

Codes were implemented in Fortran 90. Tests were conducted on a computer with a 5.2
GHz Intel Core i9-12900 processor and 128GB 3200 MHz DDR4 RAM memory, running Linux
(Ubuntu 22.04.4 LTS). Code was compiled by the GNU Fortran compiler (version 11.4.0) with
the -O3 optimization directive enabled.

4.1 Epidemiological model

The epidemiological model considered in the present section was developed in [14] with the pur-
pose of modeling a serological data set of 8,870 people before the introduction of measles, mumps
and rubella vaccine in United Kingdom. The model aims to describe the rate at which suscep-
tible individuals acquire infection by the diseases mentioned above at different ages. The data
in Table [1, taken from [14], show the estimated proportion of seropositive in the unvaccinated
segment of the sample divided into 29 age groups.

The model we wish to fit to the data in Table [1]is given by

y(t,z) =1 —exp {xlte‘”t + 3 <Il — x3) (et —1) — xst} ; (30)
i) T2 i)

where x1, z2, x3 are non-negative unknown parameters. Therefore, we define Q = {(x1,z2,23) €
R3 | (21,72, 73) > 0}. The amount of data is m = 29, and we wish to estimate the parameters
1, T2, T3 of model for each of the three diseases separately. That is, we consider three
independent problems. We consider each ¢; as the left limit of each age range [tmin,tmax) and
y; as the corresponding observation. (Considering t; = (tmin + tmax)/2 would also be another
valid alternative.) Figure (1| shows a graphical representation of the data in Table with
the definition of ¢; mentioned above. To illustrate the result of tackling a parameter fitting
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Age group Proportion seropositive Age group Proportion seropositive
(years) | Measles | Mumps | Rubella (years) | Measles | Mumps | Rubella
[1,2) 0.207 0.115 0.126 [17,19) 0.898 0.895 0.869
[2,3) 0.301 0.147 0.171 [19,21) 0.959 0.911 0.844
[3,4) 0.409 0.389 0.184 [21,23) 0.957 0.920 0.852
[4,5) 0.589 0.516 0.286 [23,25) 0.937 0.915 0.907
[5,6) 0.757 0.669 0.400 [25,27) 0.918 0.950 0.935
[6,7) 0.669 0.768 0.503 [27,29) 0.939 0.909 0.921
[7,8) 0.797 0.786 0.524 [29,31) 0.967 0.873 0.896
[8,9) 0.818 0.798 0.634 [31,33) 0.973 0.880 0.890
[9,10) 0.866 0.878 0.742 [33,35) 0.943 0.915 0.949
[10,11) 0.859 0.861 0.664 [35,40) 0.967 0.906 0.899
[11,12) 0.908 0.844 0.735 [40, 45) 0.946 0.933 0.955
[12,13) 0.923 0.881 0.815 [45,55) 0.961 0.917 0.937
[13,14) 0.889 0.895 0.768 [55,65) 0.968 0.898 0.933
[14,15) 0.936 0.882 0.842 (65, +00) 0.968 0.839 0.917
[15,17) 0.889 0.869 0.760

Table 1: Proportion of seropositive for measles, mumps and rubella by age group.

problem in the presence of outliers using the OVO approach, we contaminated the observations
of the age groups [19, 21), [21, 23), [23,25), and [25,27), replacing the corresponding observation
with 0.5. The modified observations are shown in Figure As initial guess 29 € Q, we
considered the least squares solution using the data with the inclusion of outliers, namely, z° ~
(0.379029, 0.500859, 0.016986)7" for measles, 2° ~ (0.285745,0.424520,0.005894)7 for mumps,
and 2 ~ (0.117309, 0.341322,0.026605)” for rubella.
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Figure 1: Observed proportion of seropositive for the three considered diseases.
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.,10}. Table [2[ and Figure |3| show the

results. The table shows, for each value of o, the smallest value found for the OVO function
(column f(z*)) and, as a measure of Algorithm [2]1 performance, the number of iterations
(column “#it”), the number of functional evaluations (column “#fcnt”), and the CPU time in

