The Cremona group

Carolina Araujo (IMPA)

GA20
 AG

 DECEMBER 16-18, 2020

The Cremona Group

$\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n}-\simeq \rightarrow \mathbb{P}^{n}\right.$ birational self-map $\}$

Setup

SEtup

- Projective spaces:

$$
\begin{aligned}
\mathbb{P}^{n} & =\mathbb{C}^{n+1} \backslash\{\overline{0}\} \quad /\left(x_{0}, \ldots, x_{n}\right) \sim \lambda\left(x_{0}, \ldots, x_{n}\right), \lambda \neq 0 \\
& \ni\left(x_{0}: \cdots: x_{n}\right)
\end{aligned}
$$

Setup

- Projective spaces:

$$
\begin{aligned}
\mathbb{P}^{n} & =\mathbb{C}^{n+1} \backslash\{\overline{0}\} \quad /\left(x_{0}, \ldots, x_{n}\right) \sim \lambda\left(x_{0}, \ldots, x_{n}\right), \lambda \neq 0 \\
& \ni\left(x_{0}: \cdots: x_{n}\right)
\end{aligned}
$$

- Algebraic sets:
$F_{1}, \ldots, F_{k} \in \mathbb{C}\left[x_{0}: \cdots: x_{n}\right]$ homogeneous polynomials
$X=Z\left(F_{1}, \ldots, F_{k}\right)=\left\{\left(a_{0}: \cdots: a_{n}\right) \in \mathbb{P}^{n} \mid F_{i}\left(a_{0}: \cdots: a_{n}\right)=0 \forall i\right\}$

Setup

- Projective spaces:

$$
\begin{aligned}
\mathbb{P}^{n} & =\mathbb{C}^{n+1} \backslash\{\overline{0}\} \quad /\left(x_{0}, \ldots, x_{n}\right) \sim \lambda\left(x_{0}, \ldots, x_{n}\right), \lambda \neq 0 \\
& \ni\left(x_{0}: \cdots: x_{n}\right)
\end{aligned}
$$

- Algebraic sets:
$F_{1}, \ldots, F_{k} \in \mathbb{C}\left[x_{0}: \cdots: x_{n}\right]$ homogeneous polynomials
$X=Z\left(F_{1}, \ldots, F_{k}\right)=\left\{\left(a_{0}: \cdots: a_{n}\right) \in \mathbb{P}^{n} \mid F_{i}\left(a_{0}: \cdots: a_{n}\right)=0 \forall i\right\}$
- Zariski topology: closed sets are the algebraic sets

Setup

- Projective spaces:

$$
\begin{aligned}
\mathbb{P}^{n} & =\mathbb{C}^{n+1} \backslash\{\overline{0}\} \quad /\left(x_{0}, \ldots, x_{n}\right) \sim \lambda\left(x_{0}, \ldots, x_{n}\right), \lambda \neq 0 \\
& \ni\left(x_{0}: \cdots: x_{n}\right)
\end{aligned}
$$

- Algebraic sets:
$F_{1}, \ldots, F_{k} \in \mathbb{C}\left[x_{0}: \cdots: x_{n}\right]$ homogeneous polynomials
$X=Z\left(F_{1}, \ldots, F_{k}\right)=\left\{\left(a_{0}: \cdots: a_{n}\right) \in \mathbb{P}^{n} \mid F_{i}\left(a_{0}: \cdots: a_{n}\right)=0 \forall i\right\}$
- Zariski topology: closed sets are the algebraic sets
- Projective varieties: irreducible algebraic sets $X \subset \mathbb{P}^{N}$

Setup

SEtup

- Morphisms:

Setup

- Morphisms:

$$
\begin{array}{clc}
\mathbb{P}^{n} & \longrightarrow \\
\left(x_{0}: \cdots: x_{n}\right) & \longmapsto & \mathbb{P}^{m} \\
\left(F_{0}\left(x_{0}, \ldots, x_{n}\right): \cdots: F_{m}\left(x_{0}, \ldots, x_{n}\right)\right)
\end{array}
$$

