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Waring problem in number theory

The Waring problem, in number theory, is the search, for each
exponent k , for the minimum s such that every positive integer
can be decomposed as a sum of at least s perfect k-th powers.

The first result in this direction was proved by Lagrange. Any
positive integer is the sum of four squares. Any positive
integer is the sum of nine cubes, 19 fourth powers, 37 fifth
powers and 73 sixth powers.

Hilbert proved that for every k ≥ 2 the Waring problem is well
posed, that is, there is a s such that every positive integer can
be decomposed as a sum of at least s perfect k-th powers.
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Waring problem for polynomials

In analogy, the algebraic Waring problem asks what is the
minimum s such that any homogeneous polynomial
f ∈ C[x0, . . . , xn]d , of degree d , can be decomposed as a sum
of at least s perfect d-th powers of linear forms.

This version of the problem was solved for generic polynomials
by Alexander and Hirschowitz. They studied the higher secant
defect of Veronese varieties.

R. Gondim Waring problems and the Lefschetz properties



Waring problem for polynomials

In analogy, the algebraic Waring problem asks what is the
minimum s such that any homogeneous polynomial
f ∈ C[x0, . . . , xn]d , of degree d , can be decomposed as a sum
of at least s perfect d-th powers of linear forms.

This version of the problem was solved for generic polynomials
by Alexander and Hirschowitz. They studied the higher secant
defect of Veronese varieties.

R. Gondim Waring problems and the Lefschetz properties



Waring problem for polynomials

In analogy, the algebraic Waring problem asks what is the
minimum s such that any homogeneous polynomial
f ∈ C[x0, . . . , xn]d , of degree d , can be decomposed as a sum
of at least s perfect d-th powers of linear forms.

This version of the problem was solved for generic polynomials
by Alexander and Hirschowitz. They studied the higher secant
defect of Veronese varieties.

R. Gondim Waring problems and the Lefschetz properties



Variants of the Waring problem

We are interested in three variants of the Waring problem, our
focus are special forms. In order to change to a local problem,
we consider these notions of rank for f ∈ Rd = C[x0, . . . , xn]d .

1 The Waring rank of f is its algebraic rank: it is the
minimum s = wrk(f ) such that f can be decomposed as
a sum of d-th powers of s distinct linear forms.

2 The Border rank of f is its geometric rank: it is the
minimum s = rk(f ) such that the class [f ] ∈ P(Rd)
belongs to the s-th secant variety of the Veronese variety
Vd(Pn) ⊂ P(Rd). It is equivalent to say that there is a
one parameter family of forms ft of Waring rank s such
that f = lim

t→0
ft .

3 The Cactus rank of f is its schematic rank: it is the
minimum s = cr(f ) such that there is a finite scheme K
of length s, K ⊂ Vd(Pn) ⊂ P(Rd) such that [f ] ∈< K >.

R. Gondim Waring problems and the Lefschetz properties



Variants of the Waring problem

We are interested in three variants of the Waring problem, our
focus are special forms. In order to change to a local problem,
we consider these notions of rank for f ∈ Rd = C[x0, . . . , xn]d .

1 The Waring rank of f is its algebraic rank: it is the
minimum s = wrk(f ) such that f can be decomposed as
a sum of d-th powers of s distinct linear forms.

2 The Border rank of f is its geometric rank: it is the
minimum s = rk(f ) such that the class [f ] ∈ P(Rd)
belongs to the s-th secant variety of the Veronese variety
Vd(Pn) ⊂ P(Rd). It is equivalent to say that there is a
one parameter family of forms ft of Waring rank s such
that f = lim

t→0
ft .

3 The Cactus rank of f is its schematic rank: it is the
minimum s = cr(f ) such that there is a finite scheme K
of length s, K ⊂ Vd(Pn) ⊂ P(Rd) such that [f ] ∈< K >.

