
Unveiling the Potential of a Conversational Agent in Developer
Support: Insights from Mozilla’s PDF.js Project

João Correia
Pontifical Catholic University

Rio de Janeiro, RJ, Brazil
jcorreia@inf.puc-rio.br

Morgan C. Nicholson
University of São Paulo
São Paulo, SP, Brazil
nich.morgan@usp.br

Daniel Coutinho
Pontifical Catholic University

Rio de Janeiro, RJ, Brazil
dcoutinho@inf.puc-rio.br

Caio Barbosa
Pontifical Catholic University

Rio de Janeiro, RJ, Brazil
csilva@inf.puc-rio.br

Marco Castelluccio
Mozilla Corporation

London, UK
mcastelluccio@mozilla.com

Marco Gerosa
Northern Arizona University

Flagstaff, AZ, USA
marco.gerosa@nau.edu

Alessandro Garcia
Pontifical Catholic University

Rio de Janeiro, RJ, Brazil
afgarcia@inf.puc-rio.br

Igor Steinmacher
Northern Arizona University

Flagstaff, AZ, USA
igor.steinmacher@nau.edu

ABSTRACT
Large language models and other foundation models (FMs) boost
productivity by automating code generation, supporting bug fixes,
and generating documentation. We propose that FMs can further
support Open Source Software (OSS) projects by assisting devel-
opers and guiding the community. Currently, core developers and
maintainers answer queries about processes, architecture, and source
code, but their time is limited, often leading to delays. To address
this, we introduce DevMentorAI, a tool that enhances developer-
project interactions by leveraging source code and technical docu-
mentation. DevMentorAI uses the Retrieval Augmented Generation
(RAG) architecture to identify and retrieve relevant content for
queries. We evaluated DevMentorAI with a case study on PDF.js
project, using real questions from a development chat room and
comparing the answers provided by DevMentorAI to those from hu-
mans. A Mozilla expert rated the answers, finding DevMentorAI’s
responses more satisfactory in 8/14 of cases, equally satisfactory
in 3/14, and less satisfactory in 3/14. These results demonstrate
the potential of using foundation models and the RAG approach to
support developers and reduce the burden on core developers.

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
Large Language Models, Conversational Agents, Developer Assis-
tance, Software Development, Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0685-1/24/07
https://doi.org/10.1145/3664646.3664758

ACM Reference Format:
João Correia, Morgan C. Nicholson, Daniel Coutinho, Caio Barbosa, Marco
Castelluccio, Marco Gerosa, Alessandro Garcia, and Igor Steinmacher. 2024.
Unveiling the Potential of a Conversational Agent in Developer Support:
Insights from Mozilla’s PDF.js Project. In Proceedings of the 1st ACM In-
ternational Conference on AI-Powered Software (AIware ’24), July 15–16,
2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3664646.3664758

1 INTRODUCTION
Open source Software (OSS) projects depend on open collaboration
environments, in which a distributed community of developers
and developers work in sync to develop the project [5, 6, 15]. For
these projects to thrive, they must create a sustainable ecosystem
in which communication between users and developers is constant
and healthy [6, 9, 31]. As such, these communities often employ
communication tools such as forums, chat clients, and issue trackers,
enabling users and developers to more easily perform communica-
tion tasks, such as asking and answering questions that may arise
throughout the development or usage of the project.

Furthermore, newcomers willing to join these projects have
overcome several barriers to onboard [27], and rely on community
resources to overcome them. This is often done through informal
mentoring [12], a practice in which more senior developers volun-
teer their time to answer questions from newcomers. However, this
practice does not scale, as the time and effort required from the
project members are significant [12, 26], often to the detriment of
other important project-related tasks.

Communities have used different ways to scale up the way they
provide resources for users and newcomers, such as creating docu-
mentation that covers different facts [28]. However, it is known that
the documentation in OSS projects is usually spread, disorganized,
and lacking logical relationship [13]. As a result, communities con-
tinue to depend on humans to convey the information that is needed
by newcomers effectively. Nevertheless, communities have contin-
ued to experiment with alternative ways to provide this information
that are more efficient than utilizing human labor.

https://doi.org/10.1145/3664646.3664758
https://doi.org/10.1145/3664646.3664758
https://doi.org/10.1145/3664646.3664758


AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Correia et al.

Foundation models, such as GPT-4 [2], have demonstrated their
ability to provide accurate and satisfactory responses to a wide
range of general inquiries [17, 21, 24, 33], and thus are being exten-
sively utilized by developers to help them solve problems related
to the projects they participate [19, 23]. Since these models can
understand different types of content related to the project (e.g.,
source code, documentation, diagrams, etc.) they can efficiently
organize information from disparate sources of information to pro-
vide information that helps new developers and users in answering
their questions [21, 22].

However, most widely available tools utilized fixed, general,
and sometimes outdated datasets as their primary source of in-
formation [3]. Since software projects have specific information,
processes, and codebases —which are constantly evolving—it can
be difficult to ensure that the information these tools provide is
accurate [18]. Most of these tools are proprietary, providing limited
experience in reporting how these foundation model-based assis-
tants can help developers with project-specific questions, especially
more specific questions requiring specialized knowledge.

To address this challenge, we introduce DevMentorAI, a conver-
sational assistant that uses continuous integration to use project
contextual information (reducing the risk of providing incorrect
information). To accommodate for the specifics of different com-
munities, DevMentorAI utilizes a modular approach, and thus can
be easily integrated with different communication tools, such as
forums, chat clients, collaborative development environments, etc.

To tackle the lack of experimental reports about how these con-
versational agents are helping developers, this paper presents a case
study. In this study, DevMentorAI was applied to answer 14 real
questions that were asked and answered by human developers in
the chat room for PDF.js,1 an OSS project managed by the Mozilla
Foundation. A project expert from Mozilla (the main developer)
was then tasked with evaluating how satisfied they were with each
of the answers (i.e., the human’s and DevMentorAI’s answers).

In summary, the expert perception was favorable towards De-
vMentorAI’s answers in most questions (8 of 14 questions). In 3
questions, they were considered equivalent, and only in 3 questions,
the expert was more satisfied with the human answers. To better
understand these results, we also discuss individual cases and point
out factors that may have influenced both the performance of Dev-
MentorAI and the human, while also pointing at some factors that
may have influenced the expert’s evaluation.