$F_{0}, \ldots, F_{m} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ homogeneous of the same degree with no common zeroes

Setup

- Morphisms:

$$
\begin{array}{ccc}
\mathbb{P}^{n} & \longrightarrow & \mathbb{P}^{m} \\
\left(x_{0}: \cdots: x_{n}\right) & \longmapsto & \left(F_{0}\left(x_{0}, \ldots, x_{n}\right): \cdots: F_{m}\left(x_{0}, \ldots, x_{n}\right)\right)
\end{array}
$$

$F_{0}, \ldots, F_{m} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ homogeneous of the same degree with no common zeroes

- Rational maps:

$$
\begin{array}{ccc}
\mathbb{P}^{n} & --\rightarrow \\
\left(x_{0}: \cdots: x_{n}\right) & \longmapsto & \mathbb{P}^{m} \\
\longmapsto & \left(F_{0}\left(x_{0}, \ldots, x_{n}\right): \cdots: F_{m}\left(x_{0}, \ldots, x_{n}\right)\right)
\end{array}
$$

$F_{0}, \ldots, F_{m} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ homogeneous of the same degree

Setup

SEtup

- Morphisms:

Setup

- Morphisms:

$$
f: X \rightarrow Y
$$

SEtup

- Morphisms:

$$
f: X \rightarrow Y
$$

- Rational maps:

$$
\varphi: X \rightarrow Y
$$

Setup

- Morphisms:

$$
f: X \rightarrow Y
$$

- Rational maps:

$$
\varphi: X \rightarrow Y
$$

- Function fields:

$$
\mathbb{C}(X)=\{\text { meromorphic functions on } X\}
$$

Setup

- Morphisms:

$$
f: X \rightarrow Y
$$

- Rational maps:

$$
\varphi: X \rightarrow Y
$$

- Function fields:

$$
\begin{aligned}
\mathbb{C}(X)= & \{\text { meromorphic functions on } X\} \\
& \mathbb{C}\left(\mathbb{P}^{n}\right) \cong \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Automorphisms of projective varieties

$X \subset \mathbb{P}^{n}$ complex projective variety
$X \subset \mathbb{P}^{n}$ complex projective variety
$\operatorname{Aut}(X)=\{f: X \rightarrow X$ automorphism $\}$
$X \subset \mathbb{P}^{n}$ complex projective variety
$\operatorname{Aut}(X)=\{f: X \rightarrow X$ automorphism $\}$
$\operatorname{Example}\left(X=\mathbb{P}^{n}\right)$
$\operatorname{Aut}\left(\mathbb{P}^{n}\right)=P G L_{n+1}(\mathbb{C})$

$X \subset \mathbb{P}^{n}$ complex projective variety
Aut (X) Lie group
Aut ${ }^{0}(X) \subset \operatorname{Aut}(X)$ connected component of $\mathbb{I}_{X} \quad(\mathbb{C}$-algebraic group)
$X \subset \mathbb{P}^{n}$ complex projective variety
Aut (X) Lie group
Aut ${ }^{0}(X) \subset \operatorname{Aut}(X)$ connected component of $\mathbb{I}_{X} \quad(\mathbb{C}$-algebraic group)

$X \subset \mathbb{P}^{n}$ complex projective variety

$$
0 \rightarrow \underbrace{\operatorname{Aut}^{0}(X)}_{\mathbb{C} \text {-algebraic group }} \rightarrow \operatorname{Aut}(X) \rightarrow \underbrace{\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)}_{\text {countable discrete group }} \rightarrow 0
$$

$X \subset \mathbb{P}^{n}$ complex projective variety

$$
0 \rightarrow \underbrace{\operatorname{Aut}^{0}(X)}_{\mathbb{C} \text {-algebraic group }} \rightarrow \operatorname{Aut}(X) \rightarrow \underbrace{\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)}_{\text {countable discrete group }} \rightarrow 0
$$

Example (X smooth projective curve of genus g)

