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Abstract. Let F be a field containing a primitive m-th root of the unit. We

characterize the actions of a Taft’s algebra Hm of a certain order m on finite
dimensional arbitrary algebras. We describe the action in terms of gradings

and actions by skew-derivations. Moreover we prove the associative algebra

UT2 of 2 × 2 upper triangular matrices with entries from F does not generate
a variety of Hm-module algebras of almost polynomial growth.

1. Introduction

The H-module algebras, where H denotes a Hopf algebra, are important tool
both in the theory of algebraic groups and quantum groups and not only. Motivated
by algebraic structures appearing in Rational Conformal Field Theory (see [21]) it
seems very useful finding constructions associating to an algebra in a monoidal
category a commutative algebra in the monoidal centre. In particular, if you con-
sider an H-module algebra A, then the corresponding commutative algebra in the
braided category of Yetter-Drinfeld modules over H is given by the centralizer of
A in the smash product A#H (see Corollary 5.4 of [7]).

Keeping in mind the above facts, in these notes we would like to characterize
finite dimensional Hm-module algebras (not necessarily associative) in terms of
their gradings and of a proper suitable element when, for a fixed m and over a
field containing a primitive m-th root of unit, Hm is a Taft’s Hopf algebra. We
recall that given an algebra A over a field F , a skew-derivation is an F -linear map
δ of A so that for every a, b ∈ A we have δ(ab) = δ(a)b + α(a)δ(b), where α is a
suitable homomorphism of A. The skew-derivation δ is called inner if there exists
an element y ∈ A so that δ(a) = ya − α(a)y and we write adα(y) instead of δ.
Moreover, if A is a graded algebra, we denote by deg(a) the homogeneous degree
of a ∈ A whenever a is homogeneous in the grading.

Here is the statement of our first general result (see Theorem 8 in the text) that
can be seen as an improvement of one of the results obtained in [23].

If every skew-derivation of A is inner, then an Hm-module algebra structure on A
is completely determined by a choice of a Zm-grading on A and a homogeneous

element y ∈ A so that deg y is non-trivial, and adα(y)m = 0.

Then an Hm-module algebra structure on UTn, the algebra of n × n upper
triangular matrices over a field F , can be effectively computed using one of the
many results characterizing gradings on upper triangular matrices. On this purpose,
we have to cite the papers [29] by Valenti and Zaicev, and [9] by Di Vincenzo,
Koshlukov and Valenti.

The deep reason that lead us to find out relations between H-module algebra
structures and gradings is given by the duality theorem in the case H = FG, where
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G is a finite abelian group. In this case an FG-module algebra is a G-graded algebra
and viceversa. Of course FG is a commutative cocommutative Hopf algebra which
is semisimple if the characteristic of the field is 0 or does not divide the order
of G whereas Hm is an m2-dimensional algebra which is neither cocommutative
nor semisimple. Moreover every non-semisimple Hopf algebra of dimension p2 is
isomorphic to Hp, if p is prime [24].

We also investigate Hm-identities of UT2 seen as an associative algebra. We
furnished a finite set of generators of Hm-identities and its sequence of codimension.
We obtained the following result:

The Hm-exponent of UT2 is 2.

We highlight the fact the Hm-exponent of UT2 is an integer could not be recov-
ered by the results of Gordienko [18] who proved the Hm-exponent of an Hm-simple
algebra is an integer and Karasik [20] who proved the H-exponent of an algebra is
an integer provided H being a finite dimensional semisimple Hopf algebra. In fact
UT2 is neither Hm-simple nor semisimple as mentioned above. We would also cite
the papers [16] and [17] by Gordienko in which the author determines all the Hm-
simple algebras showing they are not finite in number (up to Hm-isomorphisms)
whereas if H is semisimple and finite dimensional the number of non-isomorphic
H-simple algebra is finite (see [12]). We also obtained the next result about the
growth of varieties (see Proposition 20 in the sequel).

The Hm-module algebra UT2 does not generate a variety of almost polynomial
growth.

Finally we wrote a short note on the action of pointed cocommutative Hopf
algebras on UTn in the associative case.

2. Preliminaries

2.1. Gradings on algebras. Let F be a field so that A is a finite dimensional
F -algebra (not necessarily associative) and α an automorphism of A of order m.
We recall the order of an automorphism α of a given algebra A is the order of α as
an element of the group Aut(A) of the automorphisms of A.

Assume charF , the characteristic of F , does not divide m and F contains prim-
itive m-th roots of the unit.

It is well known α induces a Zm-grading on A, that is,

(1) A = A0 ⊕A1 ⊕ · · · ⊕Am−1,

where, for a fixed primitive m-root of unit γ,

Ak = {a ∈ A | α(a) = γka}
is a vector subspace of A and AiAj ⊆ Ai+j , for all i, j ∈ Zm. In this case, (1) is
called a Zm-grading on A.

Group gradings have an extensive own theory. In general, a grading on an algebra
can be defined by arbitrary groups, semigroups, or even sets without any structure.
There is a one-to-one correspondence (duality) between gradings by a group and
the action of a group of automorphisms under some restrictions. In particular we
have the following classical result. We mention that if G is a group we shall denote
by Ĝ its group of characters.

