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The Cremona Group

Bir(Pn) :=
{
ϕ : Pn ∼−−→ Pn birational self-map

}



Setup

Projective spaces:

Pn = Cn+1 \ {0̄}
/

(x0, . . . , xn) ∼ λ(x0, . . . , xn), λ 6= 0

3 (x0 : · · · : xn)

Algebraic sets:

F1, . . . ,Fk ∈ C[x0 : · · · : xn] homogeneous polynomials

X = Z (F1, . . . ,Fk) =
{

(a0 : · · · : an) ∈ Pn
∣∣∣ Fi (a0 : · · · : an) = 0 ∀i

}
Zariski topology: closed sets are the algebraic sets

Projective varieties: irreducible algebraic sets X ⊂ PN
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Automorphisms of projective varieties



X ⊂ Pn complex projective variety

Aut(X ) =
{
f : X → X automorphism

}
Example (X = Pn)

Aut(Pn) = PGLn+1(C)
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X ⊂ Pn complex projective variety

Aut(X ) Lie group

Aut0(X ) ⊂ Aut(X ) connected component of IX (C-algebraic group)

0 → Aut0(X )︸ ︷︷ ︸
C-algebraic group

→ Aut(X ) → Aut(X )/Aut0(X )︸ ︷︷ ︸
countable discrete group

→ 0
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g = 1 Aut0(X ) ∼= X

g ≥ 2 Aut(X ) is finite
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X ⊂ Pn complex projective variety

1 → Aut0(X )︸ ︷︷ ︸
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→ 1

1 → Lin
(
Aut0(X )
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linear algebraic group

→ Aut0(X ) → Ab︸︷︷︸
projective

→ 1
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Birational Geometry



The classification problem in Algebraic Geometry

In dimension 1 :
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Mg moduli space of curves of genus g

In higher dimensions : too many isomorphism classes
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Example (The Blowup of P2)

P = (0 : 0 : 1) ∈ P2

P2 × P1

∪
X̃ = Γ

P2 P1

(x : y : z) (x : y)

πP

π2π1

π1 : X̃ \ E
∼=−−−→ P2 \ {P} E = π−1

1 (P) ∼= P1
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The Blowup of X at a point P

The Blowup of X along a proper subvariety Z

X̃ \ E
∼=−−−→ X \ Z
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Definition

X and Y are birational equivalent if ∃ dense open subsets U ⊂ X and
V ⊂ Y and isomorphism

X ⊃ U
∼=−−−→ V ⊂ Y

X
∼−−→ Y

Equivalently:

C(X ) ∼=C C(Y )

The problem of birational classification :

Given a projective variety X , to find a simplest representative in its
birational class - minimal model of X

Construct moduli spaces of minimal models (with fixed discrete
invariants)
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The Minimal Model Program (MMP)

Given a projective variety X , to find a simplest representative in its
birational class - minimal model of X

Dimension 1: Riemann (19th century)

Dimension 2: Italian school (early 20th century)

Dimension 3: Mori (1988)

Dimension ≥ 4: Birkar-Cascini-Hacon-McKernan (2010)



Definition

X is rational if it is birationally equivalent to Pn

Equivalently:
C(X ) ∼=C C(x1, . . . , xn)

Problem

Which algebraic varieties are rational?

Problem

For which d and n, is the generic hypersurface Xd ⊂ Pn+1 rational?



Definition

X is rational if it is birationally equivalent to Pn

Equivalently:
C(X ) ∼=C C(x1, . . . , xn)

Problem

Which algebraic varieties are rational?

Problem

For which d and n, is the generic hypersurface Xd ⊂ Pn+1 rational?



Definition

X is rational if it is birationally equivalent to Pn

Equivalently:
C(X ) ∼=C C(x1, . . . , xn)

Problem

Which algebraic varieties are rational?

Problem

For which d and n, is the generic hypersurface Xd ⊂ Pn+1 rational?



Definition

X is rational if it is birationally equivalent to Pn

Equivalently:
C(X ) ∼=C C(x1, . . . , xn)

Problem

Which algebraic varieties are rational?

Problem

For which d and n, is the generic hypersurface Xd ⊂ Pn+1 rational?



