h 4

N

INF219 — Software Environments

First class
Introduction to the course

Marco Aurélio Gerosa

University of California, Irvine
Spring/2014

The instructor

Ph.D. in Computer Science (2006)

Bachelor in Computer Engineering (1999)
Associate Professor at the University of Sao Paulo, Brazil

Visiting Professor at UCI

Research area: Intersection of Software Engineering and CSCW

Web site: http://www.ime.usp.br/~gerosa

Email: mgerosa@uci.edu / gerosa@ime.usp.br

Office: DBH 5228 (by appointment)

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Where | came from
University of Sao Paulo _|S_|J

> Latin America largest university

Total area: 76 million m2 (800 million ft?)
92000 students

5800 faculty

2400 doctorate degrees per year Pacific

Ocean

(@]

(@)

(@]

o

Atlantic
= Ocean

° 25% of Brazilian scientific production

Computer Science Department

p

S3ao Paulo

http://www5.usp.br/en/usp-em-numeros/

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Who are you?

* Your name

A little bit about yourself

* Your advisor

* Your research interests

* Experience with software environments

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

About the course

Logistics

Room: ICS 180

Lectures: Mondays and Wednesdays, 2pm - 3:20pm
Number of students: 17 (so far...)

Website: http://www.ime.usp.br/~gerosa/classes/uci/inf219

Additional resources: http://eece.uci.edu

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

How can we interact online?

 UCI EEE
* Google Groups
* Facebook

Before the content,
let’s discuss the form

* How to memorize, understand, and be
able to apply, analyze, synthesize, and
evaluate the knowledge covered by the
course?

* And how to develop academic skills at
the same time?

Practice! Do it by yourself!

Learning...

“I hear and | forget.

| see and | remember.
| do and | understand.”

(Confucius)

Learning...

“I hear and | forget. W™

| see and | remember.amegs
| do and | understand.” e
| Confuces

Papers discussion and

presentation, student
seminar, term project

Attitude [: Just be present at the lectures

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Attitude Il: Pay close attention and be quiet

Attitude Ill: What | really want

Spring/2014

Back to the course

short memory enough time to support and guide the subsequent discussion

- Lectures: their content is doomed to be forgotten, but hopefully it will stay in "
»
=> Be attentive

- Readings: prepare yourself to the class to come
=> study and synthetize knowledge

- Discussions: formalize your thoughts and share your ideas with us
=> participate

- Seminar: understand at least one of the course’s topics in depth

=> go in depth and show quality in what you do Remember-

- Term project: apply the concepts in a piece of research (carning..
=> practice and learn “I hear and | forget. -1

* the ather
lectures

| see and | remember. . s

examples

Role of the instructor => Mediator of these processes

presentation, student

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

1. Reading and reporting

* Read 1 to 3 papers before most of the classes (most typically 1 paper)

Read critically

Prepare a set of slides summarizing the paper
* focus on the motivation, applicability, and results

* conclude with your opinion about the paper and with a critical view on its positive and
negative aspects

* state questions and problems to be further discussed in the classroom

In the beginning of the class, one student will be randomly selected to give an 8-
10 min presentation about the paper using his/her own slides

* So, be prepared!!!

Submit in advance your slides at EEE Dropbox

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

2. Discussions

Remember: | want to hear you!

N

Attitude Il

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

2. Discussions

Remember: | want to hear you!

Attitude 1l

No exceptions!

Prepare yourself to the discussion as you would prepare yourself to a meeting at your job

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

3. Student Seminars

In group, study and present one topic in depth
> Read the literature we selected

Search the literature and find additional important studies we missed
Map the main concepts about the topic
Identify important and interesting works published in the literature

Investigate the state-of-the-practice, actual examples, and tools used in software
industry

Identify one or two key articles for the class to read
> Let us know at least 1 week before your scheduled presentation date
> One random student will do the 10 min presentation about the paper

Compile a categorized bibliography about the topic
Prepare a 30 minute overview of the area using slides
Prepare questions and challenges to motivate the discussion in class

(¢]

(¢]

(¢]

(¢]

(¢]

(¢]

(¢]

(¢]

We’re looking forward to learn about the area from your perspective!