14



1.0p

0.8

04F ¢ 04F & 04F

s
¢ Yy I soee
4
$

02 ¢ 0.2F 02F 4

(a) measles (b) mumps (c) rubella

Figure 2: Observed proportion of seropositive for the three considered diseases after the inclusion
of outliers.

seconds (column “Time”) that were necessary to meet the stopping criterion. The figures in the
table show that the smallest value found for the objective function of the OVO problem is on
the order of 1072 when o < 3 and drops by an order of magnitude when o > 4. This shows that
this approach might be used to automatically detect the number of outliers contained in the
data. In the figure, some of the curves appear overlapped, but as expected the models whose
parameters were fitted considering 0 < o < 3 fail to reproduce the observed data.

Figure {4f shows, on the left, the models adjusted when considering o € {4,5,6}. It is not
entirely clear that the model found by considering o = 4 is “the best”; and comparing the values
of f(z*) obtained in the three cases does not help to decide, since it is natural that the more
observations are left out, the better (smaller) is the value found. This suggests that, assuming
model is “correct”, there are already outliers in the observed data available in [I4]. Figure
shows on the right side the fitted models considering o = 10. In these plots, the observations
that the optimal solution of the OVO problem points out as outliers are highlighted in red. It
is clear that choosing these observations manually would be practically impossible.

measles mumps rubella

o f(z*) #it  #fent Time fz*) #it  Ffent Time fz*) #it  Ffent Time

0 | 2.688E—02 8 40 3.463E—-03 | 2.161E—-02 9 28 2.811E-03 | 2.161E-02 7 33 2.102E—03
1 | 2.638E—02 5 19 1.735E—03 | 2.125E—-02 5 12 1.963E—03 | 2.151E-02 5 27 1.397E—-03
2 | 2.609E-02 5 19 1.874E—03 | 2.107TE—-02 4 11 1.578E—03 | 1.969E—-02 23 56 3.256E—03
3 | 2.550E-02 8 30 3.086E—03 | 2.087TE—02 4 13 2.114E-03 | 2.017TE—-02 7 17 1.478E—03
4 | 3.496E—-03 16 34 1.997E—03 | 3.180E-03 10 34 3.162E—-03 | 3.172E-03 4 21 2.127TE—03
5 | 2.87T1IE-03 8 15 2.500E—03 | 1.760E—03 6 18 1.295E—03 | 2.999E—-03 4 11 1.782E—03
6 | 2.084E-03 3 7 1.166E—03 | 1.356E—-03 5 12 2.235E—03 | 2.825E—03 4 11 1.818E—03
7 | 1.6b51E-03 7 12 1.483E—-03 | 1.3156E—-03 5 10 1.830E—03 | 1.983E—-03 3 9 1.053E-03
8 | 1.136E—-03 6 12 2.211E—03 | 1.086E—03 6 13 2.614E—03 | 2.61TE—03 4 11 1.127E-03
9 | 2.286E—-03 3 4 9.820E—04 | 1.113E—03 4 8 1.928E—03 | 2.492E—03 4 20 1.419E-03
10 | 1.187E-03 2 3 9.740E—04 | 1.065E—03 4 9 1.877TE—-03 | 1.751E—-03 5 12 1.809E—03

Table 2: Details of applying Algorithm [2}1 for solving the OVO problem of Section with
p=m—oandoe€{0,1,...,10}.
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Figure 3: Models adjusted by solving the OVO problem of Section with p = m — o and
0€{0,1,...,10}.

