Steinberg slices in quasi-Poisson varieties

Ana Bălibanu

Harvard University

Geometry in Algebra and Algebra in Geometry - December 17, 2020

M a complex manifold

 $\pi \in \Gamma(\wedge^2 T_M)$ Poisson bivector

 \longrightarrow stratification by symplectic leaves $M = \sqcup L$

Definition

A submanifold $X \subset M$ is a Poisson transversal if, for each symplectic leaf (L, ω) ,

- *X* ⊕*L*;
- $\omega_{|X \cap L}$ is symplectic.

Then

- there is an induced Poisson structure $\pi_X \in \Gamma(\wedge^2 T_X)$;
- the symplectic leaves of (X, π_X) are $\{(X \cap L, \omega_{|X \cap L})\}$.

 $\begin{array}{l} G \text{ semisimple algebraic group of adjoint type over } \mathbb{C} \\ \mathfrak{g} = \operatorname{Lie} \ G \\ l = \operatorname{rk}(\mathfrak{g}) \\ \mathfrak{g}^* \cong \mathfrak{g} \quad \longrightarrow \quad \pi_{KKS} \text{ is a Poisson structure on } \mathfrak{g} \end{array}$

The regular locus of \mathfrak{g} is

$$\mathfrak{g}^{\mathsf{r}} = \{ x \in \mathfrak{g} \mid \dim G^{\times} = I \}.$$

- x regular semisimple \rightsquigarrow G^{x} is a maximal torus
- x regular nilpotent $\rightsquigarrow G^{\times}$ is a abelian group $\cong \mathbb{C}^{l}$

Let $\{e, h, f\} \subset \mathfrak{g}$ be a regular \mathfrak{sl}_2 -triple.

Theorem [Kostant]

The principal slice

$$\mathcal{S} = f + \mathfrak{g}^e \subset \mathfrak{g}^r$$

meets each regular G-orbit on \mathfrak{g} exactly once, transversally.

 \longrightarrow S is a Poisson transversal with $\pi_S = 0$.

The universal centralizer

 μ is a Poisson map with image $\{(x,y)\in\mathfrak{g}\times\mathfrak{g}\mid -y\in {\mathcal G}\cdot x\}$

$$\Rightarrow \quad \mu^{-1}(\mathcal{S} \times -\mathcal{S}) = \mu^{-1}(\mathcal{S}_{\Delta})$$
$$= \{(a, x) \in \mathcal{G} \times \mathcal{S} \mid a \in \mathcal{G}^{\times}\} =: \mathcal{Z}.$$

The universal centralizer Z is a Poisson transversal (=symplectic submanifold) in T_G^* .

G has a canonical smooth compactification \overline{G} , called the wonderful compactification.

Plan

Compactify the centralizer fibers of Z in \overline{G} .

$$G \longrightarrow \overline{G}$$
$$T^*_G \longrightarrow T^*_{\overline{G},D}$$

Extend the symplectic structure on \mathcal{Z} to a log-symplectic structure on its partial compactification.

The wonderful compactification

Let \tilde{G} be the simply-connected cover of G, V a regular irreducible \tilde{G} -representation.

Definition [DeConcini-Procesi]

The wonderful compactification of G is $\overline{G} := \overline{\varphi(G)}$.

- independent of V
- smooth projective $G \times G$ -variety
- $D := \overline{G} \setminus G$ is a simple normal crossing divisor

The wonderful compactification

Example

et
$$G = PGL_2 \quad \rightsquigarrow \quad \tilde{G} = SL_2, \quad V = \mathbb{C}^2.$$
 Then

$$\varphi(G) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{P}(M_{2 \times 2}) \mid ad - bc \neq 0 \right\},$$

and $\overline{G} = \mathbb{P}(M_{2 \times 2}) \cong \mathbb{P}^3$.

$$D = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{P}(M_{2 \times 2}) \mid ad - bc = 0 \right\} \cong \mathbb{P}^1 \times \mathbb{P}^1.$$

Non-example

Let $G = PGL_n$ for $n \ge 3$. Then $V = \mathbb{C}^n$ is not a regular rep of $\tilde{G} = SL_n$, and

$$\overline{G} \ncong \mathbb{P}^{n^2-1}$$

 ${\cal T}^*_{\overline{G},D}$ logarithmic cotangent bundle of \overline{G}

- sections are logarithmic differential forms with poles along \boldsymbol{D}
- canonical log-symplectic Poisson structure
 - top wedge power of Poisson bivector vanishes with minimal multiplicity on D
- open dense symplectic leaf is $T_G^* \subset T_{\overline{G},D}^*$

 $T^*_{\overline{G},D}$ sits as a subbundle

The partial compactification $\overline{\mathcal{Z}}$

 $\overline{\mu}$ is a Poisson map with image $\mathfrak{g} \times_{\mathfrak{g}//G} \mathfrak{g}$.

$$\Rightarrow \quad \overline{\mu}^{-1}(\mathcal{S} \times -\mathcal{S}) = \overline{\mu}^{-1}(\mathcal{S}_{\Delta})$$

is a smooth submanifold of $T^*_{\overline{G},D}$ with an induced log-symplectic Poisson structure.

Theorem [B.]

$$\overline{\mu}^{-1}(\mathcal{S}_{\Delta}) \cong \{(a, x) \in \overline{G} \times \mathcal{S} \mid a \in \overline{G^{\times}}\} =: \overline{\mathcal{Z}}$$

is a smooth, log-symplectic partial compactification of \mathcal{Z} .