Contributions: This paper has two main contributions: (i) we
present DevMentorAI, a conversational agent that can help develop-
ers by utilizing real-time information, therefore helping reduce the
time and effort expended by human developers in mentoring, and
(ii) we report a case study in which DevMentorAI was utilized to
answer 14 real questions asked by developers and users from a large
open-source project (PDF.js). We then tasked a project maintainer
from the project, with comparing how satisfied he was with the
answers provided by the humans and by DevMentorAI.

2 RELATEDWORK
This section presents related work on large language models used
to support software development activities.

1https://github.com/mozilla/pdf.js

The development of Large Language Models (LLMs) has acceler-
ated significantly over the past few years, marked by the introduc-
tion of models such as Gemini [30], BERT [10], and GPT-3 [7]. These
models can generate human-like text, summarize content, and per-
form a wide range of natural language processing tasks. Recent
work [17, 21, 24, 33] have been investigating the potential of LLMs
in supporting or acting as assistants for SE activities. Dakhel et
al. [17] explore Copilot’s effectiveness in providing correct, effi-
cient, and reproducible solutions for fundamental programming
tasks, and assess whether Copilot’s solutions are competitive with
those created by humans. Sallou et al. [24] emphasizes concerns
such as closed-source models, data leakage, and the reproducibility
of research findings involving LLMs. Moreover, Balfroid et. al. [4]
explored the potential of using LLMs for generating annotated code
tours to help the onboarding process of new developers in software
projects. Their findings show that the LLM, while able to generate
code and present solutions, often gives vague information or gives
the same content present in the documentation.

Pudari et al. [22] studied the current capabilities and limitations
of AI-supported code completion tools like GitHub’s Copilot. It
explores how these tools deal with programming idioms and code
smells. The study finds that Copilot often does not suggest the most
idiomatic or best practice code, indicating areas for future improve-
ment in AI-supported programming tools. Moreover, Sauvola et
al. [25] investigated the impact of generative AI on software de-
velopment, analyzing the opportunities, challenges, and ethical
concerns surrounding AI in enhancing productivity, and automa-
tion in software development. The study emphasizes the need for
new tools and guidelines to navigate the world of generative AI
to better understand its role in software development practices
and operations. Finally, Pinto [21] explores the use of ChatGPT for
grading and providing feedback on open-ended questions within
technical training contexts. Their findings suggest that ChatGPT
can identify semantic-related details in responses and it is generally
aligned with expert corrections, indicating its potential use in the
feedback process for open questions in educational environments.

Our study differs from prior research in two main ways: (i) we
designed a conversational assistant that supports interfacing with
different generative models (currently GPT-3.5 Turbo). Using these
models, we employed a Retrieval-Augmented Generation (RAG)
approach, focusing specifically on documentation and source code
from the target project. As such, our assistant is specialized in
answering questions related to the project (beyond code); (ii) we
assessed the quality of the responses of our custom assistant by
comparing them with actual real-user answers, which were subse-
quently evaluated by a project expert.

3 DEVMENTORAI
In this section, we present the details about DevMentorAI. The
source code is available on our replication package [1].

3.1 Requirements
We designed DevMentorAI as a conversational assistant aimed at
aiding developers by offering relevant responses to project-specific
questions. We focused on creating a tool that would enable compat-
ibility with various platforms, like chat clients, forums, and issue

https://github.com/mozilla/pdf.js


Unveiling the Potential of a Conversational Agent in Developer Support: Insights from Mozilla’s PDF.js Project AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

Figure 1: DevMentorAI’s Pipeline.

trackers, while maintaining a swift response time to seamlessly
integrate into the developer’s workflow. Additionally, a core aspect
of DevMentorAI’s functionality is providing accurate and current
data, ensuring that developers have access to the latest information
relevant to their projects.

3.2 Architecture
Given the goals presented above, we opted to design DevMentorAI
by leveraging the hexagonal architectural framework [29]. By using
this architecture, DevMentorAI’s execution follows the pipeline
summarized in Figure 1.

The use of the hexagonal framework simplifies the development
of new adapters for different data sources (e.g., scrapers, PDF read-
ers, git)—via the content operator and converter content services
(left of Figure 1)—and enables smooth integration with different
communication clients (e.g., GitHub issue tracker, Matrix Chat,
Discord)—which can be plugged to the chain operator (right of
Figure 1). This design enables extensibility in terms of inputs and
outputs, and easier maintenance for different projects and contexts.
This novel way of building a contextual agent makes DevMen-
torAI’s architecture a good fit for several projects, regardless of the
source of documentation and communication channels they use.

Next, we will discuss the individual components developed for
DevMentorAI, shown in the figure.

3.2.1 Vector Storage Service. The first step to creating a contex-
tual agent is collecting the information from the data sources. For
retrieving the up-to-date information that DevMentorAI utilizes
to answer questions, we opted for the Retrieval-Augmented Gen-
eration (RAG) strategy [16]. As such, we developed a component
that ingests the projects’ documentation and source code for the
assistant’s usage. This occurs in two steps. First, this component
processes the artifacts from the project, and second, it then identi-
fies similarities between the questions and the project context (via
a vector space). We will detail each of these steps as follows.
Obtaining the raw sources. DevMentorAI utilizes the Content
Operator Service to capture the target project source code and doc-
umentation (by integrating with git/GitHub) and other documenta-
tion web pages (through web scraping). When needed, a universal
text format converter is utilized (Content Converter Service, which

currently utilizes Pandoc) to standardize raw text into Markdown.
The processed content is then broken down into smaller chunks for
targeted analysis of source code or documentation relevant to spe-
cific questions. This approach avoids comparing entire documents
or code modules. Programming language and text semantics are
respected during this stage to maintain coherence and syntax.
Content Vectorization. Each excerpt of raw content is then trans-
formed into a vector and stored in a database, thereby updating
the project’s context. This vectorization process is done to opti-
mize searching for documents or source code chunks similar to the
question being asked (i.e., providing context for an answer).