$g=0$

$g=1$

$g \geq 2$
$X \subset \mathbb{P}^{n}$ complex projective variety

$$
0 \rightarrow \underbrace{\operatorname{Aut}^{0}(X)}_{\mathbb{C} \text {-algebraic group }} \rightarrow \operatorname{Aut}(X) \rightarrow \underbrace{\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)}_{\text {countable discrete group }} \rightarrow 0
$$

Example (X smooth projective curve of Genus g)

$$
g=0
$$

$g=1$

$g \geq 2$

- $g=0 \operatorname{Aut}^{0}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$
$X \subset \mathbb{P}^{n}$ complex projective variety

$$
0 \rightarrow \underbrace{\operatorname{Aut}^{0}(X)}_{\mathbb{C} \text {-algebraic group }} \rightarrow \operatorname{Aut}(X) \rightarrow \underbrace{\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)}_{\text {countable discrete group }} \rightarrow 0
$$

Example (X smooth projective curve of genus g)

$$
g=0
$$

$g=1$

$g \geq 2$

- $g=0 \operatorname{Aut}^{0}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$
- $g=1 \operatorname{Aut}^{0}(X) \cong X$
$X \subset \mathbb{P}^{n}$ complex projective variety

$$
0 \rightarrow \underbrace{\operatorname{Aut}^{0}(X)}_{\mathbb{C} \text {-algebraic group }} \rightarrow \operatorname{Aut}(X) \rightarrow \underbrace{\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)}_{\text {countable discrete group }} \rightarrow 0
$$

Example (X smooth projective curve of genus g)

$$
g=0
$$

$g=1$

$g \geq 2$

- $g=0 \quad \operatorname{Aut}^{0}\left(\mathbb{P}^{1}\right)=\operatorname{Aut}\left(\mathbb{P}^{1}\right)=\operatorname{PGL}_{2}(\mathbb{C})$
- $g=1 \operatorname{Aut}^{0}(X) \cong X$
- $g \geq 2 \operatorname{Aut}(X)$ is finite
$X \subset \mathbb{P}^{n}$ complex projective variety
$1 \rightarrow \underbrace{\operatorname{Aut}^{0}(X)}_{\mathbb{C} \text {-algebraic group }} \rightarrow \operatorname{Aut}(X) \rightarrow \underbrace{\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)}_{\text {countable discrete group }} \rightarrow 1$
$X \subset \mathbb{P}^{n}$ complex projective variety
$1 \rightarrow \underbrace{\operatorname{Aut}^{0}(X)}_{\mathbb{C} \text {-algebraic group }} \rightarrow \operatorname{Aut}(X) \rightarrow \underbrace{\operatorname{Aut}(X) / \operatorname{Aut}^{0}(X)}_{\text {countable discrete group }} \rightarrow 1$
$1 \rightarrow \underbrace{\operatorname{Lin}\left(\operatorname{Aut}^{0}(X)\right)}_{\text {linear algebraic group }} \rightarrow \operatorname{Aut}^{0}(X) \rightarrow \underbrace{A b}_{\text {projective }} \rightarrow 1$

Birational Geometry

The classification problem in Algebraic Geometry

In dimension 1:

$$
g=0
$$

$g=1$

$g \geq 2$

The classification problem in Algebraic Geometry

In dimension 1:

$g=0$

$g=1$

$g \geq 2$
\mathcal{M}_{g} moduli space of curves of genus g

The classification problem in Algebraic Geometry

In dimension 1:

$g=0$

$g=1$

$g \geq 2$
\mathcal{M}_{g} moduli space of curves of genus g
In higher dimensions : too many isomorphism classes

Example (The Blowup of \mathbb{P}^{2})

Example (The Blowup of \mathbb{P}^{2})

