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1. Invariant semidefinite programs. Let C, A1, . . . , Am ∈ CV×V be Hermitian matrices,
where V is a finite set. Consider the complex semidefinite programming problem

max 〈C,X〉
〈Ai, X〉 = bi, for i = 1, . . . , m,
X ∈ Cn×n, X � 0.

(1)

Let G be a finite group acting on V . We denote the action of g ∈ G on an element v ∈ V
by g · v. If A ∈ CV×V is a matrix, then for g ∈ G we write g · A for the matrix such
that (g · A)(u, v) = A(g · u, g · v) for all u, v ∈ V . We say that matrix A is G-invariant
if g ·A = A for all g ∈ G.

We say that (1) is G-invariant if, for every feasible solution X ∈ CV×V and every g ∈ G
we have that g ·X is also a feasible solution and 〈C, g ·X〉 = 〈C,X〉. In particular, notice
that if the matrices C and A1, . . . , Am are G-invariant, then also (1) is G-invariant.

Suppose problem (1) is G-invariant. Then when solving it, one may restrict oneself to
G-invariant solutions. Indeed, if X ∈ CV×V is any feasible solution of (1), then

X =
1

|G|
∑
g∈G

g ·X

is G-invariant and feasible, and its objective value is the same as that of X.
Consider the vector space W of all G-invariant matrices. When solving (1), we may

restrict ourselves to matrices in this vector space. Our aim is to use this fact to simplify our
problem.

Notice thatG acts on V×V by g·(u, v) = (g·u, g·v) for all (u, v) ∈ V×V . LetO1, . . . ,ON
be the orbits of this action, that is, for (u, v), (u′, v′) ∈ V ×V we write (u, v) ∼ (u′, v′) if there
is g ∈ G such that (u, v) = g · (u′, v′). Note ∼ gives an equivalence relation, and O1, . . . , ON
are the equivalence classes of this relation.

With this, matrices M1, . . . , MN ∈ CV×V such that

Mk(u, v) =

{
1 if (u, v) ∈ Ok;
0 otherwise,

form an orthogonal basis of W.
So, X ∈ CV×V is G-invariant if and only if

X = α1M1 + · · ·+ αNMN

for some numbers α1, . . . , αN . This means we may rewrite problem (1) as:

max
∑N
k=1 αk〈C,Mk〉∑N
k=1 αk〈Ai,Mk〉 = bi for i = 1, . . . , m,

αk = αk′ if Mk = MT
k′ ,∑N

k=1 αkMk � 0.

Above, constraint αk = αk′ when Mk = MT
k′ ensures that matrix α1M1 + · · ·+ αNMN

will be Hermitian. Our main job is to rewrite the constraint

N∑
k=1

αkMk � 0 (2)

in a simpler form.
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2. Matrix ∗-algebras and the regular representation. We say that a set A ⊆ Cn×n is a
matrix ∗-algebra if (i) A is a complex vector space; (ii) A is closed under taking the conjugate
transpose, i.e., if A ∈ A then also A∗ ∈ A; and (iii) A is closed under multiplication, i.e.,
if A, B ∈ A then AB ∈ A.

An example of a matrix ∗-algebra is the space Cn×n of all n × n complex matrices.
Another example is the space W of matrices invariant under the action of some group.
Indeed, suppose G is a finite group acting on the finite set V . Then, if W is the space of
G-invariant matrices we have

W = {A ∈ CV×V : PT
g APg = A for g ∈ G },

where Pg ∈ CV×V is the permutation matrix associated with element g ∈ G. From this
identity one may easily show that W is a matrix ∗-algebra.

Let A, B be matrix ∗-algebras. A ∗-homomorphism is a linear function φ:A → B such
that (i) φ(A∗) = φ(A)∗ for all A ∈ A and (ii) φ(AB) = φ(A)φ(B) for all A, B ∈ A. If,
moreover, A contains the identity matrix IA, then we require that φ(IA) = IB.

It follows from the Cayley-Hamilton theorem that, if A is a matrix ∗-algebra containing
the identity matrix, then whenever A ∈ A is invertible, then also A−1 ∈ A. This implies
that, if A and B are both matrix ∗-algebras containing the identity, and if φ:A → B is
an injective ∗-homomorphism, then one has that A ∈ A is singular if and only if φ(A) is
singular. This implies in particular that A and φ(A) have the same eigenvalues, and so we
have:

Theorem 1. Let A and B be matrix ∗-algebras containing the identity. Suppose φ:A → B
is an injective ∗-homomorphism. Then A ∈ A is positive semidefinite if and only if φ(A) is
positive semidefinite.