3.2.2 Generative component (OpenAI). DevMentorAI’s architec-
ture was planned to accommodate different generative AI tools—we
call them “Generative components” in the scope of our architecture.
For the sake of this study, we utilized OpenAI’s GPT-3.5 Turbo with
a 4K token context window as our core generative model. Our selec-
tion of OpenAI’s GPT model was driven by its status as the leading
language model available during our study. Additionally, we opted
for GPT-3.5 Turbo over GPT-4 due to monetary constraints. The
communication between our assistant and the generative model
was executed using the reference API provided by OpenAI2.

3.2.3 History Service. To increase the richness of the contextual
information input provided to the generative model, we provide
a rolling history of the conversation to the prompt. To do so,
we adopted the ConversationBufferMemory 3 construct from
LangChain [8]. This construct was chosen given its ability to pro-
vide a history without the necessity to first use Generative AI to
summarize historical data.This strategy also reduces the response
time and increases the accuracy of the answers.

3.2.4 Chain Operator. On the other side of the architecture, the
user posts questions that are handled by a conversation chain, which
is operated by a “chain operator.” When the user asks a question,
this operator is invoked and passes the question to the pipeline.
The operator has a pre-set prompt template that needs to be filled
with certain variables, as in the top-left of the example in Figure 1.
This prompt has details about the persona, which is information
2https://platform.openai.com/docs/api-reference
3https://python.langchain.com/docs/modules/memory/types/buffer

https://platform.openai.com/docs/api-reference
https://python.langchain.com/docs/modules/memory/types/buffer


AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Correia et al.

related to how the assistant should behave. The prompt also con-
tains relevant details the assistant should consider to generate the
answer. This template requires three pieces of information: history,
which is the history of previous interactions, context, which is the
knowledge relevant for answering the question (i.e., documents and
source code chunks similar to the question asked), and, of course,
the question posted by the user.

The history is filled by the history service. It keeps a rolling
window of previous interactions with the user. The context is filled
by asking the vector storage service to search for chunks that are
similar to the vector representation of the question asked. Once the
relevant vectors are retrieved, the full contents of these chunks are
restored from the metadata to fill the context variable.

4 METHODOLOGY
The goal of this study is to assess how DevMentorAI answers com-
pare to those written by humans in a project-specific context. So, we
conducted a case study using real past questions in a development
chat channel and analyzed how DevMentorAI performs in those
questions. Thus, our research question is:

RQ: How does DevMentorAI compare to humans when re-
sponding to project-specific questions?

4.1 Study Design
We conducted four main methodological steps to answer our re-
search questions, described in the following sections.

4.1.1 Project Selection. The Mozilla Corporation maintains multi-
ple open-source projects in several domains, most of which could be
suitable for our investigations. To assess our approach we selected
the project to conduct our evaluation based on three criteria: (i)
the discussions on the project should be openly available, (ii) our
collaborators at Mozilla should have contact with the engineers of
the project, and finally (iii) the project should be ingested by our
model in a reasonable time.

Here is some rationale supporting our criteria. First, we needed
access to the discussion channel of the project. Therefore, we limited
the projects’ universe to those with open discussions onMatrix—the
Mozilla platform for discussions. Second, since our collaborators
were supposed to evaluate the DevMentorAI answers for real ques-
tions, we restricted the projects to those in which we could reach
the engineers of the project. Third, ingesting the project’s reposi-
tory artifacts takes a long time, depending on the project size, so
we opted for small or medium size projects. Therefore, observing
these criteria, we selected the PDF.js as the subject for our study.

4.1.2 Ingestion of project’s artifacts. Our assistant ingested tech-
nical documentation and source code extracted from PDF.js to
conduct this case study. We collected all the artifacts from the
project mozilla/pdf.js hosted on GitHub. It is worth mentioning
that our assistant supports ingesting source code from several lan-
guages in addition to markup files. Aiming to standardize the file’s
vector computing, we employed Pandoc [20] to convert the markup
files such as .html to .md. In general, for the PDF.js, we ingested
source code files, wiki pages, and web pages comprising files in
the following formats: js, jsx, mjs, cjs, md, html, pdf, etc. To assess

the effectiveness of artifact ingestion, we conducted some prelimi-
nary isolated tests, which produced contextualized outcomes when
asking questions about the PDF.js.

4.1.3 Selecting the Questions. With the subject project chosen, we
started gathering the conversations in the chat channel, which
project developers and users use. We accessed the PDF.jsMatrix
room4 and exported the chat history leveraging a built-in function-
ality. We collected all messages and their metadata until January
16, 2024, in a JSON format.

Since our interest was to obtain textual questions and their an-
swers, we made an initial data processing using Python scripts.
We created as output a spreadsheet containing (i) the message
timestamp, (ii) whether the message was a reply from a previous
message, and (iii) its textual content. This process resulted in a
spreadsheet containing 3492 messages. Next, one author manually
inspected each message to determine whether that was a question
with a proper human response. This process was conducted by one
researcher and validated by a second.

During the manual analysis, we identified several questions
throughout the chat history. However, the preponderance of these
questions proved unsuitable for inclusion in our evaluation. Ini-
tially, we discarded cases where questions were posed, and other
users requested more information, leading to threaded discussions
to completely understand the question’s context. Additionally, we
disregarded unanswered or questions that required access to exter-
nal resources. Finally, non-technical queries were excluded from
consideration. Below, we have an instance of an ignored question
and the reasons presented above.

Question discarded in the manual analysis

Hi all, I’m trying to implement the pdfjs on a certain project. I was able
to implement the example on the official site that uses the pdfjs-dist script,
but I am a little confused as to how I can implement this example: https:
//mozilla.github.io/pdf.js/web/viewer.html in a similar manner?

We ignored the aforementioned example predominantly due to
its lack of answers. Furthermore, accessing the link to check the
code example provided in the question is necessary to gain context
and provide an accurate answer. Since the model did not have access
to external artifacts, that was another factor to classify that question
as unsuitable. After the manual analysis, we ended up consider-
ing 14 questions and their respective answers for this preliminary
analysis. It is worth noting that some users asked questions using
multiple messages. In these situations, we concatenated the mes-
sages to conceive the question. The same approach was adopted
for the answers. Still, follow-up questions were not considered.

