
Lecture Notes on Semidefinite Programming

THE ELLIPSOID METHOD

Fernando Mário de Oliveira Filho
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One of the greatest breakthroughs of the last century in the theory of optimiza-
tion was Khachiyan’s result [2] that the ellipsoid method of nonlinear programming,
introduced by Shor and Yudin and Nemirovskii (cf. Chapter 13 of Schrijver [4]), can
be extended so as to provide a polynomial-time algorithm for linear programming.
Before the ellipsoid method, algorithms for linear programming such as the sim-
plex method could be fast in practice, but had exponential worst-case performance.
Kachiyan’s result settled the long-standing problem of determining the complexity of
linear programming.

The ellipsoid method proved to be inefficient in practice, and to this day it is not
used as an algorithm to solve practical problems (cf. §13.5 in Schrijver [4]). In the do-
main of linear programming, it was supplanted by interior-point methods, which are
also polynomial-time algorithms that moreover perform well in practice. A fundamen-
tal result of Grötschel, Lovász, and Schrijver [1], however, secured its position as one
of the main theoretical tools in optimization, used to prove the polynomial-time solv-
ability of many classes of optimization problems, in particular of many combinatorial
optimization problems.

In these notes we will study the ellipsoid method and the main result of Grötschel,
Lovász, and Schrijver and see what are the implications to conic programming.

1. Introduction

In what follows, the set of n× n symmetric matrices is denoted by Sn and A � 0
means that A ∈ Sn is positive semidefinite. The trace inner product of A, B ∈ Sn is
〈A,B〉 = trAB.

Let K ⊆ Rn be a nonempty, compact, and convex set. Following Grötschel,
Lovász, and Schrijver, consider the following two problems in relation to K:

Strong optimization problem. Given a vector c ∈ Rn, find a vector x∗ ∈ K
that maximizes cTx in K.

Strong separation problem. Given a vector y ∈ Rn, decide that y ∈ K, or else
find a hyperplane separating y from K, i.e., find a vector a ∈ Rn such that
aTy > max{ aTx : x ∈ K }.

Example 1 (Linear programming). The convex set K ⊆ Rn could be a polytope,
given as a system of linear inequalities

aTi x ≤ bi for i = 1, . . . , m.

Then the optimization problem is a linear programming problem. The separation
problem consists of, given a vector y ∈ Rn, determining whether y satisfies all the
linear inequalities, or else finding a violated inequality. This can be done by checking
each inequality; if they are all satisfied, then y ∈ K; if for some i we have aTi y > bi,
then we have our separating hyperplane.
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Example 2 (Semidefinite programming). Let C, A1, . . . , Am ∈ Sn and b1, . . . , bm
be real numbers, and let K be the feasible region of the semidefinite programming
problem

maximize 〈C,X〉
〈Ai, X〉 = bi for i = 1, . . . , m,

X � 0.

The optimization problem for K is exactly the above problem. The separation
problem consists of, given a symmetric matrix Y , decide whether it is positive semidef-
inite and satisfies all equalities above, or find a hyperplane separating Y from the
feasible region K.

If Y violates one of the linear equalities, then we immediately have a separating
hyperplane, just as in the case of linear programming. Suppose Y satisfies all equalities
but is not positive semidefinite. Then for some a ∈ Rn we have aTY a < 0, and a
separating hyperplane is 〈aaT, X〉 ≥ 0.

Grötschel, Lovász, and Schrijver show that, for any given class of “convex bodies”
(a concept that will be defined precisely below), the optimization and separation
problems are equivalent, in the sense that a polynomial-time algorithm for any of the
two implies a polynomial-time algorithm for the other. There is a technical point,
however. In the way the problems are defined above, it is not clear for instance that
there is a solution to the optimization problem having only rational coordinates, so
it is not even clear how a solution can be specified. Therefore, from the point of view
of computational complexity the problems above are not well-defined.

Further assumptions made on K would guarantee that there is always an optimal
solution that is rational. For instance, this is the case when one considers rational
polyhedra, that is, polyhedra given by systems of rational inequalities. Instead of
making further assumptions on K, however, Grötschel, Lovász, and Schrijver define
weaker versions of the optimization and separation problems. If d(x,K) denotes the
Euclidean distance between x and K, then we consider the problems:

Weak optimization problem. Given a vector c ∈ Qn and a number ε > 0,
find a vector x̂ ∈ Qn that is ε-close to K, i.e., d(x̂,K) ≤ ε, and that almost
maximizes cTx on K, i.e., for every x ∈ K, cTx ≤ cTx̂+ ε.