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

References

In the website, there is an initial list of relevant references. Let’s

1 1 | References
I I I l p rove I H In the following, there are some references for the subjects covered in the course. It is not supposed that every
student will read all them. For each topic, one to three papers will be selected to be read by the entire class. The

group assigned to each topic will delve into more details on the literature of that specific topic.
Topic Resources

Understanding a * Kitchenham et al.: Preliminary guidelines for empirical research in software engineering (TSE 2002)
problem « Greenberg & Buxton: Usability evaluation considered harmful (some of the time) (CHI 2008)

« Easterbrook, Singer, Storey, & Damian: Selecting Empirical Methods for Software Engineering Research (Guide to
Advanced Empirical Software Engineering 2008)

« Basili: The Past, Present, and Future of Experimental Software Engineering (JBCS 2006)

* More references in the |ist compiled by LaToza and Myers (2011)

A historical Early IDEs
perspective * Dolotta & Mashey: An Introduction 10 the Programmer’s Workbench (ICSE 1976)
* Rich & Waters: Automatic Programming: Myths and Pr (IEEE Computer 1988)
« Teitelman & Masinter: The Interlisp Programming. nment (IEEE Computer 1981)

« Swinehart, Zellweger, Beach, & Hagmann: A Structural View of the Cedar Programming Environment (TOPLAS 1986)
® Reps & Teitelbaum: The § rator (SDE 1984)

s Taylor et al. cadia Enviror
* Harel et al.: STATEMATE: A Working Environr
In the 1990’s:

* Thomas & Nejmeh: Definitions of Tool Int
® Kadia: | 5 Encoyntered in Building a Fle
® Dart, Ellison, Feiler, & Habermann: Oy
* Robbins, Hilbert, & Redmiles: E), gn Environments
* Reiss: The Desert environment (TOSEM 1999)

ynthesizer G

sfort

: (SDE 1988)
pment of Complex Reactive Systems (ICSE 1988)

unda

nments (IEEE Software 1992)

Environment (SDE 1992)

15 (1992)

cture Design (KBSEC 1996)

developm

ware Develog

Systems J. 2004)
(IEEE Software 2006)

Eclipse IDE & « des Rivieres & Wiegand: Eclipse; A Platform for Integrating C
Moderns IDEs * Murphy, Kersten, & Findlater: How 4
+ Eclipse Community Surveys: 2 & 2013

» Software Engineering Radio: Episode 97; Interview Ar

Software Develops

tegist at Microsoft (2008)

rg, Chief Language Str

Supporting coding » Ballance, Graham, & Van de Vanter: The Pan Language-Ba
and testing Envirpnments (TR 1990)

* Omar, Yoon, LaToza, & Myers: Active Code Completion (ICSE 2012)
* Myers, Pane, & Ko: Natural Programming guage
 Bragdon etal.: Code b er in

Editing System for integrated Development

j Environs

5 (CACM 2004)
aradigm of integrated development environments (ICSE

; rethinking the

SWer it Code (PLATEAU 2010)

ing a structured C# code editor (PhD Thesis 2007)
g5: The Killer-App for Domain Specific Languages? (Blog Post 2005)
(2005)

nts for maintenance-oriented IDEs: a detailed study of corrective and

Questions

* Osenkov: Desig
* M. Fowler: |,
s Infoworld: Exploring t
® Ko, Aung, & Myers: Eliciting design requ

perfective maintenance tasks (ICSE 2005)
* Kersten & Murphy: Using task
* More references in the |ist compiled by LaToza and Myers (2011)

ontext 1o iImprove programmer

oductivity (FSE 2006)

Under the hood: ® Ossher & Harrison: Support for Change |
Building and » Clemm & Osterwell: A Mechanism f
extending IDEs

RPDE- (SDE 1990)

nyironment Integration (TOPLAS 1990)
ing in th ronment (1EEE Software 1990)

structing Compg oftwa

* Reiss: Connecting Tools Using Messag:

* Grundy, Mugridge, & Hosking: (g
Experiences (IST 2000)

* Software Engineering Radio: £

Eng nvironments

25GI with Pe!

and BJ Hargrave (2007)

Marco Aurélio Gerosa (gerosa@ime.usp.br)

Groups

Groups of 2 (or 3 depending on the number of enrolled students) — preferably
mixing Ph.D. and MSc students

Define your group, post it in the shared document
https://docs.google.com/document/d/1KwRp4Gs5z00PxBMXXDnb6UeKj4JNx-

Tp2 lIWaBeH6A/edit?usp=sharing and send me an email just in case
(mgerosa@uci.edu)

Topics are chosen in a first-to-come-first-to-serve basis => act quickly!
Real collaboration is expected!