4.1.4 Expert Assessment. After selecting the fourteen questions,
we submitted each of them to DevMentorAI. We implemented an
integration with Discord [11] and performed the following steps
for each question. First, we started a new chat, which created a
new and empty context for the conversation. Next, we copied the
question we identified in the chat and submitted it for the assis-
tant consideration. DevMentorAI processed the data going through

4https://chat.mozilla.org/#/room/#pdfjs:mozilla.org

https://github.com/mozilla/pdf.js
https://mozilla.github.io/pdf.js/web/viewer.html
https://mozilla.github.io/pdf.js/web/viewer.html
https://chat.mozilla.org/#/room/#pdfjs:mozilla.org


Unveiling the Potential of a Conversational Agent in Developer Support: Insights from Mozilla’s PDF.js Project AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

our vectorial database and sending the contextual prompt to the
foundational model. Finally, we received the answers.

We structured the data from the previous steps in a spreadsheet
with three columns. The first column contained the question posted;
the second had the human answer as posted in Matrix; and the third
presented the responses generated by DevMentorAI. Subsequently,
we added two more columns to that spreadsheet to enable the spe-
cialist assessment, which we describe in the following paragraph.

Since we conducted this study in collaboration with the Mozilla
Corporation, the answers were assessed by an expert with vast
experience in programming (15 years), 4 years experience on the
target project (i.e., PDF.js), and that is currently the project’s main
developer. We asked this expert to answer the following questions
for each question: "How satisfied are you with the human answer?"
and "How satisfied are you with the bot’s answer?". Both questions
enabled answers following a 5-point Likert scale, as follows: not at
all satisfied (0), slightly satisfied (1), moderately satisfied (2), very
satisfied (3), and completely satisfied (4).

To further understand the context and details of the conversa-
tions, we explored the sequence of the chat analyzing the messages
that followed the question and answer on Matrix. To do so, we went
back to Matrix and manually analyzed the messages exchanged
about the topic, providing us with further evidence of the satisfac-
tion and usefulness of the answers provided in the chat.

5 RESULTS AND DISCUSSIONS
In this section, we present the results of our study to characterize the
DevMentorAI performance in answering project-specific questions
and the factors that influence their responses.

5.1 Overall Performance
As described in Section 4.1.4, we compared the performance of
DevMentorAI with the actual humans’ answers when addressing
questions regarding PDF.js. For that, a PDF.js expert fromMozilla
gauged its satisfaction with the answers the humans and our assis-
tant provided. This expert has extensive experience in programming
and on PDF.js, featuring as the project’s main developer.

Figure 2 summarizes the results from the comparative analysis.
The x-axis shows the questions, while the y-axis provides the ratings
for answers. The performance evaluation yielded the following
results: (i) DevMentorAI surpassed the human in 8 questions; (ii)
in 3 questions, both exhibited comparable performance; and (iii)
in 3 questions, the human outperformed DevMentorAI. One can
observe that in all the cases in which the expert was more satisfied
with the human’s answer, the difference was at least two points on
the Likert scale. On the other hand, DevMentorAI had this degree
of superiority in 5 cases (out of the 8 cases mentioned in (i)).

5.2 Discussion About Individual Cases
In this section, we discuss the perceived performance of DevMen-
torAI in specific cases. We also point at factors that may have
influenced both how DevMentorAI responded and how the expert
evaluated the case. These examples will be divided into three cate-
gories. First, the cases in which the response from DevMentorAI
was perceived as better than that from the human. Second, the

ones in which the response from the human was perceived as bet-
ter. Third, those cases in which they were perceived as similar.
Although we explore exemplary cases for each category, all the
questions and answers are available in our replication package [1].

5.2.1 DevMentorAI outperforms humans. This scenario was
observed in 8 out of the 14 questions analyzed. In this section, we
present three exemplary cases in which the expert ranked DevMen-
torAI’s answer as more satisfactory than the human’s answer.

Question 11

Hi, I have a very large pdf in size (200mb) and I want to download it faster.
How to do that in PDF.js viewer?

1. Pdf is linearized.
2. Using rangeChunkSize (1024 1024).

But it is downloading chunk in sequentially but I want them to be
downloaded parallelly. Is there any configuration available to control the
number of parallel requests?

Human’s Answer:
Download it and use an other viewer.

DevMentorAI’s Answer:
No, there is no configuration available in the PDF.js viewer to control the
number of parallel requests for downloading chunks of a large PDF file. The
viewer automatically handles the downloading and rendering of the PDF file,
and the number of parallel requests is determined by the browser’s network
stack.

In Question 11, someone asked if they could use the project in
a configuration that is not supported. The human who answered
provided a very short and direct answer, which one could perceive
as ungentle or even uncaring, due to the dismissive way it was
phrased. By analyzing DevMentorAI’s answer, we observe that it
explains to the participant the specifics of why it was not possi-
ble. Consequently, the expert evaluated that they were not at all
satisfied (0) with the human’s answer, and very satisfied (3) with
DevMentorAI’s. When we went in-depth into the conversation, we
observed that the person asking the question provided more infor-
mation after getting the rough answer, and the same respondent
posted other rough comments, including an image of Taylor Swift
with the following excerpt of her song: "I will never shut up about."

Question 12

Is there a pdf.js associated inspector-like tool for viewing pdf internals? I recall
seeing something like this before.

Human’s Answer:
yep: http://brendandahl.github.io/pdf.js.utils/browser/.

DevMentorAI’s Answer:
Yes, there is a PDF Object Browser tool available for inspecting the internal
object structure and viewing raw values of a PDF document. You can access
the PDF Object Browser using this link: https://brendandahl.github.io/pdf.js.
utils/browser.

In Question 12, the user asked for a tool included in the project.
The human responded precisely, with a short confirmation and a
link to the tool the user was looking for. DevMentorAI also replied

http://brendandahl.github.io/pdf.js.utils/browser/
https://brendandahl.github.io/pdf.js.utils/browser
https://brendandahl.github.io/pdf.js.utils/browser


AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Correia et al.

Figure 2: Expert ratings for questions in a Likert scale.

with the same link but briefly described the tool. The expert was
satisfied with both answers and slightly preferred DevMentorAI’s
answer. They reported being very satisfied (3) with the human
response and completely satisfied (4) with DevMentorAI’s response.