Theorem 1 (Duality Theorem). Let G be a finite abelian group and suppose that
F contains a primitive (expG)-root of unit. Then any G-grading on an algebra A
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defines a Ĝ-action on A by automorphisms and viceversa. In this action, a subspace
V ⊆ A is a graded subspace of A if and only if V is invariant under the Ĝ-action.
An element a ∈ A is homogeneous in the G-grading if and only if a is an eigenvector
for any χ ∈ Ĝ. �

Another generalization of the previous result can be obtained in the case of
gradings by finite semilattices. The result is an easy consequence of Corollary 3.15
of [6] and uses the fact that group-like elements of a Hopf algebra can determine a
grading under some special hypothesis.

Moreover, we can further generalize the previous result in the language of action
of the so-called automorphism group schemes. In such context, we do not impose
any restriction on the base field, and the grading group does not need to be finite.
More information concerning graded algebras can be found in the monograph [11].

2.2. Taft’s Hopf algebras. Let F be a field containing a primitive m-th root of
the unit γ for some positive integer m. Let (Hm,∆, ε, S) be the Hopf algebra so
that

Hm = F 〈c, x | cm = 1, xm = 0, xc = γcx〉
as an algebra with comultiplication ∆ such that

∆(c) = c⊗ c, ∆(x) = x⊗ 1 + c⊗ x
and counit ε defined by

ε(c) = 1, ε(x) = 0.

Moreover the antipode S is such that

S(c) = c−1, S(x) = −c−1x.

Thus, Hm is an m2-dimensional algebra which is neither commutative nor cocom-
mutative. This algebra is known as the Taft’s Hopf algebra of order m. A particular
case of a Taft’s algebra occurs when m = 2 and the latter algebra is known as the
Sweedler’s Hopf algebra.

2.3. H-module algebras. Let A be an F -algebra. We shall call A an H-module
algebra if it is given an H-module structure on A with the additional condition

(2) h(ab) =
∑

h(1)(a)h(2)(b),

for every a, b ∈ A, h ∈ H and ∆(h) =
∑
h(1) ⊗ h(2) using Sweedler’s notation.

As already mentioned the action of an abelian group G on an algebra A can be
seen as an H-module algebra structure on A, where H = FG is a Hopf algebra
with canonical comultiplication and counit.

2.4. Gradings on UTn. In this paper we shall study H-actions on algebras and
we shall give an explicit description of H-actions on the F -algebra UTn of upper
triangular matrices with entries from the field F . We describe the actions in terms
of gradings and actions by skew-derivations.

In [29] the authors give a complete classification of group gradings on UTn con-
sidered as an associative algebra. In particular they prove that every group grading
on this algebra is isomorphic to a so-called elementary grading. We would like to
spend some words toward gradings on matrix algebras. If A = Mn(F ) (the algebra
of n × n matrices with entries of F ) and G is a group, let g = (g1, . . . , gn) be an
n-tuple of elements of G, then A is G-graded by an elementary grading if we set
Ag = Span{epq | ‖epq‖ = g}, where epq are elementary matrices, ‖epq‖ = gqg

−1
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and A =
⊕

g∈GA
g. Of course these definitions apply to any subalgebra of A that

is generated by matrix units and, in particular, to UTn.
We state the main result of [29] in a different language. In order to do this, we

should introduce some notations.
Let us give an alternative definition for the algebra UTn of the upper triangular

matrices with entries from the field F . Let V = Fn be the n-dimensional vector
space over F . Consider a flag of vector subspaces

(3) 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V,

where dimVk = k. We define

UTn := {u ∈ EndF (V ) | u(Vk) ⊂ Vk,∀k}.

Choose any basis of the flag (3), that is, an ordered basis {v1, . . . , vn} of V so that
{v1, . . . , vk} is a basis of Vk, for all k. Thus the elements of UTn have the following
matrix form in the chosen basis:

UTn =


 ∗ . . . ∗

. . .
...

0 ∗


 .

As mentioned before, the complete classification of group gradings on UTn was
given in [29] by Valenti and Zaicev and this result can be restated in terms of
automorphisms of UTn as follows.

Theorem 2. Let α be an automorphism of UTn of order m, and consider the
induced Zm-grading on UTn =

⊕
k∈Zm Ak. Then there exists a basis of the flag (3)

such that every Ak is spanned by matrix units. �

However, the automorphism α acts as a multiplication by a scalar in each Ak.
Hence another (and equivalent) way to state the result above is the following.

Theorem 3. Let α be an automorphism of UTn of order m and let γ be a primitive
m-root of unit. Then there exists a basis of the flag (3) such that for each matrix
unit eij we have α(eij) = γaijeij for some integer aij. Moreover α(eii) = eii, for
all i. �

3. Finite dimensional Hm-module algebras

In this section we shall give some general results about finite dimensional Hm-
module algebras. From now on let A be a finite dimensional algebra over a field F .
We want to study the Hm-actions on A.