A multiplicative analogue

$$\mathfrak{g} \longrightarrow \tilde{G}$$

$G \subset \tilde{G}$ by conjugation

Theorem [Steinberg]

There is an I-dimensional affine subspace

$$\Sigma \subset \tilde{G}^{\mathsf{r}}$$

which meets each regular conjugacy class in \tilde{G} exactly once, transversally.

A multiplicative analogue

Definition

The (multiplicative) universal centralizer of \tilde{G} is

$$\mathfrak{Z} := \left\{ (a, h) \in \mathcal{G} \times \Sigma \mid aha^{-1} = h \right\}$$

$$\mathfrak{g} \longrightarrow \widetilde{G}$$
$$\mathcal{S} \longrightarrow \Sigma$$
$$\mathcal{Z} \longrightarrow \mathfrak{Z}$$

A multiplicative analogue

Definition

The (multiplicative) universal centralizer of \tilde{G} is

$$\mathfrak{Z} := \left\{ (a, h) \in G \times \Sigma \mid h \in \Sigma, aha^{-1} = h \right\}$$

$$\mathfrak{g} \longrightarrow \widetilde{G}$$
$$\mathcal{S} \longrightarrow \Sigma$$
$$\mathcal{Z} \longrightarrow \mathfrak{Z}$$

$$T_G^*, T_{\overline{G},D}^* \longrightarrow ??$$

$$\begin{split} \tilde{G} & \subset M & \longrightarrow & \mathfrak{g} \longrightarrow \mathsf{\Gamma}(T_M) \\ & \xi \longmapsto \xi_M \end{split}$$

There is a canonical invariant Cartan 3-tensor $\chi \in \wedge^3 \mathfrak{g}$ $\rightsquigarrow \chi_M \in \Gamma(\wedge^3 T_M)^{\tilde{G}}.$

Definition [Alekseev-Kosmann-Schwartzbach-Meinrenken]

A quasi-Poisson structure on M is a bivector $\pi \in \Gamma(\wedge^2 T_M)^{\tilde{G}}$ such that

$$[\pi,\pi]=\chi_{\mathcal{M}}.$$

The q-Poisson manifold (M, π) is Hamiltonian if it is equipped with a group-valued moment map

$$\Phi: M \longrightarrow \tilde{G}.$$

Quasi-Poisson structures

Definition [Alekseev-Kosmann-Schwartzbach-Meinrenken]

The Hamiltonian q-Poisson manifold (M,π) is nondegenerate if

$$\Psi: T_M^* \oplus \mathfrak{g} \longrightarrow T_M$$
$$(\alpha, \xi) \longrightarrow \pi^{\#}(\alpha) + \xi_M$$

is surjective. In general, im $\Psi \subset T_M$ is an integrable distribution

 $\rightsquigarrow M$ is stratified by nondegenerate q-Poisson leaves.

Example

 $\tilde{G} \subset \tilde{G}$ by conjugation

```
\tilde{G} has a q-Poisson bivector \pi_{AKM} \in \Gamma(\wedge^2 T_{\tilde{G}})^{\tilde{G}}
moment map \Phi = \operatorname{Id}
```

nondegenerate leaves \leftrightarrow conjugacy classes

Quasi-Poisson structures

Example

The double $\mathbb{D}_G := G \times \tilde{G}$ has a nondegenerate q-Poisson structure relative to the action

$$(g_1,g_2)\cdot(a,h)=(g_1ag_2^{-1},g_2hg_2^{-1}).$$

The group-valued moment map is

Proposition [B.]

Let (M, π) be a q-Poisson \tilde{G} -manifold,

 $M = \sqcup L$ its stratification by nondegenerate leaves,

and with moment map

$$\Phi: M \longrightarrow \tilde{G}.$$

Then $M_{\Sigma} := \Phi^{-1}(\Sigma)$ is a smooth submanifold of M, with a natural induced Poisson structure $\pi_{\Sigma} \in \Gamma(\wedge^2 T_{M_{\Sigma}})$, whose symplectic leaves are $\{M_{\Sigma} \cap L\}$.

Steinberg slices

Example

The image of μ is $\{(g, h) \in \tilde{G} \times \tilde{G} \mid g \in G \cdot h^{-1}\}$

$$\Rightarrow \quad \mu^{-1}(\Sigma \times \iota(\Sigma)) = \mu^{-1}(\Sigma_{\Delta})$$
$$= \{(a, h) \in G \times \Sigma \mid aha^{-1} = h\} = \mathfrak{Z}.$$

 $\rightsquigarrow \mathfrak{Z}$ is a symplectic manifold.

The partial compactification $\overline{\mathfrak{Z}}$

Recall the inclusions

Proposition [B.]

 \mathbb{D}_{G} extends to a smooth, q-Poisson variety

The partial compactification $\overline{\mathfrak{Z}}$

 $\overline{\mu}$ is a q-Poisson moment map with image $\tilde{G}\times_{\tilde{G}//G}\tilde{G}.$

$$\Rightarrow \quad \overline{\mu}^{-1}(\Sigma \times \iota(\Sigma)) = \overline{\mu}^{-1}(\Sigma_{\Delta})$$

is a smooth submanifold of $\mathbb{D}_{\overline{G}}$ with an induced Poisson structure.

Theorem [B.]

$$\overline{\mu}^{-1}(\Sigma_{\Delta}) \cong \{(a,g) \in \overline{G} \times \Sigma \mid a \in \overline{G^g}\} =: \overline{\mathfrak{Z}}$$

is a smooth, log-symplectic partial compactification of \mathfrak{Z} .