We can observe that, in both cases presented here, the humans
provided short answers, with poor context or explanations. This
behavior may have multiple possible causes, including stress and
lack of time. Moreover, this problem may have varying levels of
severity. For instance, responses were perceived as ungentle or
even toxic in the first question, but acceptable ones as the second
one. This kind of behavior shows a problem inherent to human
responses: the humanmight not always be fully available to provide
a complete response. In these cases, we observe an advantage that
is inherent to assistants such as DevMentorAI. Not only they are
always available to answer the user but also provide an answer to
the full extent of content they have access.

Question 3

Hello! I was trying to switch to reader view on FF on a badly typo-graphed
PDF. Can this be done somehow? if its not a feature already, where can I
suggest it?

Human’s Answer:
I don’t know how *technically* feasible it is, but I just got to https://www.
supremecourt.gov/opinions/20pdf/18-956_d18f.pdf actually that’s not a bad
idea :) beyond the fact that it’s all white space and small font, I get a lot of
light sensitivity so prefer a dark background (which reader mode allows) You
can suggest it by filing a bug on bugzilla.mozilla.org

DevMentorAI’s Answer:
To switch to reader view in Firefox for a PDF document, you can follow these
steps:

1. Open the PDF document in Firefox.
2. Click on the ""Reader View"" icon in the address bar (it looks like an open
book).
3. The PDF will be displayed in a simplified, distraction-free reader view.

If you have any suggestions or feature requests for Firefox, you can
submit them to Mozilla’s Bugzilla platform. Here is the link to file a new bug
report: https://bugzilla.mozilla.org/enter_bug.cgi?product=Firefox

Make sure to provide a clear description of your suggestion and any
relevant details that can help the developers understand and evaluate your
idea.

Question 3 illustrates an inherent advantage that virtual assis-
tants can have over humans. In this case, the human was not aware
of a feature that was already implemented in the software. There-
fore, they only instructed the user on how they could suggest this
feature to the development team. On the other hand, since the vir-
tual assistant has access to several sources of up-to-date information
about the project, it was aware of the existence of this feature, thus
it both instructed the user on how to use the feature and how to
suggest new features (the user also requested this information). As
such, the expert was slightly satisfied (1) with the human’s answer,
and very satisfied (3) with DevMentorAI’s answer.

5.2.2 DevMentorAI performs as good as a human. Here, we
explore two of the three cases in which the expert was equally
satisfied with the answers from the human and DevMentorAI.

Question 7

Hi folks, If I have a PDF that’s 100MB and 100 pages long, and I want to direct
a user directly to page 50 for example. Can PDF.js load that page only without
fully loading the entire PDF? Or load only that range of pages...

Human’s Answer:
If your sever supports range requests, then yes pdf.js should be able to only
load part of the pdf.

DevMentorAI’s Answer:
PDF.js can load specific pages or a range of pages from a PDF without load-
ing the entire document. This is achieved through the use of HTTP Range
Requests, which allow for fetching only the required portions of the PDF
needed for rendering the visible pages. However, the ability to utilize HTTP
Range Requests depends on browser support and the web server returning
the appropriate headers. If these conditions are met, PDF.js will automatically
start fetching the necessary portions of the PDF for rendering, allowing for a
more efficient and faster loading experience.

In Question 7, both the humans and DevMentorAI provided an-
swers with very similar content. However, one can quickly notice
that the answer from the agent is more verbose, at least 4 times
bigger than the human’s. This is similar to what we observed in the
previous section, with DevMentorAI providing more details and
explanations about the answer. The expert reported to be very satis-
fied (3) with both answers. We believe that DevMentorAI’s answer
can benefit less experienced people or those with a comprehensive
information processing style.

https://www.supremecourt.gov/opinions/20pdf/18-956_d18f.pdf
https://www.supremecourt.gov/opinions/20pdf/18-956_d18f.pdf
https://bugzilla.mozilla.org/enter_bug.cgi?product=Firefox


Unveiling the Potential of a Conversational Agent in Developer Support: Insights from Mozilla’s PDF.js Project AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

Question 5

Hey everyone! I’m having a frustrating issue where I’m trying to allow PDFs
to be previewed in browser. I’m including them via URL in an ‘embed‘ or
‘object‘ HTML tag currently and while it works after installing the browser
extension, it still downloads every PDF file that gets previewed on the page. Is
there a way to prevent that?

Human’s Answer:
To preview anything, it first needs to be downloaded. Nobody reads online.
All content is downloaded and read locally from browser cache.

DevMentorAI’s Answer:
No, there is no built-in way to prevent PDF files from being downloaded when
previewed in the browser using an ‘embed‘ or ‘object‘ HTML tag. These tags
are used specifically for embedding content in web pages and allow users to
download the file if they choose. If you want to restrict the downloading of
PDF files, you would need to implement custom logic on the server-side or
use other methods like DRM (Digital Rights Management) to control access to
the files.

For Question 5, both the human and DevMentorAI acknowledge
that it is not possible to perform the action requested by the user.
Once again we see that the human is more objective and direct
than the agent. The expert reported to be moderately satisfied (2)
with the answer. This may mean that the expert believes that the
answers are not complete in any of the cases. For the human it may
represent a shortage of knowledge, and for DevMentorAI, a lack
of appropriate and accurate information in the project repository.
By investigating the chat logs, we see that the conversation kept
moving, and, at one point the human mentioned “Sorry I am not
expert,” while they kept trying to sort out the program together.

5.2.3 DevMentorAI was outperformed. Finally, we discuss two
of the three cases in which the answer from the human was more
satisfactory than the ones from DevMentorAI. One important ob-
servation before we dive into the details, is that in these cases the
answer from the agent received really low scores. The expert was
not satisfied at all (zero score) in two cases.

Question 8

Hi, I wonder how to use the zoom commands, if I want to zoom into a pdf say
400 and define a left and top offset? https://mozilla.github.io/pdf.js/web/viewer.
html?file=compressed.tracemonkey-pldi-09.pdf&#zoom=300,10,1 brings a
zoomed version with a left offset but jumps to the second page. What do
I have to change to get a top offset of 200px?

Human’s Answer:
In the pdf coordinate system 0,0 is the bottom, left of a page.