Notice that, by (2), the element c acts as a homomorphism of algebras on A.
Moreover, since cm = 1, we obtain that c acts as an automorphism of A of order
m. Using the same idea, x acts as a c-derivation (also known as a skew-derivation),
that is, it satisfies

x(ab) = x(a)b+ c(a)x(b), ∀a, b ∈ A.
Moreover, the actions of x and c are related by xc = γcx. Conversely a choice

of an automorphism α of A of order m and an α-derivation d satisfying dm = 0,
and dα = γαd, defines an Hm-action on A. In fact it is sufficient to consider the
F -algebra F 〈α, d〉 which turns out to be a Hopf algebra isomorphic to Hm. Hence
we get the next result.
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Proposition 4. Let A be a finite dimensional algebra over a field containing a m-
th primitive root of unit γ, assume that its characteristic does not divide m, then
an action of Hm on A is completely determined by a choice of:

(i) an automorphism α of A of order m,
(ii) an α-derivation d of A such that dm = 0, and αd = γdα.

Equivalently, the structure of Hm-module algebra on A is uniquely determined by a
choice of:

(i) a Zm-grading A =
⊕

i∈Zm Ai,

(ii) an α-derivation d (where α defines the Zm-grading above) such that d(Ai) ⊆
Ai+1, and dm = 0.

�

3.1. Properties of the skew-center. In this subsection we show some properties
of the so-called skew-center of a given algebra which intent will be shown later on.
From now on we fix an automorphism α of A.

Definition 1. The left skew-center of A is defined by

Zα(A)l := {a ∈ A | ab = α(b)a,∀b ∈ A}.

In the special case of A being associative, α = 1A we get Zα(A)l = Z(A), where
Z(A) denotes the classical center of A.

We have the following easy result.

Lemma 5. Consider the Zm-grading induced from the automorphism α of order
m, then Zα(A)l is Zm-graded and α(Zα(A)l) = Zα(A)l.

Proof. The first part is an easy and straightforward computation. The second
part is obtained apllying the final statement of Theorem 1 and we get the desired
result. �

Of course we can define analogously the right skew-center of A namely Zα(A)r

and in general the left and right skew-center of A do not coincide if α is any
automorphism. In the case α is of order 2 the things are different. Suppose a ∈
Zα(A)l, then for any b ∈ A we have ab = α(b)a which implies α(a)α(b) = bα(a).
Hence α(Zα(A)l) ∈ Zα(A)r but because of Lemma 5 α(Zα(A)l) = Zα(A)l. We
simply get the two definitions of left and right skew-center are equal in the case α
is an automorphism of order 2 and we are allowed to write Zα(A). Anyway from
now on for the sake of simplicity we shall write Zα(A) instead of Zα(A)l.

The next result will be extremely useful in the sequel.

Lemma 6. Let y ∈ A, y /∈ Zα(A), and assume that α(y)− λy ∈ Zα(A), for some
λ ∈ F . Then, λ 6= 0, and there exists z ∈ Zα(A) such that

α(y + z) = λ(y + z).

Proof. By Lemma 5 we get λ 6= 0 because otherwise α(y) ∈ Zα(A) = α(Zα(A))
and due to the fact that α is an automorphism we obtain y ∈ Zα(A) which is a
contradiction. By the choice of y, the subspace W = Fy+Zα(A) is Zm-graded too.
In fact if w = γy + u, where γ ∈ F and u ∈ Zα(A), then

α(w) = γα(y) + α(u) = γλy + γu′ + α(u) ∈ Fy + Zα(A),
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where u′ ∈ Zα(A)l. Consider a homogeneous basis of W as a vector space obtained
from a completion of a homogeneous basis of Zα(A), say {y + z} ∪ {zi}i∈I , where
{zi}i∈I is a homogeneous basis of Zα(A)l. Hence F (y+z) is a graded subspace, thus
α(y+z) = λ′(y+z), for some λ′ ∈ F . On the other hand, α(y+z) = λy+α(z)+z′,
for some z′ ∈ Zα(A)l. However, since Fy ∩ Zα(A)l = 0, one has λ = λ′. This
means, α(y + z) = λ(y + z) and we are done. �

We say that a skew-derivation d is inner if there exists y ∈ A such that

d(a) = ya− α(a)y, ∀a ∈ A.
We denote by adα(y) the map sending

adα(y) : a 7→ ya− α(a)y

which is of course a skew-derivation. With the notation above we are in position
to state the next.

Lemma 7. Let us consider an Hm-action on A and assume x acts as adα(y),
where y /∈ Zα(A)l. Then we can find y′ ∈ A such that adα(y) = adα(y′), and
α(y′) = γ−1y′.

Proof. Denote by α the action of c, thus αm = 1. Since xα = γαx, for any a ∈ A,
we have

yα(a)− α2(a)y = adα(y)(α(a))

= γα(adα(y)(a))

= γα(ya− α(a)y)

= γ(α(y)α(a)− α2(a)α(y)).

Thus (y−γα(y))α(a) = α2(a)(y−γα(y)), for all a ∈ A. This means that y−γα(y) ∈
Zα(A)l. By Lemma 6, we can find z ∈ Zα(A)l such that α(y + z) = γ−1(y + z).
Thus, y′ := y + z satisfies the conditions of the lemma. �

At the light of the previous result and under the hipothesis of Lemma 7, we can
use without loss of generality either adα(y) or adα(y′). Remark that y′ satisfies
adα(y′)m = 0. Then by Proposition 4 any choice of an automorphism of order m
and such an element y′ defines an action of H on A. This is the content of the
following result.