R. Gondim Waring problems and the Lefschetz properties



Variants of the Waring problem

We are interested in three variants of the Waring problem, our
focus are special forms. In order to change to a local problem,
we consider these notions of rank for f ∈ Rd = C[x0, . . . , xn]d .

1 The Waring rank of f is its algebraic rank: it is the
minimum s = wrk(f ) such that f can be decomposed as
a sum of d-th powers of s distinct linear forms.

2 The Border rank of f is its geometric rank: it is the
minimum s = rk(f ) such that the class [f ] ∈ P(Rd)
belongs to the s-th secant variety of the Veronese variety
Vd(Pn) ⊂ P(Rd). It is equivalent to say that there is a
one parameter family of forms ft of Waring rank s such
that f = lim

t→0
ft .

3 The Cactus rank of f is its schematic rank: it is the
minimum s = cr(f ) such that there is a finite scheme K
of length s, K ⊂ Vd(Pn) ⊂ P(Rd) such that [f ] ∈< K >.

R. Gondim Waring problems and the Lefschetz properties



Variants of the Waring problem

We are interested in three variants of the Waring problem, our
focus are special forms. In order to change to a local problem,
we consider these notions of rank for f ∈ Rd = C[x0, . . . , xn]d .

1 The Waring rank of f is its algebraic rank: it is the
minimum s = wrk(f ) such that f can be decomposed as
a sum of d-th powers of s distinct linear forms.

2 The Border rank of f is its geometric rank: it is the
minimum s = rk(f ) such that the class [f ] ∈ P(Rd)
belongs to the s-th secant variety of the Veronese variety
Vd(Pn) ⊂ P(Rd). It is equivalent to say that there is a
one parameter family of forms ft of Waring rank s such
that f = lim

t→0
ft .

3 The Cactus rank of f is its schematic rank: it is the
minimum s = cr(f ) such that there is a finite scheme K
of length s, K ⊂ Vd(Pn) ⊂ P(Rd) such that [f ] ∈< K >.

R. Gondim Waring problems and the Lefschetz properties



Variants of the Waring problem

We are interested in three variants of the Waring problem, our
focus are special forms. In order to change to a local problem,
we consider these notions of rank for f ∈ Rd = C[x0, . . . , xn]d .

1 The Waring rank of f is its algebraic rank: it is the
minimum s = wrk(f ) such that f can be decomposed as
a sum of d-th powers of s distinct linear forms.

2 The Border rank of f is its geometric rank: it is the
minimum s = rk(f ) such that the class [f ] ∈ P(Rd)
belongs to the s-th secant variety of the Veronese variety
Vd(Pn) ⊂ P(Rd). It is equivalent to say that there is a
one parameter family of forms ft of Waring rank s such
that f = lim

t→0
ft .

3 The Cactus rank of f is its schematic rank: it is the
minimum s = cr(f ) such that there is a finite scheme K
of length s, K ⊂ Vd(Pn) ⊂ P(Rd) such that [f ] ∈< K >.

R. Gondim Waring problems and the Lefschetz properties



Wild forms

We know that rk(f ) ≤ wrk(f ) and cr(f ) ≤ wrk(f ), while in
general cr(f ) and rk(f ) are incomparable. Very few examples
are known satisfying cr(f ) > rk(f ), they are called wild forms.
According to the best of our knowledge, the first example of
wild form was constructed by W. Buczyńska, J. Buczyński.
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BB = Un esempio semplicissimo

Consider the cubic
f = xu2 + y(u + v)2 + zv 2 ∈ C[x , y , z , u, v ]3. It is easy to
compute its Waring rank wrk(f ) = 9. They showed, explicitly,

that rk(f ) ≤ 5. Indeed, f = lim
t→0

1

t
ft , with

36ft = 12(u + tx)3 − 12(u + v + ty)3

−4(2v − tz)3 − 4(u − v)3 + 4(u + 2v)3.