Example (The Blowup of \mathbb{P}^{2})

$$
P=(0: 0: 1) \in \mathbb{P}^{2}
$$

$$
(x: y: z) \longrightarrow(x: y)
$$

$$
\pi_{1}: \tilde{X} \backslash E \xrightarrow{\cong} \mathbb{P}^{2} \backslash\{P\}
$$

$$
E=\pi_{1}^{-1}(P) \cong \mathbb{P}^{1}
$$

The Blowup of \mathbb{P}^{2} at a point P

The Blowup of \mathbb{P}^{2} at a point P

The Blowup of X at a point P

The Blowup of \mathbb{P}^{2} at a point P

The Blowup of X at a point P

The Blowup of X along a proper subvariety Z

The Blowup of \mathbb{P}^{2} at a point P

The Blowup of X at a point P

The Blowup of X along a proper subvariety Z

$$
\tilde{X} \backslash E \xrightarrow{\cong} X \backslash Z
$$

DEFINITION

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
\begin{gathered}
X \supset U \xrightarrow{ } \quad V \subset Y \\
X-\simeq \rightarrow Y
\end{gathered}
$$

Definition

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
\begin{gathered}
X \supset U \xrightarrow{\cong} V \subset Y \\
X \xrightarrow[\simeq]{\cong}
\end{gathered}
$$

Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}(Y)
$$

Definition

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
\begin{gathered}
X \supset U \xrightarrow{\cong} V \subset Y \\
X \leadsto \simeq
\end{gathered}
$$

Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}(Y)
$$

The problem of birational classification :

- Given a projective variety X, to find a simplest representative in its birational class - minimal model of X

Definition

X and Y are birational equivalent if \exists dense open subsets $U \subset X$ and $V \subset Y$ and isomorphism

$$
\begin{gathered}
X \supset U \xrightarrow{\cong} V \subset Y \\
X \xrightarrow{\cong} Y
\end{gathered}
$$

Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}(Y)
$$

The problem of birational classification :

- Given a projective variety X, to find a simplest representative in its birational class - minimal model of X
- Construct moduli spaces of minimal models (with fixed discrete invariants)

The Minimal Model Program (MMP)

Given a projective variety X, to find a simplest representative in its birational class - minimal model of X

- Dimension 1: Riemann (19 th century)
- Dimension 2: Italian school (early $20^{\text {th }}$ century)
- Dimension 3: Mori (1988)
- Dimension ≥ 4 : Birkar-Cascini-Hacon-McKernan (2010)

Definition

X is rational if it is birationally equivalent to \mathbb{P}^{n}

DEfinition

X is rational if it is birationally equivalent to \mathbb{P}^{n}
Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

DEfinition

X is rational if it is birationally equivalent to \mathbb{P}^{n}
Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

Problem
Which algebraic varieties are rational?

DEfinition

X is rational if it is birationally equivalent to \mathbb{P}^{n}
Equivalently:

$$
\mathbb{C}(X) \cong_{\mathbb{C}} \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)
$$

Problem
Which algebraic varieties are rational?

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Necessary Condition

$$
d \leq n+1
$$

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Necessary Condition

$$
d \leq n+1
$$

Proof.

- $p_{g}(X)=h^{0}\left(X, \omega_{X}\right)$ is a birational invariant for smooth projective varieties

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Necessary Condition

$$
d \leq n+1
$$

Proof.

- $p_{g}(X)=h^{0}\left(X, \omega_{X}\right)$ is a birational invariant for smooth projective varieties
- $\omega_{\mathbb{P}^{n}} \cong \mathcal{O}_{\mathbb{P}^{n}}(-n-1) \Longrightarrow p_{g}\left(\mathbb{P}^{n}\right)=0$

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Necessary Condition

$$
d \leq n+1
$$

Proof.

- $p_{g}(X)=h^{0}\left(X, \omega_{X}\right)$ is a birational invariant for smooth projective varieties
- $\omega_{\mathbb{P}^{n}} \cong \mathcal{O}_{\mathbb{P}^{n}}(-n-1) \Longrightarrow p_{g}\left(\mathbb{P}^{n}\right)=0$
- $\omega_{X_{d}} \cong \mathcal{O}_{\mathbb{P}^{n}}(-n-2+d)_{\mid X_{d}}$

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Necessary Condition

$$
d \leq n+1
$$

Proof.