Theorem 8. Assume that every skew-derivation of A is inner. An Hm-module
algebra structure on A is completely defined by a choice of:

(i) an automorphism α of A of order m,
(ii) an element y ∈ A such that α(y) = γ−1y, and adα(y)m = 0.

Equivalently, an action of Hm on A is completely defined by:

(i) a Zm-grading on A,
(ii) a homogeneous element y ∈ A, such that deg y = γ−1, and adα(y)m = 0.

�

Remark 9. It should be noted that, for a given algebra A, the identification of
a structure of Hm-module algebra with a pair (Γ, y), where Γ is a grading by
a group on A and y ∈ A preserves morphisms in the following sense. Denote
by A1 and A2 two structure of Hm-module algebras on A, and by (Γ1, y1) and
(Γ2, y2) their respective pairs. Then a homomorphism of algebras ϕ : A1 → A2 is a
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homomorphism of Hm-module algebras if and only if ϕ is a graded homomorphism
such that ϕ(y1)− y2 ∈ Zc2(ϕ(A1)), where we denote by c1 and c2 the Hm-module
structure on A1 and A2, respectively. Indeed, one has c2ϕ = ϕc1 if and only if
ϕ is a graded homomorphism. Moreover, ϕadc1(y1) = adc2(y2)ϕ if and only if
(ϕ(y1)− y2)ϕ(x) = c2(ϕ(x))(ϕ(y1)− y2), for all x ∈ A.

4. Hm-actions on upper triangular matrices

Now, we investigate toward the particular case of UTn, the algebra of upper
triangular matrices of order n, with entries from F . We will make use of the results
of the last section and we assume further charF 6= 2.

Proposition 10. Let α be an automorphism of UTn of order m. Then every
α-derivation of UTn is inner.

Proof. By Theorem 3, we can assume α(eij) = λijeij , for some λij 6= 0, for all eij ,
and α(eii) = eii, for all i. Let d be an α-derivation of UTn. The proof will be
performed by induction on n. Let a = d(e11)− 2e11d(e11). So

adα(a)(e11) = d(e11)e11 − 2e11d(e11)e11 − (α(e11)d(e11)− 2α(e11)e11d(e11))

= d(e11)e11 − 2e11d(e11)e11 + e11d(e11)

= d(e2
11)− 2e11d(e11)e11 = d(e11)− 2e11d(e11)e11.

However, d(e11) = d(e2
11) = d(e11)e11 + α(e11)d(e11). Thus,

e11d(e11)e11 = e11d(e11)e2
11 + e2

11d(e11)e11,

so e11d(e11)e11 = 0. This gives adα(a)(e11) = d(e11).
Hence, d′ := d − adα(a) is a derivation such that d′(e11) = 0. Let f = e22 +

· · · + enn. Then fUTnf ' UTn−1. Since d′(e11) = d′(1) = 0, we have d′(f) = 0.
Moreover, for any fuf ∈ fUTnf , we have

d′(fuf) = α(f)d′(u)f = fd′(u)f ∈ fUTnf.

By induction hypothesis, we can find y ∈ fUTnf such that d′ |fUTnf= adα(y) |fUTnf .
Note that adα(y)(e11) = 0. Let d′′ = d′ − adα(y). So, d′′(fUTnf) = 0, and
d′′(e11) = 0.

Now,

d′′(e12) = d′′(e11e12e22) = α(e11)d′′(e12)e22,

so d′′(e12) = λe12, for some λ ∈ F . Let D = d′′−adα(λe11). Note that D(e11) = 0,
and D(fUTnf) = 0. Moreover,

D(e12) = λe12 − adα(λe11)(e12) = 0.

Finally, for any p > 2, we have

D(e1p) = D(e12e2p) = D(e12)e2p + α(e12)D(e2p) = 0.

Thus D = 0 and d is an inner α-derivation. �

Combining Theorem 8 and Proposition 10, we obtain:
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Theorem 11. The action of the Taft’s Hopf algebra Hm on UTn is completely
determined by a choice of an automorphism α of UTn of order m, and an inner
α-derivation by an element y ∈ UTn such that α(y) = γ−1y, and adα(y)m = 0.

Equivalently, the action of H on UTn is completely determined by a choice of a
Zm-grading on UTn, and a homogeneous element y ∈ UTn of homogeneous degree
γ−1 such that adα(y)m = 0. �

Remark 12. Notice that the center of UTn consists of scalar matrices and is therefore
isomorphic to the base field. Moreover, given an automorphism α of UTn, and
y ∈ UTn, if α(y) = γ−1y, then y ∈ J(UTn). Hence y is a nilpotent element.
Moreover, adα(y)m = 0 implies ym = 0. For, denote by Ly and Ry the left and
right multiplication by y, respectively. Then, for any m > 0,

adα(y)m =
m∑
i=0

i∑
j=0

(−1)m−iγ−jLiy ◦Rm−iy ◦ αm−i

=

m∑
i=0

(−1)m−i
(
Jm,i(γ

−1)
)
Liy ◦Rm−iy ◦ αm−i,

where Jm+1,i(γ
−1) = γ−mJm,i(γ

−1) + Jm,i−1(γ−1), J0,1(γ−1) = J1,1(γ−1) = 1.
Assume that ym 6= 0, and let i be the minimum such that there exists a non-zero
entry (i, j) of ym (note that j > i). Then by the above formula, adα(y)meii =
Rmy eii 6= 0. The converse holds if m = 2, that is y2 = 0 implies adα(y)2 = 0.