Weak separation problem. Given a vector y ∈ Qn and a number δ > 0, do one
of the following: (i) conclude that d(y,K) ≤ δ (i.e., y is almost feasible); or
(ii) find a vector a ∈ Qn such that ‖a‖ ≥ 1 and for every x ∈ K, aTx ≤ aTy+δ.

Let us now state more precisely the result of Grötschel, Lovász, and Schrijver.
A convex body is a quintuple (K,n, a0, r, R), where n ≥ 2, K ⊆ Rn is a convex
set, a0 ∈ K, and

B(a0, r) ⊆ K ⊆ B(a0, R),

where B(p, r) is the closed ball of radius r and center p. The assumption that K is
contained in a ball is quite natural from an optimization perspective. The assumption,
however, that K contains a ball is not so natural. It means that K is full-dimensional,
or at least that one knows the affine subspace containing K (cf. Exercise 1). It can
be proven that such an assumption is essential (cf. §3 in Grötschel, Lovász, and
Schrijver [1]).

Let Π ⊆ {0, 1}∗ be a language. Consider a class of convex bodies

K = {Kσ : σ ∈ Π and Kσ is a convex body }.

So each body has an associated encoding in Π that is used to represent it.
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Figure 1. An ellipsoid in R2 with center z and axes given by the unit vec-
tors e1 = (1, 0) and e2 = (0, 1). The longer axis has length 2, whereas the
shorter has length 1. This ellipsoid is ell(z,A) with A = 4e1e

T
1 + e2e

T
2 .

The input of the weak optimization problem is then a tuple (σ, n, a0, r, R, c, ε),
where σ ∈ Π, Kσ = (K,n, a0, r, R), c ∈ Qn, and ε > 0. An algorithm for the weak
optimization problem for the class K receives as input such a tuple and solves the
weak optimization problem for the convex body Kσ. It runs in polynomial time if its
running time is polynomial in the size of the input tuple, which is basically the length
of σ plus the lengths of binary representations of n, a0, r, R, c, and ε.

We may similarly define an algorithm to solve the weak separation problem for K
and what it means for it to be a polynomial-time algorithm. So we have the main
result of Grötschel, Lovász, and Schrijver:

Theorem 1. Let K be a class of convex bodies. There is a polynomial-time algorithm
to solve the weak optimization problem for K if and only if there is a polynomial-time
algorithm to solve the weak separation problem for K.

Notice that ε is part of the input. So the running time of the algorithm must de-
pend polynomially on the length of a binary representation of ε, which is O(| log ε|).
This means that by taking a sequence ε = 1/2, 1/4, . . . we get a sequence of approxi-
mations which converge exponentially fast, while the running time increases polynomi-
ally from one value of ε to the next. This exponential convergence rate is what allows
Khachiyan to find an optimal solution to a linear programming problem (basically by
rounding) instead of just an approximation, and it also allows Grötschel, Lovász, and
Schrijver to derive many combinatorial applications of the ellipsoid method.

2. Ellipsoids

Let z ∈ Rn and A ∈ Sn be a positive definite matrix. An ellipsoid is a set

ell(z,A) = {x ∈ Rn : (x− z)TA−1(x− z) ≤ 1 }.

Vector z is the center of the ellipsoid. Notice that ell(z, I) is the unit ball with center z.

Since A is positive definite, there is an orthonormal basis u1, . . . , un of Rn and
positive numbers λ1, . . . , λn such that

A = λ1u1u
T

1 + · · ·+ λnunu
T

n .

Vectors ui give the axes of the ellipsoid and numbers λi give the squares of the half-
lenghts of the axes; see Figure 1.

The fact that A is positive definite also allows us to write A = U2 for some
nonsingular matrix U ∈ Sn. So we see that ell(z,A) is an affine transformation of the
unit ball:

ell(z,A) = {Ux+ z : ‖x‖ ≤ 1 }.
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This makes it easy to compute the volume of an ellipsoid. For A ∈ Sn positive
definite, let fA:Rn → {0, 1} be such that fA(x) = 1 if and only if x ∈ ell(0, A). Then
if A = U2 as above we have

vol ell(z,A) = vol ell(0, A) =

∫
Rn

fA(x) dx

=

∫
Rn

fI(U
−1x) dx

= |detU |
∫
Rn

fI(x) dx

=
√

detA volBn,

where Bn is the unit ball.