COLLABORATION IS NOT JUST SUMS OF

INDIVIDUAL PLANS
/_\ COLLABORATION VS. INTERACTION
L0 f

- o=

The two mice trying to get out of this maze are
interacting, but are they collaborating?

Attitude Il

Grosz. Collaborative Systems. Al Magazine, 17(2): 67-85. Summer 1996

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

4, Term project

Objective: to conduct a small research project and
write a paper about it

What is a good research project involving software
environments?

Remember: We want to support software
developers

Software developers
are human beings,
not machines

What is a good research in the area?

Technical aspects are not enough!

A good research needs to consider the human and social aspects of software
development.

So, a good research comprises [Myers, 2011]:

Contextual inquiry or lab study to discover an interesting issue that has not
previously been known

Survey to validate that is actually widespread
A model that represents and generalizes what is happening

Tool developed that embodies interesting technical contributions and addresses
the problems

Lab study of the tool, compared to the way it is done now, that shows significant
improvements

Brad Myers (2011) http://www.cs.cmu.edu/~bam/uicourse/2011hasd/lecture01l.intro.pptx

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

So, what do you need to do?

* Choose a topic

* Conduct an empirical evaluation with humans to
understand the problem to be solved (more details next
class)

* Survey the literature (related work) and software
repositories to find evidences of the relevance of the
problem

* Conceive a solution

* Implement it

* Evaluate it

* Report (write an academic paper)

Spring/2014

The topic

Substantial latitude is allowed, but it has to be related to software
environments and must consider human/social aspects of software
development

Tip: consider something related to your seminar or to your graduation
theme

Small changes are allowed along the quarter (the project is iterative
and incremental)

The research proposal must be approved by the instructor

Proposal: motivation, research question, objective, method (more
details about it on the second class) — 1 or 2 pages

Due date: April, 9th

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Feedback on the project (l)

Some classes will be used for the projects follow up

All the students are expected to give constructive feedback
during classes and/or in the online discussion

April 16th: Topics and empirical evaluations
April 30t: Solution proposed
May, 21t: Prototype

Jun, 11%: Final presentation

Spring/2014

Feedback on the project (Il)

The academic paper will be submitted via Easy Chair, simulating a
scientific conference

You will be part of the program committee of the conference
You are going to receive papers from the other groups to review

The reviews will be considered as part of the reviewer’s grade, but
will not affect negatively the grade of the authors of the papers.

> Therefore, you can be critical (but always in a constructive way)
without prejudicing the colleagues

The reviews will be anonymous

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Grading

What will be considered:

* Presence and participation in the classes and in the online discussion

* Critical opinions, questions, and challenges shared with the class on the
discussions

* Feedback provided to your peers
* The demonstrated understanding of the class topics

* The quality of what you produce in the courses activities:
o Summary slides

> 8-10 min paper presentations
° Seminar
> Term project

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Finally, the content

Spring/2014

Description

Catalogue description: Study of the requirements, concepts, and architectures of
comprehensive, integrated, software development and maintenance environments.
Major topics include process support, object management, communication,
interoperability, measurement, analysis, and user interfaces in the environment
context.

This edition’s scope: This edition highlights human and social aspects of software
engineering, as well as information mining from software repositories. We are
going to discuss how software environments can be improved considering these
elements.

Key aspects:
- Understanding software development problems
- Conceiving tools to help developers

- Evaluating these tools

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br) 32

What are we going to study?