Remark 13. We can explicitly compute the skew-center of UTn. Let α be an inner
automorphism of UTn of order m. Then it is not hard to conclude that, after a
choice of basis, α(x) = AxA−1, for all x ∈ UTn, where A ∈ UTn is an invertible
diagonal matrix. A direct computation shows that Zα(UTn) = Span{A}.

5. Hm-identities of UT2

In this section we shall compute a finite set of identities in the sense of the action
of Hm on UT2 seen as an associative algebra. As a consequence we shall compute
its codimension series and we find out its exponent exists and is an integer.

We alert the reader that in the sequel we shall write Aφψ instead of ψ(φ(A)) if
R is a ring acting on A in some sense and φ, ψ ∈ R. Of course we shall use the
right-to-left notation in order to denote the composition of homomorphisms too.

We shall construct a free object inside the class of H-module algebras. Let H
be a Hopf algebra with unit 1 and let us consider a countable set of indeterminates
X := {x1, x2, . . .}; we set xj := x1

j . We choose a linear basis (γβ)β∈Λ in H and we
denote by F 〈X|H〉 the free associative algebra over F generated by the free formal
generators x

γβ
i lying in the set XH = {xγβi |i ∈ N, β ∈ Λ, i ∈ N}. If h ∈ H let

xhi :=
∑
β∈Λ αβx

γβ
i for h =

∑
β∈Λ αβγβ , αβ ∈ F , where only a finite number of

αβ ’s is non-zero. We refer to the elements of F 〈X|H〉 as H-polynomials. Note that
here we do not consider any H-action on F 〈X|H〉.

Let A be an algebra with an H-module algebra structure. Any map ψ : X → A
has a unique homomorphic extension ψ : F 〈X|H〉 → A such that ψ(xhi ) = hψ(xi)
for all i ∈ N and h ∈ H. An H-polynomial f ∈ F 〈X|H〉 is an H-identity of A if
ψ(f) = 0 for all maps ψ : X → A which are called substitutions. In other words,
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f(x1, x2, . . . , xn) is an H-identity of A if and only if

ψ(f) = f(x1, . . . , xn) = f(a1, a2, . . . , an) = 0

for any ai ∈ A, where xi := ψ(xi). In this case we write f ≡ 0. The set IdH(A) of all
H-identities of A is an ideal of F 〈X|H〉 which is invariant under all endomorphisms
of F 〈X|H〉, i.e., it is a TH -ideal. Note that our definition of F 〈X|H〉 depends on
the choice of the basis (γβ)β∈Λ in H. However such algebras can be identified in a

natural way, and IdH(A) turns out to be the same.
It is worthy noticing that if we consider the trivial Hopf algebra H = F , then we

are simply studying ordinary polynomial identities and we shall omit any index or
super-index to refer to its H-identities or related stuffs. For further lectures about
polynomail identities we strongly recommend the books [10] by Drensky and [14]
by Giambruno and Zaicev.

Now, let us take a moment to analyze the H-polynomials. First, let us discuss
the proof of Proposition 3.3.6 of [14]. The proof gives us a beautiful duality between
G-gradings and G-actions if G is a finite abelian group (as we mentioned before).
However one can define G-polynomials as FG-polynomials, where the group algebra
FG is endowed with its canonical Hopf algebra structure. Notice also in that proof
the authors take an opportune linear basis of FG (corresponding to “projections”)
such a way the FG-polynomials correspond to G-graded polynomials, where the
G-grading is constructed adequately. Thus, given a finite abelian group G and
a finite-dimensional algebra A with a G-action we obtain a G-grading on A and
viceversa; furthermore, the G-polynomial identities and the G-graded identities
coincide, that is

IdFG(A) = Idgr(A).

Notice also by [3] to every group grading we can associate a certain signature.
We recall the definition of a signature. We say that a vector space A is an Ω-
algebra and Ω is a signature of A, where Ω =

⋃
n≥0 Ωn, if each ωn ∈ Ωn defines

an n-linear map ωn : A × · · · × A → A. For instance, our definition of algebra is
a Ω-algebra, where |Ω2| = 1, and Ωn = ∅, for n 6= 2. We can construct the free
Ω-algebra, so we can talk about Ω-polynomials identities (see, for instance, [19,
Chapter 2]). Let A be a G-graded algebra, where G is finite and define πg : A → A
as the projection with respect to the decomposition A =

⊕
g∈GAg. Hence we can

consider the signature ΩG = Ω1 ∪ Ω2, where |Ω2| = 1, and Ω1 = {πg | g ∈ G}.
In [3], the authors prove that the elements πg(x) in the relatively free ΩG-algebra
correspond to graded variables of degree g. Thus

IdΩG(A) = Idgr(A).