3. The method with infinite precision

Let us assume for now that we can compute with real numbers and that we have
an oracle to solve the strong separation problem. Let us see how we can find solutions
to the optimization problem that are at most ε-distant from the optimal. To this end,
the following lemma will be useful (cf. Theorem 13.1 in Schrijver [4]).

Lemma 2. Let z ∈ Rn and let A ∈ Sn be positive definite. Given a vector a ∈ Rn,
the ellipsoid ell(z′, A′) with

z′ = z +
1

n+ 1
· Aa√

aTAa

and

A′ =
n2

n2 − 1

(
A− 2

n+ 1
· Aaa

TA

aTAa

)
is the unique minimum-volume ellipsoid containing ell(z,A)∩{x ∈ Rn : aTx ≥ aTz }.
Moreover,

vol ell(z′, A′)

vol ell(z,A)
< e−1/(2n+2). (1)

Proof. Exercise 2 asks you to prove that when z = 0 and A = I, the ellipsoid ell(z′, A′)
given as above indeed is the minimum-volume ellipsoid containing one of the halves
of the unit ball. Since ellipsoids are all affine transformations of the unit ball, the
parameters for the general case follow from those for the unit ball.

To see (1), we may also assume that A = I. Let u1, . . . , un be an orthonormal
basis of Rn, where u1 = ‖a‖−1a. Note u1, . . . , un are all eigenvectors of I each with
associated eigenvalue 1. So A′ has eigenvalues

n2

n2 − 1

(
1− 2

n+ 1

)
and

n2

n2 − 1
with multiplicity n− 1.

This implies immediately that

√
detA′ =

(
n2

n2 − 1

)n/2(
1− 2

n+ 1

)1/2

=

(
n2

n2 − 1

)(n−1)/2(
n

n+ 1

)
.

From this we have that

vol ell(z′, A′)

vol ell(z,A)
=
√

detA′ =

(
n2

n2 − 1

)(n−1)/2(
n

n+ 1

)
< e−1/(2n+2),

where the last inequality follows from the fact that 1 + x < ex when x 6= 0.
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Figure 2. From left-to-right and top-to-bottom, the first four steps of the
ellipsoid method with infinite precision. The optimization direction is shown
on the first step. On each step the convex body over which we optimize is
shown in gray, the current ellipsoid is draw with a full line and its center
is marked, the separating hyperplane is shown, and the next ellipsoid to be
considered is drawn with a dashed line.

Let (K,n, a0, r, R) be a convex body. Given c ∈ Rn and ε > 0, set

N = (2n2 + 2n)

⌈
ln

2R2‖c‖
rε

⌉
.

We start be considering a first ellipsoid ell(x0, A0), actually a ball, that contains K,
by setting

x0 = a0 and A0 = R2I.

At a given step k ≥ 0 of the algorithm we proceed as follows. We run the separation
oracle for xk. If xk ∈ K, then set a = c. If not, then let d ∈ Rn give the separating
hyperplane, and set a = −d. Then we find xk+1 and Ak+1 according to Lemma 2 so
that ell(xk+1, Ak+1) is the smallest ellipsoid containing ell(xk, Ak)∩{x ∈ Rn : aTx ≥
aTxk } and we proceed to the next step. Figure 2 shows an example of the first few
steps of the method applied to a given convex body.

By construction, every ellipsoid computed contains an optimal solution of the
original problem. Let j be such that

cTxj = max{ cTxk : k = 0, . . . , N and xk ∈ K }

and set x̂ = xj . Let us analyze how close x̂ is to an optimal solution.
To this end, let x∗ be an optimal solution to the optimization problem. We know

that the ball B(x0, r) is contained in K. Notice that B(x0, r)∩{x ∈ Rn : cTx = cTx0 }
is an (n− 1)-dimensional ball of radius r and center x0.

Consider then the cone whose base is this ball and whose vertex is x∗. This cone
is contained in K because K is convex. The portion of the cone contained in the half-
space {x ∈ Rn : cTx ≥ cTx̂ } is by construction contained in the ellipsoid ell(xN , AN ).
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The volume of this portion of the cone is

volBn−1r
n−1(cTx∗ − cTx0)

n‖c‖

(
cTx∗ − cTx̂
cTx∗ − cTx0

)n
≤ vol ell(xN , AN )

≤ e−N/(2n+2) volBnR
n,

where the last inequality comes from the repeated application of Lemma 2.
From this we get

cTx∗ − cTx̂ ≤ e−N/(2n
2+2n)R

(
n volBn
volBn−1

)1/n(
cTx∗ − cTx0

r

)n−1
n

‖c‖1/n.