4.2 Osborne II function

In the present section, following [6], we consider a variation of problem Osborne II from [I8§].
The problem consists in finding parameters x1,...,x11 to fit the model

y(t,z) = z1 exp(—tzs) + zo exp(—(t — z9)?x6) + 23 exp(—(t — 210)°27) + 24 exp(—(t — 211)%28)

to data (t;,y;) for i = 1,...,65 reported in [I8 p.25]. The variation consists in introduc-
ing 13 additional data representing outliers. The outliers were taken from [6]. Consider-
ing the original data plus the 13 outliers, we arrive to m = 78. There are no constraints
in the unknown parameters and, therefore, = R"™ in this case. As initial guess 2°, we
considered the least squares solution using the data with the inclusion of outliers, namely,
20 ~ (1.312197,0.367105,0.551044, 0.642714, 0.596455, 2.306908, 0.365859, 8.197276, 2.016720,

4.339855, 5.686341)7. We solved the OVO problem (B with o € {0,1,...,15}. Table |3 shows
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Figure 4: On the left side, the models fitted with p = m — o0 and o € {4,5,6}. On the right
side, the models fitted with o = 10, highlighting the observations that the optimal solution to
the OVO problem points to as outliers.
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the results. The clear drop in the value of f(z*) when o = 13 shows that the method correctly
identified the number of outliers. The slightly increase in the value of f(z*) from o = 6 to
0=17, from o=7too=28, and from o = 13 to 0o = 14 shows that the method may be finding
local non-global solutions. Anyway, it does not effect the identification of the correct number of
outliers neither the adequate model fit for the case o = 13.

Figure || illustrates the models found for the cases o € {0, 3,8,13}. It is clear that the cases
with o # 13 are very poor due to the presence of the outliers, while the case o = 13 corresponds
to a model that correctly represents the real data. In [6], a different problem is solved to fit
the model: the function being minimized is the LOVO function defined as f(x) = 1;7:1 fi; ()
instead of the OVO function defined as f(x) = f; () and considered in the present work.
Moreover, since the problem is different, a different method is employed, for which the stopping
criterion is not mentioned. Anyway, comparing Table[3|with [6] p. 18, Table 1], it is possible to see
that both methods employ a similar number of iterations and function evaluations. Additionally,
a comparison between Figure|5|and [6, p. 18, Figure 2] shows that solutions found are qualitative
equivalent.

’ o) ‘ f(z*) ‘ #it ‘ # fent ‘ Time
0 | 8.055e—02 | 85 139 3.561e—02
1 | 6.788e—02 | 17 44 5.022e—03
2 | 4.640e—02 | 30 100 1.441e—02
3 | 4.585e—02 | 28 82 1.543e—02
4 | 3.917e—02 | 13 43 8.359e—03
5 | 3.705e—02 | 18 58 1.114e—02
6 | 3.633e—02 | 30 44 1.360e—02
7 | 3.651e—02 7 18 5.089e—03
8 | 3.694e—02 | 10 31 4.082e—03
9 | 3.673e—02 | 28 37 8.291e—03
10 | 3.640e—02 5 12 2.610e—03
11 | 2.615e—02 | 12 38 3.815e—03
12 | 2.306e—02 7 27 2.659e—03
13 | 3.714e—03 | 26 62 1.269e—02
14 | 3.828¢—03 | 22 48 1.406e—02
15 | 2.804e—03 | 35 69 2.797e—02

Table 3: Details of applying Algorithm [2J1 for solving the OVO problem of Section with
p=m—oandoe€{0,1,...,15}.

4.3 Third degree polynomial in the canonical basis

In the present section, following [3], we consider the model

y(t,z) = z1 + Tot + x3t> 4 141>,
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Figure 5: Models adjusted by solving the OVO problem of Section with p = m — o0 and
o € {0,3,8,13}.