Going back to the Taft’s Hopf algebra Hm, note that if we consider a linear
basis B1 of the subalgebra 〈c〉 of Hm generated by c, then {xiβ | β ∈ B1, i =
0, 1, . . . ,m − 1} is a basis of Hm. Let A be an Hm-module algebra. The proof
of [14, Proposition 3.3.6] gives us a basis {χ1, . . . , χm} of 〈c〉 such that each χi
corresponds to a projection of a certain Zm-grading on A. So B = {xjχi} is a
basis of Hm and Ω = Ω1 ∪ Ω2 is a signature, where Ω1 = B, and |Ω2| = 1. Let
Dm = F 〈x〉 = spanF 〈{1, x, x2, . . . , xm−1}〉. By [3] again we have the variables
xi(χj(x)) correspond to graded variables under the action of xj . In few words the
Hm-polynomials correspond to Zm-graded polynomials with the action of Dm and
the polynomial identities coincide. Finally we have the next.
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Proposition 14. Let A be a finite-dimensional associative Hm-module algebra.
Consider the corresponding Zm-grading and the skew-derivation d, as in Proposition
4, and let Dm = F 〈x〉. We consider the G-graded polynomials with the action of d,
then

IdHm(A) = Idgr,Dm(A).

�

Denote by PHn the space of all multilinear H-polynomials in x1, ..., xn, n ∈ N,
i.e.,

PHn := 〈xh1

σ(1)x
h2

σ(2) · · ·x
hn
σ(n)|hi ∈ H,σ ∈ Sn〉 ⊂ F 〈X|H〉.

The symmetric group Sn acts on the left on the space PHn by σ(xhi ) = xhσ(i) if

σ ∈ Sn. Notice that the vector space PHn ∩ IdH(A) is stable under this Sn action,

hence PHn (A) := PHn /(P
H
n ∩ IdH(A)) is a left Sn-module. This leads us to consider

the Sn-character of PHn (A), namely χHn (A), which is called n-th cocharacter of
polynomial H-identities or the n-th H-cocharacter of A. By the classical theory of
representations of the symmetric group (see for instance the book by Sagan [25]),
the irreducible Sn-characters are in one-to-one correspondence with the partitions
of the non-negative integer n because the ground field is of characteristic 0. In
particular, if χλ denotes the irreducible Sn-character corresponding to the partition
λ, then we are allowed to write

χHn (A) =
∑
λ`n

mH
λ χλ,

where mH
λ ≥ 0 is the multiplicity of the irreducible character χλ in the decomposi-

tion of χHn (A). Moreover the non-negative integer

cHn (A) := dimF (PHn (A))

is called the n-th codimension of polynomial H-identities or the n-th H-codimension
of A. We shall also refer to the sequences {χHn (A)}n≥0, {cHn (A)}n≥0 as the H-
cocharacter sequence of A and the H-codimension sequence of A respectively.

Given an H-module algebra A, if the limit

lim
n

n

√
cHn (A)

exists we shall call it H PI-exponent of A and we shall denote it by expH(A).
It is well known if we specialize H with the dual algebra of the group algebra FG,

where G is a finite group, we get the notion of G-graded identities, codimension,
exponent, etc. The existence of the exponent in the graded case has been studied
by several authors as Giambruno and Zaicev in [15] when G is the trivial group,
Benanti, Giambruno and Pipitone in [4] when G = Z2, by Aljadeff, Giambruno and
La Mattina in [2] in the case A is affine and G is abelian, by Giambruno and La
Mattina (see [13]) if A is any G-graded algebra and G is abelian and in general by
Aljadeff and Giambruno in [1]. In the general case of an H-algebra only partial
results are known about the existence of such exponent. If H is finite dimensional
and semisimple, then Karasik proved in [20] the H-exponent exists and is an integer.
It is easy to see Taft’s algebras are not semisimple algebras. Hence the next result
by Gordienko [18] is another good step in this direction.

Theorem 15. Let A be a finite dimensional Hm-simple algebra over an alge-
braically closed field F of characteristic 0. Then expHm(A) exists and is an integer.
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Notice that neither UT2 is an Hm-simple algebra nor Hm is semisimple, hence
we cannot apply the arguments by Gordienko and Karasik in order to prove the
existence of the Hm-exponent of UT2.

Before starting the calculation of Hm-identities of UT2 we recall the following
result by Valenti about Z2-graded identities of UT2 endowed with the elementary
grading induced by the pair (0, 1). In this case we shall denote by Y = {y1, y2 . . .}
the countable set of variables of degree 0 (even) and by Z = {z1, z2, . . .} the
countable set of variables of degree 1 (odd). We shall denote by R the algebra
F 〈Y ∪ Z|Z2〉.

Proposition 16 ([27, Theorem 2], [22, Theorem 2.1 and Theorem 4.1]). The ideal
of Z2-graded identities of UT2 with the grading defined by the pair (0, 1) is generated
by the following polynomials:

[y1, y2], z1z2.

Moreover for every n ≥ 0 a linear basis for the space PZ2
n (UT2) is given by the

following sets of polynomials:

• uS := yi1 · · · yikzyik+1
· · · yin−1

• u := y1 · · · yn,

where S denotes the ordered k-tuple (i1, . . . , ik), ij ∈ {1, . . . , n} and all the other
indexes are ordered. Finally

cZ2
n (UT2) = n2n−1 + 1

for every n ≥ 1.

