Python and SAGE

e SAGE is a mathematical software
e SAGE is free software
* |t is based on Python

Visit http://www.sagemath.org

* Python: interpreted, dynamically typed language

* Very convenient for many applications

* Slower than C, but many critical parts of SAGE are
written in C, and interfaced with Python

Visit http://www.python.org

http://www.sagemath.org
http://www.sagemath.org

Data types

Integer
>> a
>> b

String
>> a ‘text’ # or "text”
>> len(a)
4
>> a[0]
y

Rational
>> g =
>> b = # Equal to 0 in Python, and 5 / 2 in SAGE

Floating-point

>> a = 1.

>> 1.5 / 3

>> ¢ = 2 a * (3 +Db) / 44 / 55

>> ((2 * a * (3 +Db)) / 44) / 55

Tuples: ordered lists

Tuples are ordered and immutable

>>
>>
>>
>>
>>
>>

1,
(1
= (1
1

(

4

)

)

4

2,
2,

3

3)

Empty tuple

One element tuple
not a tuple!

3 element tuple

The same tuple

TypeError: tuple does not support assignment!
sum(a), max(a), min(a)

(6,

3,

1)

Data types: list

List: works as an array

>> = [] # Empty list

>> = [1, 2] # Two elements in the list
>> a.append(3)

>>

List becomes [5, 2,

Data types: dictionary

Dictionary: efficient dictionary implementation
>> a { } # Empty dictionary
>> a { "Alice”: 1432, "Bob”: 1717 } # Social security numbers
>> "Alice” 1in a
True
"Richard” in a
False
a["Alice”]
1432
a[”"Richard”]
KeyError
a[”Alice”] = 10
a[”"Richard”] = 5
a
{ "Alice”: 10, "Bob”: 1717, "Richard”: 5 }

Conditionals

Some simple conditionals
a = {1}
1f not "Richard” in a:
print "Richard does not have a number!”
a[”"Richard”] = -1
elif a[”Richard”] == -
print ”"Richard didn’t have a number last time!”
else:
print "Richard’s number is”, a[”Richard”]

Python blocks are given by indentation! How would it look like in C?
1if a > b: if (a > b) {

do something do something;
else: }

do something else else {

if a > 2 * b: do something else;

and yet something else if (a > 2 * b) {
oops! not good! and yet something else;

}

Looping: while

While loop
while condition:
do something
break # Finishes loop
continue # Skips to next iteration
else: # optionall!
what is done when condition becomes False
If exit through break, this 1s ignored!

Example: is a number prime!?
f = 2
while f < a:
if a & £ ==
print ”“Number is not prime”
break
f += 1
else:
print ”“"Number is prime”

Looping: for

Use for lists:
fruit list = ["orange”, "grape”, "banana”]
for fruit in fruit list:
print fruit
else:
print ”"End of list”

range:
>> range(a, b, s)

a+ ks <band k=20, 1, 2, ...]
>> 3) # The same as range(0, 3, 1)

Looping: for

Looping with range:

total = 0

for x in range(1l0):
total += X

Now total =0 + 1 + ... + 9

The same as sum(range(10))

In C:

int total = 0;

for (int x 0; x < 10; x++)
total += x

When looping with range, use xrange
fac =1
for x in xrange(l, 10):

fac *= x

s = 1
for k in range(10000000):

S
for k in xrange(10000000): s

*

*

45

1
1

Takes 3.28s
Takes 2.73s

Looping through a dictionary

The dictionary is like a list of the keys!
= { "Alice”: 1, "Bob”: 2 }
for name in a:
print name, a[name]

Result;
Alice 1
Bob 2

Other lists associated with a dictionary:
>> a.keys()

["Alice”, "Bob"”]
>> a.values()

[1, 2]

Functions

Function notation:
def func(): # No arguments!
return "Hello” # Return value is optional!

>> func|()
"Hello”

More complicated example:

def invert if bigger(a, b):
if a > b: return b, a
return a, b

>> invert 1f bigger(l, 2)
(1, 2)

>> invert 1f bigger(2, 1)
(1, 2)

Writing SAGE programs

* Write program to a file
» Use a nice editor, line Emacs in Python mode!
» This helps you with the indentation

* Load itin sage

Program “fac.sage” Sage console:
def fac(p): >> load(”"fac.sage"”)
x =1 120
for kK in xrange(2, p + 1): >> fac(6)
X *= Kk 720
return x

print fac(5)

SAGE Graph class

Used to represent undirected graphs:

>>
>>
>>
>>
>>

={0:[1, '¢"], 'c’:
= Graph(a)

.plot ()

= graphs.PetersenGraph()

.plot()

1,

2

]

}

Adjacency list

Iterating through graphs

List of vertices and the adjacency list of a vertex
> ={ 001, '¢"], '¢c'"s [1, 2]}
>> = Graph(a)
>> G.vertices|()
0, 1, 'c’', 2]

G[1]

[0, ‘¢’]

G['c’]

[0, 1, 2]

G.edges(labels = False)

[(O, 1), (O, "c"), (1, "c"),

How to iterate:
for u in G: # You don’'t need to use G.vertices() here!

print ‘Here are the neighbors of’, u
for v in G[u]:
print v

