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@ Projective spaces:

P" (C"Jrl\{O} / (%05 -+ s Xn) ~ A(X05- -+, Xn), A#O0
S (xo: 1 Xn)
o Algebraic sets:
Fi,....,Fx € Clxo:---:x,] homogeneous polynomials
X=Z(F,...,F) = {(ao ceecrap)€eP | Fi(ag: - an):0Vi}

Zariski topology: closed sets are the algebraic sets

Projective varieties: irreducible algebraic sets X c PV
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@ Morphisms:

P — Pm
(x0: :Xxp) > (Fg(xo,...,x,,):---:Fm(xo,...,x,,))
Fo,...,Fm € C[xo, . . ., xn] homogeneous of the same degree with no

common zeroes

@ Rational maps:

" SN pm
(x0: - :xn) +— (Fo(xo,...,x,,):---:Fm(xo,...,x,,))

Fo,...,Fm € C[xo, . - ., xn] homogeneous of the same degree
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SETUP

@ Morphisms:
f: X =Y

@ Rational maps:
p: X --» Y

@ Function fields:

C(X) = { meromorphic functions on X }

C(P") = C(x1,...,Xn)
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X CP" complex projective variety

Aut(X) = { f : X — X automorphism }

EXAMPLE (X =P")
Aut(P") = PGL,41(C)
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X CP" complex projective variety

0 —  Aut’(X)  — Aut(X) — Aut(X)/Aut’(X) — 0
N’

C-algebraic group countable discrete group

EXAMPLE (X SMOOTH PROJECTIVE CURVE OF GENUS g )

>

g=>0 g=1 g>2

o g =0 Aut’(P!) = Aut(P!) = PGLy(C)
o g=1 Aut®’(X) = X
e g > 2 Aut(X) is finite
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X C P" complex projective variety

1 - Aut’(X) = Aut(X) = Aut(X)/Aut®(X) — 1
N—_——

C-algebraic group countable discrete group

1 —  Lin(Aut®(X)) — Aut’(X) - Ab, —1
~~

linear algebraic group projective
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The classification problem in Algebraic Geometry

In dimension 1 :

— (= =>
g=>0 g=1 g=>2

M, moduli space of curves of genus g

In higher dimensions : too many isomorphism classes
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P=(0:0:1) ¢ P>

m:X\E —— P>\ {P} E= a;}(P) =P
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The Blowup of P? at a point P

i

The Blowup of X at a point P

The Blowup of X along a proper subvariety Z

X\E —— X\Z
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DEFINITION

X and Y are birational equivalent if 3 dense open subsets U C X and
V C Y and isomorphism

X>U —s Vv

X -~ v

Equivalently:

| C(X) = C(Y) |

The problem of birational classification :

@ Given a projective variety X, to find a simplest representative in its
birational class - minimal model of X

e Construct moduli spaces of minimal models (with fixed discrete
invariants)



The Minimal Model Program (MMP)

Given a projective variety X, to find a simplest representative in its
birational class - minimal model of X

o Dimension 1: Riemann (19" century)

o Dimension 2: ltalian school (early 20" century)

Dimension 3: Mori (1988)

e Dimension > 4: Birkar-Cascini-Hacon-McKernan (2010)
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PROBLEM

For which d and n, is the generic hypersurface Xy C P"*1 rational?

NECESSARY CONDITION

d<n+1
PROOF.
o pg(X) = h°(X,wx) is a birational invariant for smooth projective
varieties

o wprn 2 Opn(—n—1) = pg(P")=0
® wx, gO]P’”(_n_2+d)|Xd
° pg(Xy)=0 <= d<n+1
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PROBLEM

For which d and n, is the generic hypersurface Xy C P"*1 rational?

EXAMPLE (QUADRIC HYPERSURFACE X, C P"'1)

Stereographic projection defines a birational map

P . X2 —:—) P"
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PROBLEM

For which d and n, is the generic hypersurface Xy C P"+1 rational?

NECESSARY CONDITION

PROBLEM

s the generic cubic hypersurface X3 C P"*! rational (n > 3)?
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PROBLEM

Which properties are invariant under birational equivalence?

Aut(X) is not a birational invariant

1%

DEFINITION (THE BIRATIONAL GROUP)

Bir(X) := { ¢: X —=— X birational self-map }

EXAMPLE (ISKOVSKIKH-MANIN 1971)

Any smooth quartic 3-fold X3 C P* is irrational
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Bir(P") := { @ :P" —=— P" birational self-map }
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THE CREMONA GROUP OF THE PLANE

EXAMPLE (THE STANDARD QUADRATIC TRANSFORMATION)
T: P2 -=> P2
(x:y:z) +— (;:%:%):(yzzxz:xy)

]PZ

THEOREM (NOETHER-CASTELNUOVO 1870-1901)

Bir(P?) = ( Aut(P?), 7)
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THE CREMONA (GROUP OF THE PLANE

THEOREM (CANTAT-LAMY 2013)
Bir(P?) is not a simple group.

o Proof exploits the action of Bir(P?) in an infinite dimensional
hyperbolic space.

@ Theorem holds over any base field (Lonjou 2016).

o Any quotient of Bir(P?) is infinite and non-abelian.