Consider now an Hm-action on UT2. By Theorem 11, a structure of Hm-module
algebra on UT2 is equivalent to a Zm-grading and an inner skew-derivation d =
adα(y), where y is homogeneous of non-trivial degree. From the results of [29]
(see Section 2.4 above), there exist two gradings on UT2 up to equivalence: the
non-trivial one (where deg e12 is non-trivial), and the trivial grading. So, there are
three cases to study:

(i) the grading is trivial (so d acts trivially): in this case, IdHm(UT2) equals
the ordinary polynomial identities of UT2;

(ii) the grading is non-trivial and d acts trivially: in this case, IdHm(UT2)
equals the graded polynomial identities of UT2, which are computed in [9]
(see also Proposition 16);

(iii) the grading is non-trivial and d acts non-trivially: in this case, necessarily
d = adα(ae12), for some a ∈ F . We study this case below. Since this is
the sole new case, from now on, an Hm-action on UT2 means a non-trivial
grading on UT2 with a non-trivial action of d always on UT2.

Notice that by Theorem 11, if α is an automorphism of UT2 of degree m and γ
is a primitive m-th root of unity, then

α

((
x11 x12

0 x22

))
=

(
x11 γ−1x12

0 x22

)
,

whereas

adα(y)

((
x11 x12

0 x22

))
=

(
0 a(x22 − x11)
0 0

)
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for any

(
x11 x12

0 x22

)
∈ UT2(F ) and for a suitable y =

(
0 a
0 0

)
satisfying the

hipothesis of Theorem 11.
Now we are ready to state our result about Hm-polynomial identities of UT2.

Theorem 17. For each j = 0, 1, 2, . . . ,m − 1, let βj =
∑m−1
`=0 γj`c`. Denote

yi = xβ0

i , zi = xβ1

i . Then the THm-ideal of UT2 is generated by the following
polynomials:

[y1, y2], z1x
hz2, z

d, xd
2

, yd1x
hyd2 , x

βj ,

where h ∈ Hm, and j = 2, . . . ,m− 1.
Moreover, for every n ≥ 0 a linear basis for the space PHmn (UT2) is given by the

following sets of polynomials:

• uS := yi1 · · · yikzyik+1
· · · yin−1

• u := y1 · · · yn
• wS := yi1 · · · yikydyik+1

· · · yin−1 ,

where S denotes the ordered k-tuple (i1, . . . , ik), ij ∈ {1, . . . , n} and all the other
indexes are ordered. Finally

cHmn (UT2) = n2n + 1

for every n ≥ 1.

Proof. For the sake of simplicity we shall only show the proof for m = 2 because
the other cases can be treated similarly. Moreover until the end of the proof we
will denote H := H2. Direct computations show the polynomials above are H-
identities for UT2. Let I be the TH -ideal generated by those polynomials and let
us prove it equals IdH(UT2). Let f = f(x1, . . . , xn) be an H-polynomial. Because
the characteristic of the field is 0 we may suppose f being multilinear of degree n.

Because of Proposition 14 we have

F 〈X|H2〉 = F 〈Y ∪ Z|D2〉,

where Y = {y1, y2, . . .}, {z1, z2, . . .} are Z2-graded variables and for every i ∈ N we
have yi = xi + xci whereas zj = xj − xcj . From now on we shall consider f as an
element of F 〈Y ∪Z|D2〉/I. Immediately we get f = αu+

∑
S αSuS+

∑
T βTwS with

α, αS , βT ∈ F and S and T are defined as above. Now we consider the substitution
map y 7→ I2, where I2 denotes the identity of UT2, which annihilates wS for every
wS . Hence by Proposition 16 and its proof we get α = αS = 0 for every S. Now
it remains to study the polynomials wS . We define a deg-lex order on the set of
ordered k-tuples S and let S′ being maximal among those so that its coefficient in
the decomposition of f is non-zero. Then we consider the substitution map

yi 7→ e11, yj 7→ e22, y 7→ A,

where i is an entry of S′, j ∈ {1, . . . , n} − S′ and A is so that Ad 6= 0. This
substitution annihilates every wS such that S 6= S′ which means αS′ = 0, then
repeat until all coefficients are 0 and we are done.

Let us consider now n ≥ 1, then the number of polynomials uS and wS is given
by
∑n−1
k=0

(
n−1
k

)
so

cH2
n (UT2) = 1 + 2n

n−1∑
k=0

(
n− 1

k

)
= n2n + 1
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and this completes the proof. �

Corollary 18. The Hm-exponent of UT2 is 2.

We recall that given an H-module algebra A, the variety generated by A is the
class

VH(A) = {B H-module algebra|IdH(A) ⊆ IdH(B)}.
We can speak of H-identities, codimensions, exponent, etc. of a variety V simply
referring to the H-module algebra generating V. Any variety which exponent is 2
and so that any proper subvariety has exponent 1 is said to be of almost polynomial
growth. Varieties of almost polynomial growth are important objects of study in
the theory of algebras with polynomial identities. For our intents we would only
like to cite the paper [28] by Valenti in which varieties of graded algebras of almost
polynomial growth are characterized. In particular we get UT2 with any elemen-
tary G-grading generates a variety of almost polynomial growth. The next is an
important remark on the purpose.