DevMentorAI’s Answer:
To modify the zoom commands in the PDF.js viewer to achieve a top offset of
200px, you can use the ‘zoom‘ option with the desired values. The format for
the ‘zoom‘ option is ‘[zoom],[left offset],[top offset]‘. Here is an example URL
that demonstrates how to set the zoom level and top offset: https://mozilla.
github.io/pdf.js/web/viewer.html#zoom=200,0,200. In this example, the zoom
level is set to 200 and the top offset is set to 200px. You can adjust the values as
per your requirements. Please note that this modification will only affect the
viewer for the current session and will not permanently change the default
behavior of the PDF.js viewer.

Question 8 is a complex case. As in the previous cases, the an-
swer from the human is very short and simple. It just points out to
the participant that the 0, 0 position is the bottom left. The expert

is completely satisfied (4) with this answer, understanding that the
user who posted the question would be able to figure out how to
go to the specific place in the PDF. Interestingly, DevMentorAI
gives misleading information, saying that “The format for the ‘zoom’
option is ‘[zoom],[left offset],[top offset]’.” Notice that the two last
parameters here point to the top-left as the 0,0 position, while the
human pointed to the bottom-left. This caused the dissatisfaction
(zero score) of the expert. However, when analyzing the document
presented in DevMentorAI’s answer and the thread on Matrix, we
see that (i) DevMentorAI found the appropriate resource and pre-
sented the information as provided in the documentation; and (ii)
the information was incorrect on the documentation, as per the
follow-up from the human respondent: “hmm...I think that’s wrong
[...], but it should be changed or described in the wiki as well... Due
to this divergence—caused by the issue with the misleading infor-
mation in the documentation—the human reported to be completly
satisfied (4) with the human answer and not at all satisfied (0) with
DevMentorAI’s answer.

Question 10

Hi everyone, I’m running into a bit of an issue with PDF.js and chrome. I’m
not sure I’ve got enough information for a true github issue, but I wanted to
drop it here to see if you might have any insight into the issue.
In the image above you can see a sample of the problem: On my coworkers
machine PDF’s are often rendered like this, with random bits and pieces of
the text characters missing. This seem to happen on his machine and at least
one other but not on mine, and it only happens in Chrome and in Edge but
not when using Firefox.
It seems to happen to many, but not all, the PDF’s, and it isn’t consistent: a
page reload can cause the anomalies to end up entirely somewhere else in the
document. I have attached an example PDF that exhibits the problem for my
coworker.
This goes wrong in our own application and in the slack PDF viewer (which
seems to use PDF.js), but in the PDF.js demo page (opening the example PDF)
does work correctly. https://mozilla.github.io/pdf.js/web/viewer.html
I initially blamed my coworkers machine, but as we have now also seen it on
another machine it is suspicious. Have you every seen anything like this? I’m
pretty stumped. Any insight on this matter is greatly appreciated!

Human’s Answer:
Maybe you should try to test in enabling/disabling hardware acceleration
in Chrome I tried myself on Chrome on Windows 11 with enabled/disabled
’Accelerated 2D canvas’ and it works well.

DevMentorAI’s Answer:
I’m sorry, but I don’t have access to personal experiences or encounters.
However, it is possible to encounter rendering issues with PDF.js in different
browsers. If you are experiencing this specific issue, it would be best to report
it to the PDF.js development team with the necessary details such as the PDF
file, browser version, operating system, and any error messages you may have
encountered.

In Question 10, a developer contextualized the issue explaining
that they are experiencing rendering problems with PDF.js and
Google Chrome on particular machines and asked for insights into
what could be causing the problem. The human answered with
something that seemed like a personal experience. They guided the
user to turn off the hardware acceleration in Google Chrome to solve
the problem. In contrast, DevMentorAI answered that it cannot
access personal experiences (given the personal question asked:
“Have you every [sic!] seen anything like this?”). The expert classified
the human’s answer as very satisfied (4) and the DevMentorAI’s
answer as slightly satisfied (2). The satisfaction with the human

https://mozilla.github.io/pdf.js/web/viewer.html?file=compressed.tracemonkey-pldi-09.pdf&#zoom=300,10,1
https://mozilla.github.io/pdf.js/web/viewer.html?file=compressed.tracemonkey-pldi-09.pdf&#zoom=300,10,1
https://mozilla.github.io/pdf.js/web/viewer.html#zoom=200,0,200
https://mozilla.github.io/pdf.js/web/viewer.html#zoom=200,0,200
https://mozilla.github.io/pdf.js/web/viewer.html


AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Correia et al.

answer goes beyond the expert, the user replied to the human in
the thread saying" “I tried myself on Chrome on Windows 11 with
enabled/disabled ‘Accelerated 2D canvas’ and it works well.”

6 LIMITATIONS AND DESIGN TRADE-OFFS
In this paper, we presented a case study to assess how satisfactory
the answers of a conversational agent would be in the context of
an OSS project. Our decisions on the study conception may have
an impact on the results. First, we had to choose a subject project
to run the study, which is a key decision in a case study. While
many factors may influence this decision, we focused on finding
a project maintained by Mozilla (a partner on this research) with
experts on their reach, and that was not too big to ingest into our
model for our preliminary evaluations. We acknowledge that our
research results are influenced by the specific context of our case
study (PDF.js) and that it limits the generalizability of our results.
However, we preferred to keep more control and work on a single
and smaller project, supported by the maintainer, which entitled
us to be more careful in the data collection and better understand
the context.

A second point regards evaluation from the expert. We could
have conducted in-depth interviews or collected multiple opinions
to get stronger evidence. Once again, considering the factors that led
us to decide, we wanted to guarantee that we would get appropriate
responses that would not require too much time or effort from the
expert. Still, it is well known in the literature that recruiting is not
an easy task in Software Engineering, especially when we deal with
OSS [14, 32]. Therefore, since we are collaborating with Mozilla,
and we had access to an expert, we preferred someone to provide us
with accurate feedback.Although we would have a more in-depth
understanding using other methods, we are very comfortable that
the input received is reliable and accurate, given the expertise and
willingness to help from this person.

We also had to decide on a specific LLM to use. While this may
pose a threat, we used OpenAI’s GPT-3.5 Turbo, since GPT was the
state-of-the-art LLM at the moment of the study, and we opted
for 3.5 Turbo instead of GPT-4 due to budget constraints. Even
using a previous version, the results proved to be very encouraging.
Still related to the LLMs, we acknowledge that they are subject to
continuous updates and modifications, and threaten the consistency
and replicability of our results. Nonetheless, in contrast to related
studies, large language models (LLMs) rapidly evolve and enhance
their models daily. Consequently, we anticipate that the quality of
responses may improve progressively over time.