THEOREM (BERTINI 1877, -+ , DOLGACHEV-ISKOVSKIKH 2009)

Classification of finite subgroups of Bir(IP?).
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THE CREMONA GROUP IN HIGHER DIMENSIONS

THEOREM (NOETHER-CASTELNUOVO 1870-1901)

Bir(P?) = ( Aut(P?), 7)

THEOREM (HiLpbA HuDSON 1927)
For n > 3, Bir(P") cannot be generated by elements of bounded degree.

THEOREM (BLANC-LAMY-ZIMMERMANN 2019)
For n > 3:
Bir(P") — Z/27Z.
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The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

U
Py X e T B
J | J |
pt Yl Ynfl pt

The 1);'s are elementary links

The X;'s are Mori fiber spaces (possible outcomes of the MMP)
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The Mori fiber spaces are:

o F, —» P!

P? — pt

(P1-bundle)

The elementary links are
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THE SURFACE CASE

The Mori fiber spaces are:

o F, —» P!

P? — pt

(P1-bundle)

The elementary links are

]P>2

|

pt

Type 1

Blp

[Pul

Fm

l

IP)l

Type 2
V4
RN
Frmt1
|
Pl




THE SURFACE CASE

The Mori fiber spaces are:
o P2 - pt

o F,, — P (P-bundle)

The elementary links are

Type 2
V4
Type 1 / \
P2 ——TF1 || Fnm Frmt1
L ! |
pt P! || Pl=————=P!




BI,(F,,)

N

[esh

fl

E'

Frma



F
m

B
lp(Fon)

F
m+1
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THEOREM (BLANC-LAMY-ZIMMERMANN 2019)

For n > 3:
Bir(P") — Z/2Z.

The Sarkisov program

-y ¥ $n1

P7 = Xo -to Xp e o TN X B X, =P

l J l

pt Y1 Yn-1

The 1);'s are elementary links

The X;'s are Mori fiber spaces



AUTOMORPHISMS OF SMOOTH HYPERSURFACES



AUTOMORPHISMS OF SMOOTH HYPERSURFACES

D = D4y C P"™! smooth hypersurface of degree d



AUTOMORPHISMS OF SMOOTH HYPERSURFACES

D = D4y C P"™! smooth hypersurface of degree d

THEOREM (MATSUMURA-MONSKY 1964)
If (n,d) # (1,3),(2,4), then

Aut(P"™1, D) — Aut(D).




AUTOMORPHISMS OF SMOOTH HYPERSURFACES

D = D4y C P"™! smooth hypersurface of degree d

THEOREM (MATSUMURA-MONSKY 1964)
If (n,d) # (1,3),(2,4), then

Aut(P"™1, D) — Aut(D).

o C = D3 CP? elliptic curve



AUTOMORPHISMS OF SMOOTH HYPERSURFACES

D = D4y C P"™! smooth hypersurface of degree d

THEOREM (MATSUMURA-MONSKY 1964)
If (n,d) # (1,3),(2,4), then

Aut(P"™1, D) — Aut(D).

o C = D3 CP? elliptic curve

e S =D, CP? smooth K3 surface



AUTOMORPHISMS OF SMOOTH HYPERSURFACES

D = D4y C P"™! smooth hypersurface of degree d

THEOREM (MATSUMURA-MONSKY 1964)
If (n,d) # (1,3),(2,4), then

Aut(P"™1, D) — Aut(D).

o C = D3 CP? elliptic curve

e S =D, CP? smooth K3 surface

In both cases, the image of Aut(P"" D) — Aut(D) is finite



C = D3 C P? elliptic curve



C = D3 C P? elliptic curve

THEOREM
Every automorphism of C is induced by a birational self-map of the

ambient space P?.




C = D3 C P? elliptic curve

THEOREM
Every automorphism of C is induced by a birational self-map of the
ambient space P?.

S =D, Cc P3 smooth K3 surface



C = D3 C P? elliptic curve

THEOREM

Every automorphism of C is induced by a birational self-map of the
ambient space P?.

S =D, Cc P3 smooth K3 surface

QUESTION (GIZATULLIN-OGUISO 2013)

Is every automorphism of S induced by a birational self~-map of the
ambient space P37




C = D3 C P? elliptic curve

THEOREM

Every automorphism of C is induced by a birational self-map of the
ambient space P?.

S =D, Cc P3 smooth K3 surface

QUESTION (GIZATULLIN-OGUISO 2013)

Is every automorphism of S induced by a birational self~-map of the
ambient space P37

PROBLEM (W/ ALESSIO CORTI AND ALEX MASSARENTI)
Understand the group Bir(]P’3, 5)




C = D3 C P? elliptic curve

THEOREM

Every automorphism of C is induced by a birational self-map of the
ambient space P?.

S =D, Cc P3 smooth K3 surface

QUESTION (GIZATULLIN-OGUISO 2013)

Is every automorphism of S induced by a birational self~-map of the
ambient space P37

PROBLEM (W/ ALESSIO CORTI AND ALEX MASSARENTI)

Understand the group Bir(]P’3, 5), and the group homomorphism

Bir(P%,S) — Aut(S)




Thank you! !

Thanks to Santiago Arango, Daniela Paiva, Charles Staats and Wikipedia for the
nice pictures