A historical perspective
How to improve software environments

Next steps and future of the area

Focus on research, but without forgetting the state-
of-the-practice

Topics

Understanding a problem

A historical perspective

Eclipse IDE & Moderns IDEs

Supporting coding and testing

Under the hood: Building and extending IDEs
Supporting software analysis and design
Version Control Systems & Configuration Management
Mining software repositories

Software analytics

Software visualization

Integrating IDEs and Social Media

Distributed Software Environments

IDEs @ the Cloud

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Introduction to
Software
Fnvironments

What is a software environment?

Write down what you consider to be a software
environment

What is a software environment?

Refers to the collection of hardware and software tools a system

developer uses to build software systems.
Dart et al. (1992)

The set of software tools collected together (sometimes using a common
database or user interface) for use by a software developer, or team of
developers, when developing software.

Oxford Dictionary of Computing

An environment is a collection of CASE tools and workbenches that
supports the software process.

http://en.wikipedia.org/wiki/Computer-aided software engineering

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Many related terms

gﬁgg)tool (Computer-Assisted Software Engineering) and ICASE (Integrated

> A marketing term, used to describe the use of software tools to support software engineering

IPSE (Integrated Project Support Environment)

> A software system that provides support for the full life cycle of software development and also
the project control and management aspects of a software-intensive project.

SEE (Software Engineering Environment) and ISEE (Integrated Software-
Engineering Environment

> Concern for the entire software life cycle (rather than just program development) and offer
support for project management (rather than just technical activities)

SDE (Software Development Environment)

> The set of software tools collected together (sometimes using a common database or user
interface) for use by a software developer, or team of developers, when developing software

PSE (Programming Support Environment) or Programming Environment

> A software system that provides support for the programming aspects of software
development, repair, and enhancement. A typical system contains a central database and a set
of software tools. A programming support environment might be considered as a more
technologically advanced form of PDS.

Oxford Dictionary of computing, 6t ed.
http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br) 38

Many related terms

PDS (Program Development System)
> A software system that provides support to the program development phase of a software

project.

Workbench

> Another name for software development environment

Toolbox and Toolkits
> A set of software tools, probably from several vendors, not necessarily as closely related
or providing as full coverage of the software life cycle as a toolkit. The set of tools in a

toolkit is usually from a single vendor.

SDK (Software Development Kit)
> A collection of the software tools, code libraries, documentation, etc., necessary to
develop a specific type of software, commonly provided as a single installable package.

Software tool
> A program that is employed in the development, repair, or enhancement of other

programs

Oxford Dictionary of computing, 6t ed.
http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004

Marco Aurélio Gerosa (gerosa@ime.usp.br)

Spring/2014

Why automated tools in
software environments?

CASE tools vs. notepad, vi, etc.

Some benefits

Increase productivity

Yes, we know that software engineering is
difficult

Successful
29%

Canceled
~_ 18%

-

Increase quality

Development

~
~

Postdelivery
maintenance
75%

Completed late,
over budget, and/or
with features missing

53%

maintenance
67%

Automate software processes

Reduce costs

[[~ Prafects between 1974 and 1980 368
— —— IBM AS/400 [Kan et al, 1994] R

Foster collaboration 7 L
N [Schach, 2009]

Support management

.
30
1 3 4
T T
Requirements Analysis Design Implementation Postdelivery
{specification) maintenance

And involves a lot of stakeholders

Software
Environments

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

If we have benefits, we have
disadvantages too. What are they?

Possible problems

Learning curve

Dependency on third parties vendors

Cost of the solution (Total Cost of Ownership)

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

What is an Integrated Development
Environment (IDE)?

A definition

Tool integration is about the extent to which tools agree. The subject of these
agreements may include data format, user-interface conventions, use of common
functions, or other aspects of tool construction.

An IDE normally consists of a source code editor, build automation tools, and a
debugger.

The boundary between an integrated development environment and other parts of
the broader software development environment is sometimes blur.

Integrated development environments are designed to maximize programmer
productivity by providing tight-knit components with similar user interfaces.