Remark 19. Let F be a field containing a primitive m-th root of unit and so that
its characteristic does not divide m. Let A be an F -algebra and do consider Hm.
Suppose further A being Zm-graded. Then A is an Hm-module algebra too if you
consider the trivial skew-derivation and let us denote such a structure by Agr.
Consider now the Hm-module algebras UT gr2 and UT2, where the last is one so
that the skew-derivation does not act trivially. In this case

UT gr2 ∈ VHm(UT2).

At the light of the previous remark and the discussion above, we get the next
result.

Proposition 20. The Hm-module algebra UT2 does not generate a variety of al-
most polynomial growth.

6. A note on actions of pointed cocommutative Hopf algebras on
finite dimensional algebras

In this section, we study the structure of H-module algebras of a particular
subset of pointed cocommutative Hopf algebras H. Every algebra here is supposed
to be associative.

We consider the following structure generated by the action of a Hopf algebra
H.

Definition 2. Let A be an H-module algebra over a field F . Then the smash
product algebra H#A is defined as follows: as a vector space H#A = H ⊗ A and
we write h#a instead of h⊗ a while the multiplication is given by

(h#a)(k#b) =
∑

h2k#a(h1 · b),

for all a, b ∈ A, h, k ∈ H.

It is easy to see A ∼= 1#A and H ∼= H#1. We also recall for a given Hopf algebra
(H,∆, ε) we define the set of group-like elements as

G(H) := {h ∈ H|∆(h) = h⊗ h},
while we define the set of primitive elements as

P (H) := {h ∈ H|∆(h) = h⊗ 1 + 1⊗ h}.
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Notice that if g is a Lie algebra and U(g) is its universal enveloping algebra, then
P (U(g)) = g.

Moreover a Hopf algebra is said to be pointed if every simple subcoalgebra has
dimension 1 whereas it is said to be connected if the sum of its simple subcoalge-
bras has dimension 1. We have a nice description of pointed cocommutative Hopf
algebras attributed to Cartier and Gabriel in [8] and to Konstant in [26].

Theorem 21. Let H be a Hopf algebra with G = G(H), then if H is pointed
cocommutative we get FG#H1

∼= H via x#h 7→ xh for any x ∈ G, h ∈ H, where
H1 is a suitable sub Hopf algebra of H containing the unit element. �

In the connected case we have the next result due to the independent works by
Cartier [5] and Kostant which remained unpublished.

Theorem 22. Let H be a cocommutative connected Hopf algebra over a field of
characteristic 0. Then H ∼= U(g) for g = P (H). �

Keeping in mind these last two classical results, we assume F is an algebraically
closed field of characteristic zero and H = FG#H1, where G = G(H) is a finite
abelian group, H1 is a FG-module algebra via g · h = ghg−1 for g ∈ G, h ∈ H1,
and H1 = U(g), where g = P (H1) (the set of primitive elements).

We first note that G·g ⊆ g. Thus g is a G-graded algebra and, since G is abelian,
this G-grading on g induces a G-grading on U(g).

Now let A be a finite dimensional H-module algebra. Then A is a G-graded
algebra because, as remarked before, FG can be identified as a subalgebra of H.
Moreover, the G-grading on A induces naturally a G-grading on EndF (A) and then
a G-grading on Der(A), the set of all derivations of A. Also, we get g acts as a set
of derivations on A. This means we have a Lie homomorphism

ι : g→ Der(A)

which is a graded homomorphism too. Hence, we have a graded homomorphism
U(g)→ EndF (A).

Conversely, a G-grading on A and on g and a graded Lie homomorphism g →
Der(A) defines a structure of H-module algebra on A. This is the content of the
next result.

Theorem 23. Let F be an algebraically closed field of characteristic zero. Let H =
FG#U(g), then a structure of H-module algebra on a finite-dimensional algebra A
is uniquely determined by

(i) a G-grading on A,
(ii) a G-grading on g,
(iii) a graded Lie homomorphism g→ Der(A).

�

Looking back at the previous result, we can also consider graded differential
polynomials, that is, graded polynomials under the action of the graded Lie algebra
g. In this case, using Theorem 23, the Hm-identities coincide with the differential
graded polynomial identities. More precisely, we get the next result.

Proposition 24. Let g be a graded Lie algebra and let A be a finite-dimensional
associative g-module algebra. Then

IdH(A) = Idgr,U(g)(A).
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Because of the work [29] every G-grading on UTn is elementary thus is generated
by an n-tuple (g1, . . . , gn) ∈ Gn. As mentioned before (see Proposition 10), every
derivation of UTn is inner. This leads us to the next conclusion.

Theorem 25. Let F be an algebraically closed field of characteristic zero. Let H be
a Hopf algebra as above. Then a structure of H-module algebra on UTn is uniquely
determined by

(i) an n-tuple (g1, . . . , gn) ∈ Gn,
(ii) a G-grading on g,

(iii) a graded Lie homomorphism g→ UT
(−)
n .
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