Now, notice that

cTx∗ − cTx0 = cT(x∗ − x0) ≤ ‖c‖‖x∗ − x0‖ ≤ R‖c‖,

and hence

cTx∗ − cTx̂ ≤ 2e−N/(2n
2+2n)R

2

r
‖c‖ ≤ ε.

So, to achieve a precision of ε, we need a polynomial number of iterations. Of
course, in our description we went over many details. The assumption that one can
work with real numbers is quite a strong one, and it is a priori not clear that one can
work only with rational numbers and rational approximations.

4. The ellipsoid method with rational arithmetic

In the previous section we described the ellipsoid method assuming that one could
compute with real numbers. Most of the work in proving Theorem 1 is to show that
one can work with finite precision and rational arithmetic.

This requires a slight modification of the ellipsoid method as we presented before
and careful error estimates to arrive at the result. Here is a precise description of the
algorithm.

Consider a convex body (K,n, a0, r, R), a vector c ∈ Qn, and ε > 0. Without loss
of generality assume ε < r, ‖c‖ ≥ 1, and n ≥ 2. Assume there is an algorithm to
solve the weak separation problem for this convex body.

We start by setting

N = 4n2
⌈

ln
2R2‖c‖
rε

⌉
, δ =

4−NR2

300n
, and p = 5N.

As before, the initial ellipsoid ell(x0, A0) is just a ball containing K, that is, we
set x0 = a0 and A0 = R2I.

At a given step k ≥ 0 of the algorithm, we run the weak separation algorithm
for xk. If d(xk,K) ≤ δ, then k is called a feasible index and a = c. If the separation
algorithm gives a hyperplane d, then a = −d. The ellipsoid ell(xk+1, Ak+1) is then
defined as follows. We let

bk =
Aka√
aTAka

, x∗k = xk +
1

n+ 1
bk, and A∗k =

2n3 + 3

2n2

(
Ak −

2

n+ 1
bkb

T

k

)
.

Then we obtain xk+1 from x∗k and Ak+1 from A∗k by rounding every number to p
binary digits after the decimal point.

Notice that, with n2/(n2− 1) in place of (2n3 + 3)/(2n2), ell(x∗k, A
∗
k) would be the

minimum-volume ellipsoid containing one of the halves of ell(xk, Ak), cf. Lemma 2,
as we used in the description of the method with infinite precision. The enlarged
ellipsoid is taken to deal with rounding errors.
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Theorem 3. Let j be such that

cTxj = max{ cTxk : k = 0, . . . , N − 1 is feasible }

and set x̂ = xj. Then, if x∗ is an optimal solution of the optimization problem, we
have cTx̂ ≥ cTx∗ − ε.

The theorem says that after a polynomial number of iterations of the ellipsoid
method we find an almost maximizer, that is, a solution to the weak optimization
problem. If the weak separation algorithm runs in polynomial time, since the number
of digits used is always polynomial, we see that the whole algorithm runs in poly-
nomial time. The analysis of the algorithm is now more involved because we do not
assume infinite precision. Details can be found in the paper by Grötschel, Lovász,
and Schrijver [1].

So we have one direction of Theorem 1, namely that a polynomial-time algorithm
for separation gives a polynomial-time algorithm for optimization. The other direction
is much easier to derive; see Theorem 3.1 in Grötschel, Lovász, and Schrijver [1].

5. Consequences to conic programming

Consider a class of conic programming problems, the k-th problem of which is

maximize cTkx

aTk,ix ≤ bi for i = 1, . . . , mk,

x ∈ Ck,

where Ck ⊆ Rnk is a closed and convex cone. Let Fk be the feasible region of this
problem

To be even more precise, we let Π = {σk : k ≥ 0 } be the language such that σk
is an encoding of the ak,i and bi. Assume moreover that for each σ ∈ Π there
is a0 ∈ Rnk and numbers r and R such that Kσ = (Fk, nk, a0, r, R) is a convex body.
Then K = {Kσ : σ ∈ Π } is a class of convex bodies.