On the other hand, cr(f ) = 6 which agrees with the
description of f as the sum of three double points in the
Veronese.
To conclude that cr(f ) = 6 the authors studied the saturation
of the annihilator of f .
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The hypersurface X = V (f ) ⊂ P4 given by
f = xu2 + y(u + v)2 + zv 2 ∈ C[x , y , z , u, v ]3 appears in the
1901 paper of Perazzo, since it is a counter-example of Hesse’s
claim that all forms with vanishing hessian are cones.
Recalling Gordan-Noether criterion, the vanishing of the
Hessian is equivalent to the non dominance of the gradient
map ∇f : P4 99K P4. In fact, the hessian is the Jacobian of
the gradient. Since 4fx fz = (fy − fx − fz)2, the gradient map is
not dominant. The surprising fact is that the vanishing of the
Hessian is also related with the annihilator of f in the sense of
Macaulay-Matlis duality.

R. Gondim Waring problems and the Lefschetz properties



The hypersurface X = V (f ) ⊂ P4 given by
f = xu2 + y(u + v)2 + zv 2 ∈ C[x , y , z , u, v ]3 appears in the
1901 paper of Perazzo, since it is a counter-example of Hesse’s
claim that all forms with vanishing hessian are cones.
Recalling Gordan-Noether criterion, the vanishing of the
Hessian is equivalent to the non dominance of the gradient
map ∇f : P4 99K P4. In fact, the hessian is the Jacobian of
the gradient. Since 4fx fz = (fy − fx − fz)2, the gradient map is
not dominant. The surprising fact is that the vanishing of the
Hessian is also related with the annihilator of f in the sense of
Macaulay-Matlis duality.

R. Gondim Waring problems and the Lefschetz properties



The hypersurface X = V (f ) ⊂ P4 given by
f = xu2 + y(u + v)2 + zv 2 ∈ C[x , y , z , u, v ]3 appears in the
1901 paper of Perazzo, since it is a counter-example of Hesse’s
claim that all forms with vanishing hessian are cones.
Recalling Gordan-Noether criterion, the vanishing of the
Hessian is equivalent to the non dominance of the gradient
map ∇f : P4 99K P4. In fact, the hessian is the Jacobian of
the gradient. Since 4fx fz = (fy − fx − fz)2, the gradient map is
not dominant. The surprising fact is that the vanishing of the
Hessian is also related with the annihilator of f in the sense of
Macaulay-Matlis duality.

R. Gondim Waring problems and the Lefschetz properties



The hypersurface X = V (f ) ⊂ P4 given by
f = xu2 + y(u + v)2 + zv 2 ∈ C[x , y , z , u, v ]3 appears in the
1901 paper of Perazzo, since it is a counter-example of Hesse’s
claim that all forms with vanishing hessian are cones.
Recalling Gordan-Noether criterion, the vanishing of the
Hessian is equivalent to the non dominance of the gradient
map ∇f : P4 99K P4. In fact, the hessian is the Jacobian of
the gradient. Since 4fx fz = (fy − fx − fz)2, the gradient map is
not dominant. The surprising fact is that the vanishing of the
Hessian is also related with the annihilator of f in the sense of
Macaulay-Matlis duality.

R. Gondim Waring problems and the Lefschetz properties



Forms with minimal border rank and vanishing

Hessian

This idea was generalized for concise forms with minimal
border rank and vanishing Hessian by Huang, Micha lek and
Ventura.

Theorem (Huang, Micha lek and Ventura)

Let f ∈ Rd be a concise form with minimal border rank. If
hessf = 0, then f is wild.
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Macaulay-Matlis duality

Theorem (Double annihilator Theorem of Macaulay)

Let R = K[x0, x1, . . . , xn] and let Q = K[X0,X1, . . . ,Xn] be

the ring of differential operators. Let A =
d⊕

i=0

Ai = Q/I be a

standard graded Artinian K-algebra. Then A is a standard
graded Gorenstein algebra of socle degree d if and only if there
exists f ∈ Rd such that A ' Q/Ann(f ).