- $p_{g}(X)=h^{0}\left(X, \omega_{X}\right)$ is a birational invariant for smooth projective varieties
- $\omega_{\mathbb{P}^{n}} \cong \mathcal{O}_{\mathbb{P}^{n}}(-n-1) \Longrightarrow p_{g}\left(\mathbb{P}^{n}\right)=0$
- $\omega_{X_{d}} \cong \mathcal{O}_{\mathbb{P}^{n}}(-n-2+d)_{\mid X_{d}}$
- $p_{g}\left(X_{d}\right)=0 \Longleftrightarrow d \leq n+1$

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Example (Quadric hypersurface $X_{2} \subset \mathbb{P}^{n+1}$)

Stereographic projection defines a birational map

$$
\pi_{P}: X_{2}-\simeq \rightarrow \mathbb{P}^{n}
$$

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Necessary Condition

$$
d \leq n+1
$$

Problem

For which d and n, is the generic hypersurface $X_{d} \subset \mathbb{P}^{n+1}$ rational?

Necessary Condition

$$
d \leq n+1
$$

Problem

Is the generic cubic hypersurface $X_{3} \subset \mathbb{P}^{n+1}$ rational $(n>3)$?

Problem

Which properties are invariant under birational equivalence?

Problem

Which properties are invariant under birational equivalence?

Aut (X) is not a birational invariant

Problem

Which properties are invariant under birational equivalence?

Aut (X) is not a birational invariant

Definition (The Birational Group)

$\operatorname{Bir}(X):=\{\varphi: X-\simeq \rightarrow X$ birational self-map $\}$

Problem

Which properties are invariant under birational equivalence?

Aut (X) is not a birational invariant

Definition (The Birational Group)
$\operatorname{Bir}(X):=\{\varphi: X-\simeq \rightarrow X$ birational self-map $\}$

Example (Iskovskikh-Manin 1971)
Any smooth quartic 3 -fold $X_{4} \subset \mathbb{P}^{4}$ is irrational

The Cremona Group

$\operatorname{Bir}\left(\mathbb{P}^{n}\right):=\left\{\varphi: \mathbb{P}^{n}-\simeq \rightarrow \mathbb{P}^{n}\right.$ birational self-map $\}$

The Cremona Group of the plane

The Cremona Group of the plane

Example (The standard quadratic transformation)

$$
\left.\begin{array}{ccc}
\tau: & \mathbb{P}^{2} & -\simeq
\end{array} \begin{array}{c}
\mathbb{P}^{2} \\
\\
(x: y: z)
\end{array}\right)
$$

The Cremona Group of the plane

Example (The standard quadratic transformation)

$$
\left.\begin{array}{ccc}
\tau: & \mathbb{P}^{2} & -\simeq
\end{array} c \begin{array}{c}
\mathbb{P}^{2} \\
\\
(x: y: z)
\end{array}\right) \quad\left(\frac{1}{x}: \frac{1}{y}: \frac{1}{z}\right)=(y z: x z: x y)
$$

\mathbb{P}^{2}

\mathbb{P}^{2}

The Cremona Group of the plane

Example (The standard quadratic transformation)

$$
\left.\begin{array}{ccc}
\tau: & \mathbb{P}^{2} & -\simeq
\end{array} \begin{array}{c}
\mathbb{P}^{2} \\
\\
(x: y: z)
\end{array}\right)
$$

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

The Cremona Group of the plane

Theorem (Cantat-Lamy 2013)
$\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple group.

The Cremona Group of the plane

Theorem (Cantat-Lamy 2013)
$\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple group.

- Proof exploits the action of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ in an infinite dimensional hyperbolic space.

The Cremona Group of the plane

Theorem (Cantat-Lamy 2013)
$\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple group.

- Proof exploits the action of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ in an infinite dimensional hyperbolic space.
- Theorem holds over any base field (Lonjou 2016).

The Cremona Group of the plane

Theorem (Cantat-Lamy 2013)
$\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple group.