Some decisions made during the data curation process are also
worth discussing. Given the context of the project under study
and the choice of the LLM used, we had to dismiss questions that
embedded images. This is an important decision because PDF.js
is a PDF rendering tool, and screenshots and PDFs were part of
a non-negligible number of messages. Although we missed some
questions, our sample size was not too small and enabled us to
understand different aspects of DevMentorAI performance. In fu-
ture work, we plan to use Foundation Models that read images and
documents to understand how they improve the answers.

We acknowledge that DevMentorAI answers may be limited for
some lack of context. DevMentorAI had no access to the complete

chat history. Therefore, any contextual information provided before
those messages used to compose the question was not accessible by
the agent. Moreover, since the Matrix channel is open, the human’s
answers might not be from developers from PDF.js, but from users.
This may have resulted in suboptimal answers coming from them
as well. However, this does not pose a threat since the answers
analyzed are the ones that were actually posted to the questions.

Another point is that we did not control documentation in terms
of accuracy and up-to-dateness of the information ingested. There
may be cases in which the answers could be improved. Although
these points might have influenced the quality of the output, our
results were very satisfactory.

Still, two decisions related to the design and implementation of
DevMentorAI may pose limitations. First, we decided to ingest data
available on GitHub to our conversational agent. There may be
more documentation outside of GitHub boundaries that were not
considered. This may have reduced the accuracy of our responses.
However, once again, the preliminary assessment is very encourag-
ing, and this may be included in the following steps of this research.
Second, we used cosine distance to compare the query and the
vectors stored in our database as a step to create the prompt sent
to the LLM. Although we acknowledge that other options would
offer different results, we opted to keep a conservative approach to
assess how the agent would perform with these conditions.

7 CONCLUSION
This paper introduces DevMentorAI, a conversational assistant that
uses the Retrieval Augmented Generation (RAG) architecture to
facilitate developers’ interactions with software projects by inte-
grating project-specific data. By doing a case study of the PDF.js
project, DevMentorAI proved its capability to provide answers that,
in most cases, were better than the ones from human participants.
Our goal was to, by integrating project-specific data, assess if Dev-
MentorAI could make the onboarding process smoother for new
developers and automate responses to project-specific questions.

Moreover, this study highlights the importance of integrating de-
tailed and context-specific information into conversational agents
to improve their effectiveness. As foundation models continue to
evolve, their integration into various aspects of software engineer-
ing and development promises to enhance productivity and facili-
tating processes. The findings from this study not only demonstrate
the feasibility and utility of such models in practical applications
but also pave the way for future research.

For future work, we aim to explore its application across a wider
range of software projects to understand its adaptability and impact
on developer productivity in diverse development environments.

ACKNOWLEDGEMENTS
This workwas supported by the National Science Foundation grants
2236198, 2247929, and 2303042. Also, CAPES: 88887.899310/2023-
00, 88887.900069/2023-00 and 88887.915794/2023-00. CNPq:
140770/2021-6, 141180/2021-8, 140771/2021-2, 315711/2020-5,
141276/2020-7 and 141054/2019-0. CAPES/PROCAD: 175956.
CAPES/PROEX: 88887.373933/2019-00. FAPERJ: 200.510/2023,
211.033/2019 and 202.621/2019. Finally, we thank the Mozilla PDF.js
maintainer for analyzing the answers and giving their feedback.



Unveiling the Potential of a Conversational Agent in Developer Support: Insights from Mozilla’s PDF.js Project AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] 2024. Replication Package. https://github.com/RESHAPELab/DevMentorAI-

PDF.js-replication/. https://doi.org/10.5281/zenodo.11211921 Accessed: May 17,
2024.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[3] Amos Azaria, Rina Azoulay, and Shulamit Reches. 2024. ChatGPT is a Remarkable
Tool—For Experts. Data Intelligence 6, 1 (02 2024), 240–296. https://doi.org/10.
1162/dint_a_00235

[4] Martin Balfroid, Benoît Vanderose, and Xavier Devroey. 2024. Towards LLM-
Generated Code Tours for Onboarding. In Workshop on NL-based Software Engi-
neering (NLBSE’24).

[5] Magnus Bergquist. 2020. Open source software development as gift culture: Work
and identity formation in an Internet community. In New Technologies at Work.
Routledge, 223–241.

[6] Scott Brisson, Ehsan Noei, and Kelly Lyons. 2020. We Are Family: Analyzing
Communication in GitHub Software Repositories and Their Forks. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 59–69. https://doi.org/10.1109/SANER48275.2020.9054834

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[8] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain.
Accessed: April 3, 2024.

[9] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work
(Seattle, Washington, USA) (CSCW ’12). Association for Computing Machinery,
New York, NY, USA, 1277–1286. https://doi.org/10.1145/2145204.2145396

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[11] Discord. [n. d.]. Discord. https://discord.com/. (Accessed on 05/14/2024).
[12] Zixuan Feng, Amreeta Chatterjee, Anita Sarma, and Iftekhar Ahmed. 2022. A

case study of implicit mentoring, its prevalence, and impact in Apache. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 797–809.
https://doi.org/10.1145/3540250.3549167

[13] Felipe Fronchetti, David C. Shepherd, Igor Wiese, Christoph Treude, Marco Au-
rélio Gerosa, and Igor Steinmacher. 2023. Do CONTRIBUTING Files Pro-
vide Information about OSS Newcomers’ Onboarding Barriers?. In Proceed-
ings of the 31st ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (San Francisco, CA, USA)
(ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA,
16–28. https://doi.org/10.1145/3611643.3616288

[14] E. Kokinda, M. Moster, J. Dominic, and P. Rodeghero. 2023. Under the Bridge:
Trolling and the Challenges of Recruiting Software Developers for Empirical
Research Studies. In ICSE-NIER ’23. Association for Computing Machinery, Mel-
bourne, Australia, 55–59. https://doi.org/10.1109/ICSE-NIER58687.2023.00016

[15] Brandon Kramer, Gizem Korkmaz, J Bayoán Santiago Calderon, and Carol Rob-
bins. [n. d.]. International Collaboration in Open Source Software: A Longitudinal
Network Analysis of GitHub. ([n. d.]).