where x1, 22, x3, x4 are unknown parameters satisfying —10 < z; < 10 for ¢ = 1,...,4. There-
fore, we define € accordingly. A set of m = 47 data (¢;,y;) containing 10 outliers was taken
from [3]. The least squares solution using the data with the inclusion of outliers is given by
T ~ (6.460187,2.707182, —7.541815,2.160429)". As the OVO problem may have many non-
global local minimizers, in this experiment we considered 100 different starting points given
by ¥ with components ¥ = z; + r|2?|, where r € [~0.5,0.5] is a random number with uni-
form distribution. For each considered value of o € {0,...,12}, we report the best minimizer
found. Table [4] shows the results while Figure [f] illustrates the solutions obtained for the cases
o € {0,4,8,10}. In the table, the sudden drop of f(z*) from the case 0 =9 to the case o = 10
shows that the method is able to clearly detect the amount of outliers contained in the data. The
table also shows that from case o = 0 to case o = 10 the value of f(x*) decreases monotonically,
as expected. The cases o = 11 and o = 12 are not very relevant and the values of f(z*) are
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similar to the case o = 10. But the fact that they are slightly larger than the value of case
o = 10 shows that the algorithm found local solutions of good quality but not corresponding to
a global minimizer. Figure[6{(d) shows that, when the number of outliers is identified, the model
fit is very good. Figures @(a—c) are interesting because they show the type of fit that is possible
when the data are considered to contain fewer outliers than they actually do.

In [3], a first-order method for the OVO problem was proposed. The proposed method is
similar to the one presented in the present work. The main difference is that in subproblem @,
instead of penalizing ||z — Z||?, a box constraint of the form ||z — Z||sc < A is considered.
This difference is what allows the method proposed in the present work to pose a worst-case
analysis that provides an upper bound for the number of iterations and function evaluations
that are necessary to find a solution with a prescribed accuracy. On the opposite side, the
method proposed in [3] presents a classical asymptotic convergence theory. If on the one hand
the two methods have such a difference in their theoretical properties, it is not expected that
they behave very differently in practice. This is exactly what Table 4| shows. In [3] neither the
stopping criterion nor the number of function evaluations is reported, but [3, p. 398, Table 2]
shows a number of iterations compatible with (in fact, a slightly larger than) the number of
iterations of our method, as shown in Table [4]

’ o) ‘ f(z®) ‘ #it ‘ # fent ‘ Time ‘
0 | 1.363e+401 | 27 105 1.483e—02
1 | 1.145e+01 | 37 170 3.047e—02
2 | 1.004e401 | 40 194 1.381e—02
3 1 9.535e+00 | 39 190 2.557e—02
4 19.013e+00 | 40 164 3.945e—02
5 | 8.455e400 | 38 170 2.586e—02
6 | 7.436e+00 | 44 225 2.646e—02
7 | 6.921e400 | 38 206 2.109e—-02
8 | 5.503e+00 | 43 210 2.453e—02
9 | 4.176e+400 | 25 117 2.020e—02
10 | 3.120e—02 | 31 154 2.421e—02
11 | 3.452e—02 | 28 145 1.852e—02
12 | 3.228e—02 | 50 262 2.080e—02

Table 4: Details of applying Algorithm [21 for solving the OVO problem of Section with
p=m—oandoe€{0,1,...,12}.

We end this section by showing that the proposed method can be applied to problems with an

increasing amount of data. For this purpose we consider problems with m € {10%/103,...,10%}
observations. Let tpmin = —1, tmax = 3.5, t; = tmin + (%‘_ﬂ) (tmax — tmin) for i =1,...,m, and

= (0,2,-3,—1)T. Each y; is considered an outlier with probability 0.1. If the data is not an
outlier, y; corresponds to y(t;,Z) plus noise r € [—-0.5,0.5]. If the data is considered an outlier,
it is larger than y(t;, ) with probability 0.8 and smaller with probability 0.2. If greater, it is
a random value between y(¢;,Z) and 15. If less, it is a random value between —6 and y(¢;, Z).
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Figure 6: Models fitted solving the OVO problem of Section with p = m — o and o €
{0,4,8,10}.