Problem

For which d and n, is the generic hypersurface Xd ⊂ Pn+1 rational?

Necessary Condition

d ≤ n + 1

Proof.

pg (X ) = h0(X , ωX ) is a birational invariant for smooth projective
varieties

ωPn ∼= OPn(−n − 1) =⇒ pg (Pn) = 0

ωXd
∼= OPn(−n − 2 + d)|Xd

pg (Xd) = 0 ⇐⇒ d ≤ n + 1
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Problem

For which d and n, is the generic hypersurface Xd ⊂ Pn+1 rational?

Example (Quadric hypersurface X2 ⊂ Pn+1)

Stereographic projection defines a birational map

πP : X2
∼−−→ Pn
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Problem

Is the generic cubic hypersurface X3 ⊂ Pn+1 rational (n > 3)?
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Which properties are invariant under birational equivalence?

Aut(X ) is not a birational invariant

X X

Y Y

∼=

o o
∼

Definition (The Birational Group)

Bir(X ) :=
{
ϕ : X

∼−−→ X birational self-map
}

Example (Iskovskikh-Manin 1971)

Any smooth quartic 3-fold X4 ⊂ P4 is irrational
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The Cremona Group of the plane

Example (The standard quadratic transformation)

τ : P2 ∼−−→ P2

(x : y : z) 7−→
(
1
x : 1

y : 1
z

)
= (yz : xz : xy)

Theorem (Noether-Castelnuovo 1870-1901)

Bir(P2) =
〈

Aut(P2) , τ
〉
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The Cremona Group of the plane

Theorem (Cantat-Lamy 2013)

Bir(P2) is not a simple group.

Proof exploits the action of Bir(P2) in an infinite dimensional
hyperbolic space.

Theorem holds over any base field (Lonjou 2016).

Any quotient of Bir(P2) is infinite and non-abelian.

Theorem (Bertini 1877, · · · , Dolgachev-Iskovskikh 2009)

Classification of finite subgroups of Bir(P2).
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Classification of finite subgroups of Bir(P2).



The Cremona Group in higher dimensions

Theorem (Noether-Castelnuovo 1870-1901)

Bir(P2) =
〈

Aut(P2) , τ
〉

Theorem (Hilda Hudson 1927)

For n ≥ 3, Bir(Pn) cannot be generated by elements of bounded degree.

Theorem (Blanc-Lamy-Zimmermann 2019)

For n ≥ 3:
Bir(Pn) � Z/2Z.
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Factorizing birational maps ψ : Pn 99K Pn

The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

Pn = X0 X1 · · · Xn−1 Xn = Pn
ψ1 ψ2 ψn−1 ψn

ψ

The ψi ’s are elementary links

The Xi ’s are Mori fiber spaces (possible outcomes of the MMP)
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The surface case

The Mori fiber spaces are:

P2 → pt

Fm → P1 (P1-bundle)

F0
∼= P1 × P1

F1
∼= BlPP2

F2 is the blowup a quadric cone Q ⊂ P3
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Automorphisms of Smooth Hypersurfaces

D = Dd ⊂ Pn+1 smooth hypersurface of degree d

Theorem (Matsumura-Monsky 1964)

If (n, d) 6= (1, 3), (2, 4), then

Aut(Pn+1,D) � Aut(D).

C = D3 ⊂ P2 elliptic curve

S = D4 ⊂ P3 smooth K3 surface

In both cases, the image of Aut(Pn+1,D)→ Aut(D) is finite
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C = D3 ⊂ P2 elliptic curve

Theorem

Every automorphism of C is induced by a birational self-map of the
ambient space P2.

S = D4 ⊂ P3 smooth K3 surface

Question (Gizatullin-Oguiso 2013)

Is every automorphism of S induced by a birational self-map of the
ambient space P3?

Problem (w/ Alessio Corti and Alex Massarenti)

Understand the group Bir
(
P3, S

)
, and the group homomorphism

Bir
(
P3,S

)
→ Aut(S)
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Thank you! 1

1Thanks to Santiago Arango, Daniela Paiva, Charles Staats and Wikipedia for the
nice pictures