Theorem 1 says that there is a polynomial-time algorithm to solve the weak op-
timization problem for K if and only if there is a polynomial-time algorithm to solve
the weak separation problem for K. To solve the weak separation problem for the
k-th conic programming problem we have to check whether a given vector satisfies
all linear inequalities and whether it is in the cone Ck. To test whether the vector
satisfies all linear inequalities it suffices to test each of them, and this takes polyno-
mial time in the input size. Hence the weak separation problem boils down to the
weak separation problem for the cone Ck. In other words: the complexity of conic
programming is determined by the complexity of the cone.

This implies that linear programming and semidefinite programming problems
can be solved in polynomial time. On the other hand, an example of a class of conic
programming problems that are hard to solve is given by copositive programming.
Recall that a matrix A ∈ Sn is copositive if for all x ∈ Rn, x ≥ 0, we have xTAx ≥ 0.
The set of all copositive matrices is a closed and convex cone, but the weak separation
problem for it is NP-hard. So Theorem 1 implies that, unless P = NP, there is no
polynomial-time algorithm to solve copositive programming problems.

The requirement that we should know an interior point of the feasible region to-
gether with balls contained in, and containing the, feasible region can be an obstacle
in applying Theorem 1 directly. In many cases however this problem can be avoided.
For instance, linear programming problems are very well-behaved, and stronger ver-
sions of Theorem 1 hold for them (cf. Schrijver [4]). One can also work-around this
issue if the affine subspace spanned by the feasible region is known (see Exercise 1).
But, as mentioned before, in general such a requirement cannot be removed (cf. §3 in
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Grötschel, Lovász, and Schrijver [1]), and so Theorem 1 does not apply to any class
of conic programs.

As a concrete example of how Theorem 1 applies to semidefinite programming, let
us consider the problem of computing the Lovász theta number [3] of a graph.

Let G = (V,E) be a graph. We want to find the optimal value ϑ(G) of the following
semidefinite programming problem:

maximize 〈J,X〉
trX = 1,

X(u, v) = 0 if uv ∈ E,

X:V × V → R is positive semidefinite,

where J is the all-ones matrix. So we have one optimization problem for each graph G,
and to apply Theorem 1 we want to describe a class of convex bodies indexed by
representations of graphs, so that optimizing a certain objective function over the
convex body associated with a given graph is the same as computing the Lovász
theta number of the graph.

The feasible region of any problem above is not a full-dimensional subset of RV×V ,
so we cannot apply Theorem 1 directly. Notice however that a matrix X ∈ RV×V
that is a solution of our problem can be seen as a vector in RN , where

N = |V |+
(
|V |
2

)
− |E|,

by looking only at the upper-diagonal entries of X and disregarding those that cor-
respond to edges and therefore are equal to 0.

Even in this space, the feasible region is not full-dimensional, because of the con-
straint trX = 1. But if we replace this constraint by trX ≤ 1, the optimal value
does not change, and the feasible region becomes full-dimensional. In fact, then the
matrix (2n)−1I gives an interior point, and it is easy to find balls around this matrix
contained in, and containing the, feasible region.

Exercise 3 shows a way how to solve the weak separation problem for the cone
of positive semidefinite matrices in polynomial time. So Theorem 1 implies that the
Lovász theta number of a graph can be approximated to any desired specified precision
in polynomial time.

6. Exercises

1. Let Π ⊆ {0, 1}∗ and for each σ ∈ Π let Kσ = (K,n,A, b, a0, r, R), where:

1. K ⊆ Rn is a convex set;

2. A ∈ Qm×n and b ∈ Qm are such that H = {x ∈ Rn : Ax = b } is the affine
subspace spanned by K, and moreover the sizes of A and b are bounded by a
polynomial on n and the sizes of σ, a0, r, and R;

3. a0 ∈ K and B(a0, r) ∩H ⊆ K ⊆ B(a0, R) ∩H.

So K = {Kσ : σ ∈ Π } is not necessarily a class of convex bodies, because the
bodies are not necessarily full-dimensional, but for each body we know the affine
subspace it spans.

Fix η > 0. Given σ ∈ Π, let u1, . . . , uk ∈ Qn be an orthogonal basis of the
subspace H with 1− η ≤ ‖ui‖ ≤ 1 for i = 1, . . . , k. Such a basis can be computed in
polynomial-time on the sizes of A and b.

Now, let f :H → Rk be such that f(x) = (α1, . . . , αk), where

x = α1u1 + · · ·+ αkuk.