One aim of the IDE is to reduce the configuration necessary to put together multiple
development utilities

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Extending IDEs

Component-based software
development

Plugins

...
K3

Another

{ =
Eclipse Platform Tool

Workbench IHeIp ;i v
JFace

SWT

: Java
i | Development
: Tools
(JDT)
il

Plug-in

! |Development Workspace
| Environment
il (PDE)]

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Different software environments

* Focus on a programing language / technology

* Focus on a process / method
* Focus on a domain

* Focus on an organization

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Some more definitions

Program

> A set of statements that can be submitted as a unit to some computer system and used to direct the
behavior of that system

Programming

° The process of transforming a mental plan of desired actions for a computer into a representation that can
be understood by the computer

Development
> All programmer activities involved in software (except use)
> Includes design, programming (coding), testing, documentation, etc.

Software Engineering
> Development + Requirements Analysis + processes

End-User Development
> End users doing development activities themselves

Visual Programming
° Programming using graphics
o 2D layout is significant (beyond indentation)

Interface Builders
> Draw the layout of static parts of a user interface, and code is generated to create that layout at run-time

Brad Myers (2011) http://www.cs.cmu.edu/~bam/uicourse/2011hasd/lecture01l.intro.pptx

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Other related terms

Library

> A collection of programs and packages that are made available for common use within
some environment

Framework
> A template for the development of software applications or components

Application Programming Interface (API)

> A body of code providing reusable functionality that is intended to be used without looking inside at
the internal implementation

Domain-Specific Languages (DSL)
> Programming languages designed for a particular audience

Brad Myers (2011) http://www.cs.cmu.edu/~bam/uicourse/2011hasd/lecture01.intro.pptx

Oxford Dictionary of computing, 6t ed.
http://www.oxfordreference.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Some definitions

Human Aspects of Software Development
o All the parts of development that affect the developer
> Not the parts that affect the end user

Mining Software Repositories

> Analysis of data available in software repositories to uncover interesting and
actionable information about software systems and projects

http://2014.msrconf.org/ Brad Myers (2011) http://www.cs.cmu.edu/~bam/uicourse/2011hasd/lectureO1.intro.pptx

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Collaboration tools and social media can
be part of a software environment?

Remembering the definition: Software Environment refers to the collection of hardware
and software tools a system developer uses to build software systems.

Marco Aurélio Gerosa (gerosa@ime.usp.br)

Mining software repositories

Discussion lists
Comments on issues
Code comments

User reports

Q&A sites

Social media

Issue trackers

Source code
and artifacts

Project management systems
Reputation systems

Information about a

— roject
== SUBVERSION proJ

—
©
¢ git ® mg?%;l Information about an
. ecosystem
ithub &
Feithubd ooy XIRA)
o GOOS e code oT Information about

2 M;’?t:r‘n?;\ . / TRAC K Software Engineering
[Mmune
W =istackoverflow » Google piay

I,

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Practitioner Researcher

Applications

Decision making

Software
understanding

Support maintenance

Empirical validation of
ideas & techniques

Repositories of repositories

¥ Bitbucket

ithub Google code 93K projects

SOCIAL CODING 250K projects
11.3 millions repositories

1 million users

5.4 millions users BLACK DUCK e
N 2013: Oth'hl{}penHUB !"! launch

* 3 millions new users
* 152 millions pushes
25 millions comments

661K projects .
30K projects
29 billions of lines of codes https://IFa)uncthad.net

3 millions users

iy . http://www.ohloh.net/
* 14 millions issue

CodePlex

* 7 millions pull requests 33K projects

https://github.com/about/press

36K projects

http://octoverse.github.com/ http://en.wikipedia.org/wiki/CodePlex

Spring/2014

™ Apache Software Foundation
sourczm Mphttp:/)‘www.apache.org/
324K projects 200 projects

- http://projects.apache.org/indexes/alpha.html
3.4 millions developers
http://sourceforge.net/apps/trac/sourceforge/wiki/What%20is%20SourceForge.net

http://en.wikipedia.org/wiki/Comparison_of open_source_software_hosting_facilities

Marco Aurélio Gerosa (gerosa@ime.usp.br)

Examples

Muhstuck

\ W

eline.