Now, since W is a matrix ∗-algebra, if we find another matrix ∗-algebra V and an
injective ∗-homomorphism φ:W → V, we may rewrite condition (2) equivalently as

N∑
k=1

αkφ(Mk) � 0.

If the matrices in V are smaller than the ones inW, then we have a computationally simpler
constraint to work with.

The main result behind this approach is the following powerful theorem known as the
Wedderburn-Artin theorem:

Theorem 2. Let A be a matrix ∗-algebra containing the identity matrix. Then A is
isomorphic to the algebra

d⊕
k=1

Cnk×nk

for some numbers d and nk. Notice we then have
∑d
k=1 n

2
k = dimA.

We say that a matrix ∗-algebra A is commutative if AB = BA for all A, B ∈ A. A
special case of the above theorem is the following classical result:

Theorem 3. A commutative matrix ∗-algebra A ⊆ Cn×n can be diagonalized, that is,
there is a unitary matrix U ∈ Cn×n such that the matrix U∗AU is diagonal for each A ∈ A.

Proof. LetA1, . . . ,Ar be a basis ofA. We claim thatA1, . . . ,Ar have a common eigenvector.
To show this, we proceed by induction in r.

If r = 1, the claim is obvious. Suppose r > 1. Let λ be an eigenvalue of Ar and write

Eλ = { v ∈ Cn : Arv = λv }.
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Then for i = 1, . . . , r − 1 and v ∈ Eλ we have that Ar(Aiv) = AiArv = λAiv, and
so we see that Aiv ∈ Eλ. So, the restriction of each Ai to Eλ is a linear transformation,
and they commute. This means that A1, . . . , Ar−1 have a common eigenvector (by induc-
tion hypothesis), and since this eigenvector belongs to Eλ it is also an eigenvector of Ar.
So A1, . . . , Ar, and therefore all matrices in A, have a common eigenvector, say e ∈ Cn,
proving the claim.

Let V be the space of vectors orthogonal to e. Then for A ∈ A and x ∈ V we have

e∗(Ax) = (A∗e)∗x = µe∗x = 0

for some number µ, since e is also an eigenvector of A∗ ∈ A. So we see that Ax ∈ V . With
this we may restrict the linear transformations A1, . . . , Ar to the space V and proceed by
induction again, finding at the end an orthogonal basis of Cn×n of common eigenvectors
of A1, . . . , Ar.

It is not always easy to compute the isomorphism that the Wedderburn-Artin theorem
asserts to exist. There is however a simpler, mechanical way to, given a ∗-algebra A, obtain
a ∗-algebra B with rather small matrices and an injective ∗-homomorphism φ:A → B.

Let A be a ∗-algebra and let M1, . . . , MN be a basis of A. To a matrix A ∈ A we may
assign a linear transformation AL:A → A which is such that

AL(X) = AX

for all X ∈ A, that is, AL is the left multiplication by A.
Each transformation AL for A ∈ A has a matrix representation in the basisM1, . . . ,MN ,

which we denote by M(A) ∈ CN×N . The regular ∗-representation of A is then the func-
tion R:A → CN×N which assigns to each matrix A ∈ A the matrix M(A).

It is easy to show thatR gives a ∗-homomorphism betweenA and CN×N . Moreover, ifA
contains the identity matrix, then this homomorphism is injective. Notice moreover that,
whatever the sizes of the matrices Mk might be, their images under the homomorphism R
are N ×N matrices, where N is the dimension of A.

Matrices R(Mk) may be explicitly computed. Indeed, one has that

(Mk)LMj = MkMj =

N∑
i=1

αkijMi

for some numbers αkij , and so the entries of R(Mk) are given as R(Mk)ij = αkij , for i, j =
1, . . . , N . Notice that, in particular, if the matrices M1, . . . , MN ∈ A are all real (as is
the case for the space W of G-invariant matrices), then all the matrices R(Mk) will be real.
This means that, if we have a real semidefinite programming problem from the beginning,
then by using the regular ∗-representation we do not need to consider complex numbers at
any point. Notice that this is not necessarily the case with the Wedderburn-Artin theorem.

So the regular ∗-representation is a simple way to obtain potentially smaller matrices
from our original matrices without having to work hard for it. In practical applications,
like for instance for computing bounds for binary codes, the matrices Mk can be quite
big, but one may find closed formulas for the numbers αkij , so that it is not necessary to
use the computer to compute these numbers, or at any point to work explicitly with the
matrices Mk.
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