We say that f is concise if dim A1 = n + 1, or equivalently
I1 = 0. In this case codimA = n + 1.
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Mixed Hessian

Let A = Q/Ann(f ) be a standard graded Artinian Gorenstein
K -algebra of socle degree d . Let k ≤ l ≤ d be two integers
and let Bk = (α1, . . . , αmk

) be an ordered K-linear basis of Ak

and let Bl = (β1, . . . , βml
) be an ordered K-linear basis of Al .

The mixed Hessian of f of order (k , l) with respect to the

basis Bk and Bl is the matrix Hess
(k,l)
f := [αiβj(f )]mk×ml

.

Moreover, we define Hesskf = Hess
(k,k)
f and hesskf = det(Hesskf )

the Hessian matrix of k-th order and the Hessian of k-th order
of f respectively. Notice that hessf = hess1f .
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Hessian criteria for SLP and WLP

Theorem (-,Zappala,2018)

Let A = Q/AnnQ(f ) be a n AG algebra and L ∈ A1. Let Bk

and Bl be ordered basis ofr Ak and Al . The matrix of the map
•Ll−k : Ak → Al , for k < l ≤ d

2
, with respect to the basis Bk

and Bl coincides with Hess
(d−l ,k)
f (L⊥), using basis B∗l and Bk .

In particular:

rk
(
•Ll−k

)
= rk

(
Hess

(d−l ,k)
f (L⊥)

)
.
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An upper bound for the border rank of GNP

We recall that a form is wild if cr(f ) > rk(f ). Our strategy to
construct wild forms is to find an upper bound for the border
rank and a lower bound for the cactus rank and compare them.

Proposition

Let f ∈ C[x1, . . . , xn, u, v ](k,d−k) be a bi-homogeneous form of
bi-degree (k , d − k) with 1 ≤ k ≤ d − k . The border rank of
f satisfies:

rk(f ) ≤ k(d + 2).
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Degenerated Hessian and saturation

A form f ∈ Rd is called k-concise, with d ≥ 2k + 1, if Ij = 0
for j = 1, 2, . . . , k . It is equivalent to aj =

(
n+j
j

)
for

j = 0, . . . , k . As usual, 1-concise forms are called concise.

Lema

Let f ∈ Rd be a k-concise form and A = Q/I be the
associated algebra with I = Annf . Suppose that ak ≤ ad−s and

k + s ≤ d . If Hess
(k,s)
f is degenerated, then exists α ∈ I satk \ Ik .
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Proof

We are considering Hess
(k,s)
f as a matrix in R . By the Hessian

criteria 3, for each L ∈ A1, the map •Ld−s−k : Ak → Ad−s is

represented by Hess
(k,s)
f (L⊥). Therefore, there is a universal

polynomial in the kernel of Hess
(k,s)
f such that its image

α ∈ Ak belongs the kernel of •Ld−s−k for every L ∈ A1, that is
Ld−s−kα ∈ Id−s . In particular, X d−k−s

i α ∈ Id−s for
i = 0, . . . , n, that is, α ∈ I satk \ Ik .
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k-concise wild forms with vanishing Hessian

Lema

Let f ∈ Rd be a k−concise form with 2k < d and let
I = Ann(f ) ⊂ Q. Let J = (Id−k) ⊂ Q be the ideal generated
by the degree d − k part of I . If J sat

l 6= ∅ for some l ≤ k , then

cr(f ) > ak =

(
n + k

k

)
.
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k-concise wild forms with vanishing Hessian

Theorem

Let f ∈ Rd be a k-concise homogeneous form, with 2k ≤ d . If
hessf = 0, then

cr(f ) >

(
n + k

k

)
.

In particular, if rk(f ) ≤
(
n+k
k

)
, then f is wild.
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k-concise wild forms with vanishing Hessian

The following Corollary is the main resul of Huang, Micha lek
and Ventura.