[16] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.),

Vol. 33. Curran Associates, Inc., 9459–9474. https://proceedings.neurips.cc/
paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf

[17] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Zhen Ming (Jack) Jiang. 2023. GitHub Copilot AI pair
programmer: Asset or Liability? Journal of Systems and Software 203 (2023),
111734. https://doi.org/10.1016/j.jss.2023.111734

[18] Goutam Mylavarapu, Johnson P Thomas, and K Ashwin Viswanathan. 2019. An
Automated Big Data Accuracy Assessment Tool. In 2019 IEEE 4th International
Conference on Big Data Analytics (ICBDA). 193–197. https://doi.org/10.1109/
ICBDA.2019.8713218

[19] Stack Overflow. [n. d.]. Stack Overflow Developer Survey 2023. https://survey.
stackoverflow.co/2023/#ai. (Accessed on 04/04/2024).

[20] Pandoc. [n. d.]. Pandoc: a universal document converter. https://pandoc.org/.
(Accessed on 05/14/2024).

[21] Gustavo Pinto, Isadora Cardoso-Pereira, Danilo Monteiro, Danilo Lucena, Al-
berto Souza, and Kiev Gama. 2023. Large Language Models for Education:
Grading Open-Ended Questions Using ChatGPT. In Proceedings of the XXXVII
Brazilian Symposium on Software Engineering (Campo Grande, Brazil) (SBES
’23). Association for Computing Machinery, New York, NY, USA, 293–302.
https://doi.org/10.1145/3613372.3614197

[22] Rohith Pudari and Neil A Ernst. 2023. From copilot to pilot: Towards AI supported
software development. arXiv preprint arXiv:2303.04142 (2023).

[23] Steven I. Ross, FernandoMartinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large Language Model for Software Development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces (Sydney, NSW, Australia)
(IUI ’23). Association for Computing Machinery, New York, NY, USA, 491–514.
https://doi.org/10.1145/3581641.3584037

[24] June Sallou, Thomas Durieux, and Annibale Panichella. 2023. Breaking the silence:
the threats of using llms in software engineering. arXiv preprint arXiv:2312.08055
(2023).

[25] Jaakko Sauvola, Sasu Tarkoma, Mika Klemettinen, Jukka Riekki, and David
Doermann. 2024. Future of software development with generative AI. Automated
Software Engineering 31, 1 (2024), 26. https://doi.org/10.1007/s10515-024-00426-z

[26] Igor Steinmacher, Sogol Balali, Bianca Trinkenreich, Mariam Guizani, Daniel
Izquierdo-Cortazar, Griselda G Cuevas Zambrano, Marco Aurelio Gerosa, and
Anita Sarma. 2021. Being a mentor in open source projects. Journal of Internet
Services and Applications 12 (2021), 1–33. https://doi.org/10.1186/s13174-021-
00140-z

[27] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social Barriers Faced by Newcomers Placing Their First Contribution
in Open Source Software Projects. In Proceedings of the 18th ACM Conference
on Computer Supported Cooperative Work & Social Computing (Vancouver, BC,
Canada) (CSCW ’15). Association for Computing Machinery, New York, NY, USA,
1379–1392. https://doi.org/10.1145/2675133.2675215

[28] Igor Steinmacher, Marco Aurélio Graciotto Silva, and Marco Aurélio Gerosa.
2014. Barriers Faced by Newcomers to Open Source Projects: A Systematic
Review. In Open Source Software: Mobile Open Source Technologies, Luis Corral,
Alberto Sillitti, Giancarlo Succi, Jelena Vlasenko, and Anthony I. Wasserman
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 153–163.

[29] Jan Stenberg. 2014. Exploring the Hexagonal Architecture. InfoQ (Oct. 31, 2014).
url: https://www. infoq. com/news/2014/10/exploring-hexagonal-architecture/(visited
on 08/12/2019) (2014).

[30] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[31] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-
ing contributions through discussion in GitHub. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (Hong
Kong, China) (FSE 2014). Association for Computing Machinery, New York, NY,
USA, 144–154. https://doi.org/10.1145/2635868.2635882

[32] S. Wagner, D. Mendez, M. Felderer, D. Graziotin, and M. Kalinowski. 2020. Chal-
lenges in Survey Research. Springer International Publishing, Cham, 93–125.
https://doi.org/10.1007/978-3-030-32489-6_4

[33] Wei Wang, Huilong Ning, Gaowei Zhang, Libo Liu, and Yi Wang. 2024. Rocks
Coding, Not Development–A Human-Centric, Experimental Evaluation of LLM-
Supported SE Tasks. arXiv preprint arXiv:2402.05650 (2024).

https://github.com/RESHAPELab/DevMentorAI-PDF.js-replication/
https://github.com/RESHAPELab/DevMentorAI-PDF.js-replication/
https://doi.org/10.5281/zenodo.11211921
https://doi.org/10.1162/dint_a_00235
https://doi.org/10.1162/dint_a_00235
https://doi.org/10.1109/SANER48275.2020.9054834
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/langchain-ai/langchain
https://doi.org/10.1145/2145204.2145396
https://discord.com/
https://doi.org/10.1145/3540250.3549167
https://doi.org/10.1145/3611643.3616288
https://doi.org/10.1109/ICSE-NIER58687.2023.00016
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.1109/ICBDA.2019.8713218
https://doi.org/10.1109/ICBDA.2019.8713218
https://survey.stackoverflow.co/2023/#ai
https://survey.stackoverflow.co/2023/#ai
https://pandoc.org/
https://doi.org/10.1145/3613372.3614197
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1007/s10515-024-00426-z
https://doi.org/10.1186/s13174-021-00140-z
https://doi.org/10.1186/s13174-021-00140-z
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1145/2635868.2635882
https://doi.org/10.1007/978-3-030-32489-6_4

	Abstract
	1 Introduction
	2 Related Work
	3 DevMentorAI
	3.1 Requirements
	3.2 Architecture

	4 Methodology
	4.1 Study Design

	5 Results and Discussions
	5.1 Overall Performance
	5.2 Discussion About Individual Cases

	6 Limitations and design trade-offs
	7 Conclusion
	References