- Proof exploits the action of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ in an infinite dimensional hyperbolic space.
- Theorem holds over any base field (Lonjou 2016).
- Any quotient of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is infinite and non-abelian.

The Cremona Group of the plane

Theorem (Cantat-Lamy 2013)
$\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is not a simple group.

- Proof exploits the action of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ in an infinite dimensional hyperbolic space.
- Theorem holds over any base field (Lonjou 2016).
- Any quotient of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$ is infinite and non-abelian.

Theorem (Bertini 1877, …, Dolgachev-Iskovskikh 2009)
Classification of finite subgroups of $\operatorname{Bir}\left(\mathbb{P}^{2}\right)$.

The Cremona Group in higher dimensions

The Cremona Group in higher dimensions

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

The Cremona Group in higher dimensions

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

Theorem (Hilda Hudson 1927)
For $n \geq 3$, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ cannot be generated by elements of bounded degree.

The Cremona Group in higher dimensions

Theorem (Noether-Castelnuovo 1870-1901)

$$
\operatorname{Bir}\left(\mathbb{P}^{2}\right)=\left\langle\operatorname{Aut}\left(\mathbb{P}^{2}\right), \tau\right\rangle
$$

Theorem (Hilda Hudson 1927)
For $n \geq 3$, $\operatorname{Bir}\left(\mathbb{P}^{n}\right)$ cannot be generated by elements of bounded degree.

Theorem (Blanc-Lamy-Zimmermann 2019)
For $n \geq 3$:

$$
\operatorname{Bir}\left(\mathbb{P}^{n}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z} .
$$

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

The ψ_{i} 's are elementary links
The X_{i} 's are Mori fiber spaces (possible outcomes of the MMP)

FACTORIZING BIRATIONAL MAPS $\psi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$

The Sarkisov program (Corti 1995, Hacon-McKernan 2013):

The ψ_{i} 's are elementary links
The X_{i} 's are Mori fiber spaces (possible outcomes of the MMP)

The surface case

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle)
- $\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle)
- $\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- $\mathbb{F}_{1} \cong B l_{P} \mathbb{P}^{2}$

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$
- $\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- $\mathbb{F}_{1} \cong B l_{P} \mathbb{P}^{2}$
- \mathbb{F}_{2} is the blowup a quadric cone $Q \subset \mathbb{P}^{3}$

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle)
- $\mathbb{F}_{0} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$
- $\mathbb{F}_{1} \cong B l_{P} \mathbb{P}^{2}$
- \mathbb{F}_{2} is the blowup a quadric cone $Q \subset \mathbb{P}^{3}$

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$

The elementary links are

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle $)$

The elementary links are

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad$ (\mathbb{P}^{1}-bundle)

The elementary links are

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle)

The elementary links are

The surface case

The Mori fiber spaces are:

- $\mathbb{P}^{2} \rightarrow \mathrm{pt}$
- $\mathbb{F}_{m} \rightarrow \mathbb{P}^{1} \quad\left(\mathbb{P}^{1}\right.$-bundle)

The elementary links are

Theorem (Blanc-Lamy-Zimmermann 2019)
For $n \geq 3$:

$$
\operatorname{Bir}\left(\mathbb{P}^{n}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z} .
$$

Theorem (Blanc-Lamy-Zimmermann 2019)

For $n \geq 3$:

$$
\operatorname{Bir}\left(\mathbb{P}^{n}\right) \rightarrow \mathbb{Z} / 2 \mathbb{Z}
$$

The Sarkisov program

The ψ_{i} 's are elementary links
The X_{i} 's are Mori fiber spaces

Automorphisms of Smooth Hypersurfaces

Automorphisms of Smooth Hypersurfaces

$D=D_{d} \subset \mathbb{P}^{n+1}$ smooth hypersurface of degree d

Automorphisms of Smooth Hypersurfaces

$D=D_{d} \subset \mathbb{P}^{n+1}$ smooth hypersurface of degree d

Theorem (Matsumura-Monsky 1964)
If $(n, d) \neq(1,3),(2,4)$, then

$$
\operatorname{Aut}\left(\mathbb{P}^{n+1}, D\right) \rightarrow \operatorname{Aut}(D)
$$