Corollary

Let f ∈ Rd be a concise form with minimal border rank. If
hessf = 0, then f is wild.

Proof.

Minimal border rank means rk(f ) = n + 1. Since f is 1-concise
and hessf = 0, by Theorem 7, we get cr(f ) > n + 1.
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Example (A wild form with non minimal border rank)

Consider the forms f ∈ C[x , y , z , u, v ]288, given by f = g 16

with
f = xu17 + yu16v + zv 17.

We know that f has vanishing Hessian. Indeed, by
Gordan-Noether criteria, since the partial derivatives of g
satisfy g 16

x gz = g 17
y , they are algebraically dependent,

therefore, hess f = 0. Moreover, the choice of g was in such
a way that its polar image has degree d . If the polar degree
was lower, then the f could be not 16-concise. We checked
the 16-conciseness of f which implies that its border rank is
non minimal. In this case cr(f ) > a16 = 4845 and
rk(f ) ≤ 4640, hence f is wild.
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k-concise wild forms with non vanishing Hessian

Lema

Let f ∈ Rd be a k−concise form with 2k < d . Let
I = Ann(f ) ⊂ Q and A = Q/I . Suppose that Hilb(A) is
unimodal. Let J = (I≤d−k) ⊂ Q be the ideal generated by the
graded parts of degree ≤ d − k of I . If J sat

l 6= ∅ for some
l ≤ k , then

cr(f ) > ak =

(
n + k

k

)
.
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k-concise wild forms with non vanishing Hessian

Theorem

Let f ∈ Rd be a k-concise homogeneous form with 2k ≤ d
and let l , s be integers such that l ≤ k ≤ s and s + l ≤ d . Let
I = Ann(f ) and A = Q/I and suppose that Hilb(A) is

unimodal. Suppose that Hess
(l ,s)
f is degenerated, or

equivalently, for a generic L ∈ A1, the map
•Ld−s−l : Al → Ad−s is not injective. Then:

cr(f ) >

(
n + k

k

)
.

In particular, if rk(f ) ≤ ak , then f is wild.
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Sketch of the Proof

Let I = Annf and consider the algebra A = Q/I . Let
ai = dim Ai . Since A is Gorenstein and k-concise, we get
ak = ad−k =

(
n+k
k

)
, by Poincaré duality. Let J = (I≤d−k) be

the ideal generated by the pieces of I in degree ≤ d − k . Let
B = Q/J and bi = dim Bi , we get that bk =

(
n+k
k

)
and

bd−k = ad−k . By hypothesis we have

al = bl ≤ ak = bk ≤ as = bs = ad−s = bd−s .

By Lemma 5, there is γ ∈ I satl . By hypothesis s ≥ k ,
therefore, d − s ≤ d − k , which implies Id−s = Jd−s , hence
γ ∈ J sat

l . The result follows from Lemma 10.
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The first example of a form with vanishing second Hessian
whose Hessian is non vanishing was given by Ikeda.

Example (A wild form without vanishing hessian)

Let f = xu3v + yuv 3 + x2y 3 ∈ C[x , y , u, v ]5. Let
A = Q/Annf , we get

Hilb(A) = (1, 4, 10, 10, 4, 1).

Therefore f is 2-concise. We know that hess2f = 0. By
Proposition 4, rk(xu3v + yuv 3) ≤ 7. We know that,
rk(x2y 3) = 3, then rk(f ) ≤ 10. By Theorem 11 we get that
cr(f ) > 10, therefore f is wild.
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Corollary

Let Mi ∈ C[x0, . . . , xn]k with i = 0, . . . , b − 1 be all the
monomials of degree k , where b =

(
n+k
k

)
. Let

f =
b−1∑
i=0

Miu
b−iv i ∈ C[x , y , z , u, v ]b+k .

If
(
n+k+2

k

)
> k[(k + 1) +

(
n+k
k

)
], then f is wild.
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