(a) Estimate r̃ and R̃ so that K̃σ = (f(K), k, f(a0), r̃, R̃) is a convex body.
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(b) Given a polynomial-time algorithm to solve the weak separation problem for the
class K, show how to derive a polynomial-time algorithm to solve the weak separation
problem for K̃ = { K̃σ : σ ∈ Π }.
(c) Show that, given a polynomial-time algorithm to solve the weak separation prob-
lem for K, one can solve the weak optimization problem for K in polynomial time.

2. In this exercise, we will prove that the ellipsoid described in Lemma 2 is a smallest
ellipsoid containing the upper half of the unit ball, though we will not argue that the
minimum-volume ellipsoid is unique.

Say we are given points x1, . . . , xN ∈ Rn and wish to find the minimum-volume
ellipsoid containing these points.

(a) Consider the optimization problem

maximize n+ ln detA

(xi − z)TA(xi − z) ≤ 1 for i = 1, . . . , N ,

A ∈ Sn, A � 0,

(2)

where A and z are the variables. Show that if (z,A) is an optimal solution of this
problem, then ell(z,A−1) is a minimum-volume ellipsoid containing x1, . . . , xN .

(b) Consider the optimization problem

minimize
∑N
i=1 yi − ln det

∑N
i=1 yixix

T

i∑N
i=1 yixi = 0,

yi ≥ 0 for i = 1, . . . , N ,

(3)

where the yi are the variables. Show that, if (z,A) is a feasible solution of (2) and y
is a feasible solution of (3), then

n+ ln detA ≤
N∑
i=1

yi − ln det

N∑
i=1

yixix
T

i .

Hint: The arithmetic-geometric mean inequality says that if α1, . . . , αn ≥ 0, then

n∏
i=1

αi ≤
(

1

n

n∑
i=1

αi

)n
.

Use this to prove that, given a positive semidefinite matrix A ∈ Sn,

detA ≤
(

trA

n

)n
.

(c) Use the previous item to prove the following direction of a theorem of John:
Let x1, . . . , xN ∈ Rn be unit vectors. If there are nonnegative numbers y1, . . . , yN
such that

N∑
i=1

yixi = 0 and

N∑
i=1

yixix
T

i = I,

then the unit ball ell(0, I) is a least-volume ellipsoid containing x1, . . . , xN .

(d) Let e1, . . . , en be the canonical basis of Rn. Prove that the ellipsoid described in
Lemma 2 with z = 0, A = I, and a = e1 is a minimum-volume ellipsoid containing
the points e1, ±e2, . . . , ±en.
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(e) Let x0, . . . , xn ∈ Rn be affinely independent. Show that the minimum-volume
ellipsoid containing x0, . . . , xn is ell(z,A) with

z =
1

n+ 1

n∑
i=0

xi and A =
n

n+ 1

n∑
i=0

(xi − z)(xi − z)T.

3. Let X ∈ Sn.

(a) Let B ⊆ {1, . . . , n} be a set of indices corresponding to a maximal linearly inde-
pendent set of columns of X. Let X̃ be the principal submatrix of X with rows and
columns given by B. Prove that X is positive semidefinite if and only if X̃ is positive
definite.

(b) For k = 1, . . . , n, the k-th principal minor of X is the matrix Xk consisting of
the first k rows and columns of X. Suppose X is such that detX < 0, but detX1,
. . . , detXn−1 > 0. For i = 1, . . . , n let

ai = (−1)iMin,

where Min is the determinant of the (i, n)-minor of X, that is, of the matrix obtained
from X by removing row i and column n. Show that

aTXa = detXn−1 detX.

(c) Use the above, together with the fact that a matrix X is positive definite if
and only if every principal minor has positive determinant (a fact called Sylvester’s
criterion), to give a polynomial-time algorithm that either concludes that a rational
matrix X ∈ Sn is positive semidefinite, or finds a ∈ Qn such that aTXa < 0.

4. Consider a class of semidefinite programming problems, the k-th problem of which
being

minimize xk

x0 = 2,(
1 xi−1

xi−1 xi

)
� 0 for i = 1, . . . , k.

Let Fk be the feasible region of the k-th problem of this class. We know the affine
subspace spanned by Fk and it is easy to find interior points, so the ellipsoid method
can be applied to the class of optimization problems above. Does this mean that any
problem in the class can be solved in time that is bounded by a polynomial in k?
Why?
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