Automorphisms of Smooth Hypersurfaces

$D=D_{d} \subset \mathbb{P}^{n+1}$ smooth hypersurface of degree d

Theorem (Matsumura-Monsky 1964)
If $(n, d) \neq(1,3),(2,4)$, then

$$
\operatorname{Aut}\left(\mathbb{P}^{n+1}, D\right) \rightarrow \operatorname{Aut}(D)
$$

- $C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve

Automorphisms of Smooth Hypersurfaces

$D=D_{d} \subset \mathbb{P}^{n+1}$ smooth hypersurface of degree d

Theorem (Matsumura-Monsky 1964)
If $(n, d) \neq(1,3),(2,4)$, then

$$
\operatorname{Aut}\left(\mathbb{P}^{n+1}, D\right) \rightarrow \operatorname{Aut}(D)
$$

- $C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve
- $S=D_{4} \subset \mathbb{P}^{3}$ smooth K3 surface

Automorphisms of Smooth Hypersurfaces

$D=D_{d} \subset \mathbb{P}^{n+1}$ smooth hypersurface of degree d

Theorem (Matsumura-Monsky 1964)
If $(n, d) \neq(1,3),(2,4)$, then

$$
\operatorname{Aut}\left(\mathbb{P}^{n+1}, D\right) \rightarrow \operatorname{Aut}(D) .
$$

- $C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve
- $S=D_{4} \subset \mathbb{P}^{3}$ smooth K3 surface

In both cases, the image of $\operatorname{Aut}\left(\mathbb{P}^{n+1}, D\right) \rightarrow \operatorname{Aut}(D)$ is finite
$C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve

$C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve

THEOREM

Every automorphism of C is induced by a birational self-map of the ambient space \mathbb{P}^{2}.

$C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve

Theorem

Every automorphism of C is induced by a birational self-map of the ambient space \mathbb{P}^{2}.
$S=D_{4} \subset \mathbb{P}^{3}$ smooth K 3 surface
$C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve

Theorem

Every automorphism of C is induced by a birational self-map of the ambient space \mathbb{P}^{2}.
$S=D_{4} \subset \mathbb{P}^{3}$ smooth K3 surface
Question (Gizatullin-Oguiso 2013)
Is every automorphism of S induced by a birational self-map of the ambient space \mathbb{P}^{3} ?
$C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve
Theorem
Every automorphism of C is induced by a birational self-map of the ambient space \mathbb{P}^{2}.
$S=D_{4} \subset \mathbb{P}^{3}$ smooth K 3 surface
Question (Gizatullin-Oguiso 2013)
Is every automorphism of S induced by a birational self-map of the ambient space \mathbb{P}^{3} ?

Problem (w/ Alessio Corti and Alex Massarenti)
Understand the group $\operatorname{Bir}\left(\mathbb{P}^{3}, S\right)$
$C=D_{3} \subset \mathbb{P}^{2}$ elliptic curve
Theorem
Every automorphism of C is induced by a birational self-map of the ambient space \mathbb{P}^{2}.
$S=D_{4} \subset \mathbb{P}^{3}$ smooth K 3 surface
Question (Gizatullin-Oguiso 2013)
Is every automorphism of S induced by a birational self-map of the ambient space \mathbb{P}^{3} ?

Problem (w/ Alessio Corti and Alex Massarenti)
Understand the group $\operatorname{Bir}\left(\mathbb{P}^{3}, S\right)$, and the group homomorphism

$$
\operatorname{Bir}\left(\mathbb{P}^{3}, S\right) \rightarrow \operatorname{Aut}(S)
$$

Thank you! ${ }^{1}$

GA 20 AC 20
 DECEMBER 16-18, 2020

${ }^{1}$ Thanks to Santiago Arango, Daniela Paiva, Charles Staats and Wikipedia for the nice pictures