Figure [7] shows the data for the case m = 1,000 as an example. This way of generating data is
similar to the one used in [3] to generate the problem with m = 47 presented above. The figure
shows that some of the data generated as outliers are identical to data generated as “correct”.
Therefore, discovering the exact number of generated outliers is impossible. Or, in other words,
not all data generated as outliers are in fact outliers.

For the case m = 100, we solved OVO problems with o varying from 5 to 15 in increments
of 1. (The expected number of outliers is 10 in this case). For the case m = 1,000, which has an
expected number of outliers of 100, we vary o from 50 to 150 in increments of 1. For the case
m = 10,000, we vary o from 500 to 1,500 in increments of 10. For the case m = 100,000, we
vary o from 5,000 to 15,000 in increments of 100. For the case m = 1,000,000, we vary o from
50,000 to 150,000 in increments of 1,000. For each value of o, we solved the problem starting
from 100 different starting points, as in the case with m = 47 presented above. For each value
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Figure 7: Data with outliers for the case m = 1,000. For those readers who are viewing the
figure with colors, the black dots are the data generated as “correct” (contaminated with noise),
while the red dots are the data generated as outliers.

of m, Figure 8 shows the value of f(z*) as a function of o (for each o, the best value of the 100
runs is shown). The figure shows that in all cases there is a sharp drop of the value of f(z*)
when an approximately correct number of outliers is considered. Note that the exact number of
outliers is unknown because of the way they are generated and because when a data is generated
as an outlier, it may in some cases look very similar to a real data. Moreover, not all values of
o are tested in the experiment. Even under these conditions, the figures show that the method
succeeds perfectly well in identifying and disregarding outliers. In Table [5| we show, for each
value of m, the amount o of data that were generated as outliers, and the smallest value of o
for which a value of f(x*) considered “small” is obtained (i.e. the first value of o after the drop
in the value of f(x*)). For these selected cases, performance metrics of the method (number of
iterations, number of function evaluations, and CPU time in seconds) are shown. The column
showing the time per function evaluation suggests that the cost of the function evaluations
increases linearly with the number of data m, although it includes a mlog(m) ordering of the
fifori=1,....,m.

5 Final remarks

In this paper we introduced a method for the problem of minimizing the order-value function
with box constraints. The method is of first order and uses quadratic regularization. As lines of
future work we can mention the development of methods for problems with more general con-
straints and methods using higher order models. Generalized order-value functions are functions
whose evaluation at a point x of the domain depends on the order relation of the elements in
a set of the form fi(x),.7, where Z C N is a finite set of indices. Problems that include such
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Figure 8: For each value of o within a predefined interval, we solve an OVO problem with fixed o
using 100 different starting points and keep the best x*. These plots show f(x*) as a function of
o. The graphs show that f(z*) decreases in an accentuated way up to a certain value of o and,
from that point on, it decreases very slowly. The smallest value of o for which f(z*) decreases
slowly is the value detected by the strategy as “amount of outliers contained in the data”.
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m 0 0 ‘ fx*) ‘ #it ‘ #fent ‘ Time ‘ Time / #fent ‘
100 10 11 9.852E—02 | 65 467 | 2.486E—02 | 5.324E—-05
1,000 92 85 1.567E—-01 | 72 469 | 5.224E-02 1.114E-04
10,000 980 910 1.906E—-01 | 38 224 | 1.511E-01 6.747TE—04
100,000 | 10024 | 9300 | 1.887E—01 | 21 90 | 6.726E—01 | 7.473E—-03
1,000,000 | 100083 | 108000 | 1.863E—01 | 4 13 1.070E+00 | 8.233E—-02

Table 5: Details of the performance of Algorithm[2] 1 when solving OVO problems with increasing
amount of data m.

functions in their definition, either in the objective function or in the constraints, are called
generalized order-value optimization (GOVO) problems [I7]. The problem considered in the
present work belongs to this family of problems. Proposing methods with complexity results for
other problems of the GOVO family is also a possible line of future work.
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