cally ——— llo-sand

Prolog

sasiam
steirback graghmenill — fobmekinnon

Visual Basic e s
o 1 S St s e St e
H-HULES DR D BEDE VR B s ‘TR
JOCEr—
£ H-l.l:'llﬂ h—l-r‘-:':l
a0 =
- ‘—

ActionScript

CoffeeScript

A Ruby programmer is very likely

to know JavaScript, while a Perl

programmer is not. Zimmermann, Weissgerber, Diehl, and Zeller. Mining Version Histories to
Guide Software Changes. IEEE Trans. Software Eng. 31, 6 (June 2005)

Java is a popular language, but Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand
stands primarily alone. Swaminathan. 2006. Mining email social networks. MSR 2006
https://github.com/mjwillson/ProglLangVisualise Santana, F. et a. “XFlow: An Extensible Tool for Empirical Analysis of

http://www.igvita.com/slides/2012/bigquery-github-strata.pdf Software Systems Evolution”. ESELAW 2011

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Conclusion

The other side of the coin

“One of the things I've found kind of depressing about the craft of computer
programming is that you see all these fancy development environments out there, and
they tend to be targeted at solving certain specific kinds of problems, like building user
interfaces. But if you go around and look at the high-end developers, the people
who actually have to implement algorithms, if you're using one of these high-
end IDEs the IDEs generally don't help you much at all, because they drop you
into this simple text editor. The number one software development environment for
high-end developers these days is still essentially EMACS. At their heart, these tools
are 20 years old, and there hasn't been much in the way of dramatic change. People
have made all kinds of stabs at graphical programming environments and that, and
they've tended to be failures for one reason or another.”

Why is it that people still use ASCII text for programs? It just feels

like there's so much territory out there that's beyond the bounds of
ASCII text that's just line after line, roughly 80 characters wide, _
mostly 7-bit ASCII, something that you could type in on a teletype.” Vi -

N G . James Gosling
http://www.gotw.ca/publications/c family interview.htm

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Where to look for research in this area?

Scientific venues

> |CSE, CHI, FSE, UIST, CSCW, TSE, TOSEM, ICSM, ICPC, JVLC, Journal of Systems & Software,
etc.

Search engines
> http://scholar.google.com
http://dblp.uni-trier.de/db

http://www.scopus.com

[e]

o

o

http://ieeexplore.ieee.org

o

http://dl.acm.org

o

http://citeseer.ist.psu.edu

Tip: Use a tool to manage your references, such as http://www.zotero.org,
http://www.mendeley.com, or http://jabref.sourceforge.net

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

To Do

* Read the guidelines of the course at the website
http://www.ime.usp.br/~gerosa/classes/uci/inf219 (these slides will also be
there)

o Although | will most probably report the major updates about the course in the discussion list, you can monitor
this page with an online service such as http://www.changedetection.com/ or http://www.watchthatpage.com/

* Define the groups and the topic of your seminar
* Read the paper assigned for the 2" class (check the webpage)

* Produce the slides-based summary of the paper

“Wherever you go, go with all your heart.” (Confucius)

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Fair Play!

Do not cheat How impor ?2 ,:; ok
: ‘re in today’s
Do not copy other works without proper d”“;;gm 2 4

citation

Do not overload the other(s) member(s)
of the group

http://www.claybennett.com/pages/ethics.htmi

See also:

http://honesty.uci.edu/students.html

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Summary

* Who we are

* The dynamics of the course
* Attitude

* Assignments
* Topics

* What is a software environment

* Terminology

* Tool support for Software Engineering
* IDEs

* Mining software repositories

* Where to find research on the area

* Fair play

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Thank you!

Marco Gerosa

Web site: http://www.ime.usp.br/~gerosa
Email: mgerosa@uci.edu / gerosa@ime.usp.br
Office: DBH 5228 (by appointment)

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

Acknowledgments

This course is based on other courses from André van der Hoek, Susan Elliott Sim,
Myers and LaToza, and Leonardo Murta. | also would like to thank the feedback
received from David Redmiles, Yi Wang, Andre van der Hoek, Thomas LaToza,
Gustavo Oliva, Igor Steinmacher, and Igor Wiese.

Spring/2014 Marco Aurélio Gerosa (gerosa@ime.usp.br)

