
Procedia Computer Science 00 (2024) 1–??

Procedia
Computer
Science

Software Solutions for Newcomers’ Onboarding in Software Projects: A
Systematic Literature Review

Italo Santosa,, Katia Romero Felizardoa,b,, Igor Steinmachera,, Marco A. Gerosaa,

aNorthern Arizona University, Flagstaff, AZ, USA
bFederal Technological University of Paraná, PR, Brazil

Abstract

[Context] Newcomers joining an unfamiliar software project face numerous barriers; therefore, effective onboarding is essential to help them
engage with the team and develop the behaviors, attitudes, and skills needed to excel in their roles. However, onboarding can be a lengthy, costly,
and error-prone process. Software solutions can help mitigate these barriers and streamline the process without overloading senior members.
[Objective] This study aims to identify the state-of-the-art software solutions for onboarding newcomers. [Method] We conducted a systematic
literature review (SLR) to answer six research questions. [Results] We analyzed 32 studies about software solutions for onboarding newcomers
and yielded several key findings: (1) a range of strategies exists, with recommendation systems being the most prevalent; (2) most solutions are
web-based; (3) solutions target a variety of onboarding aspects, with a focus on process; (4) many onboarding barriers remain unaddressed by
existing solutions; (5) laboratory experiments are the most commonly used method for evaluating these solutions; and (6) diversity and inclusion
aspects primarily address experience level. [Conclusion] We shed light on current technological support and identify research opportunities
to develop more inclusive software solutions for onboarding. These insights may also guide practitioners in refining existing platforms and
onboarding programs to promote smoother integration of newcomers into software projects.

© 2011 Published by Elsevier Ltd.

Keywords: Systematic Literature Review, Software projects, Open source software, Onboarding, Turnover, Tool, Newcomers, Novices

1. Introduction

Onboarding has become extremely relevant in a volatile la-
bor and technological market [3, 64, 82]. In the software in-
dustry, onboarding is the process of integrating new developers
into a software development team [82, 85, 105, 119]. During
onboarding, newcomers have to adapt to the new environment,
understand the requirements to play their role, and collaborate
effectively with the team. Effective onboarding is essential for
ensuring a smooth transition and productivity of the new mem-
bers [8, 62].

Newcomers have to consume new information in a short
time, use new development processes, collaborate with new col-
leagues in a different work environment, and understand large
and complex source code structures [96]. Thus, newcomers
need significant time before being considered ready to work on

Email addresses: italo_santos@nau.edu (Italo Santos),
katiascannavino@utfpr.edu.br (Katia Romero Felizardo),
igor.steinmacher@nau.edu (Igor Steinmacher),
marco.gerosa@nau.edu (Marco A. Gerosa)

a project to the best of their ability [129]. Companies strive
to get the most out of their employees, and new team mem-
bers look to prove themselves in the new setting [11]. Inade-
quately supported onboarding can lead to a substantial waste of
company resources and talent and can be a source of frustration
for all involved parties. According to Buchan et al. [18], poor
onboarding can lead to anxiety in new team members due to
their perceived lack of team contribution and trust. Addition-
ally, it may result in a decline in the team’s overall productiv-
ity [53, 89]. Therefore, approaches supporting onboarding are
desirable to help newcomers and mitigate these problems.

Although this is critical to any software development team,
this is key to open source software (OSS) projects, which are
expected to provide environments with low entry barriers to
onboarding newcomers to maintain project sustainability [37,
103]. Nevertheless, newcomers face challenging barriers in the
OSS context. Social interaction, previous knowledge, finding
a way to start, documentation, and technical hurdles are ex-
amples of barriers [107]. Consequently, these barriers posed
during the onboarding may lead newcomers to give up on con-

1

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 2

tributing [103]. Therefore, investigating newcomer onboarding
in this context is crucial [5, 42, 102, 103, 106, 114, 130].

Onboarding strategies can include courses [83, 96], boot-
camps [82], and mentorship [4, 17, 34, 82]. These strategies
are known for being costly in terms of time and money and lack
scalability [17]. For example, senior developers pointed out
that working as mentors impacts their productivity [82]. Hav-
ing new hires read relevant source code without assistance is
also costly regarding time investment [7], leading to long ad-
justment periods.

Some solutions can be automated to facilitate the onboard-
ing process for a large number of projects and newcomers. Such
software solutions are still not largely used in practice but have
been investigated in the scientific literature. However, this evi-
dence is spread across different venues and disciplines.

This study aims to identify studies that propose software so-
lutions that facilitate the onboarding of newcomers in software
projects [8] using a Systematic Literature Review (SLR). Soft-
ware solutions can actively support diverse aspects of onboard-
ing. The literature is vast and covers many of these aspects,
such as reducing onboarding time and cost for companies [3],
supporting independent learning [119], supporting the need for
training [21], helping newcomers to deal with the high amount
of information [25, 130], and supporting newcomers in under-
standing complex source code structures [17, 34].

Our systematic literature review consolidates this informa-
tion into a single resource, providing a clearer understanding of
the existing software solutions that facilitate onboarding new-
comers in software projects. This paper presents a comprehen-
sive analysis of 32 primary studies published until 2023 to iden-
tify the state-of-the-art related software solutions for newcom-
ers’ onboarding and to identify potential gaps that can be ad-
dressed by developing new software solutions. The outcomes
of this study inform practitioners and researchers working on
smoothing onboarding for newcomers and provide a basis for
further research in this area.

We have organized the remainder of this paper as follows.
Section 2 details the SLR planning and its execution. Next,
Section 3 presents the results and answers the study research
questions. Section 4 outlines the paper discussion, Section 5,
the implications. The threats to validity are discussed in Sec-
tion 6. In Section 7, we introduce related work. Finally, Sec-
tion 8 concludes the work concerning our main findings and
suggests future work.

2. Research method

We conducted this study as a Systematic Literature Review
(SLR) based on guidelines established for the Software Engi-
neering domain [60]. We employed synthesis procedures sim-
ilar to other SLRs (e.g., [46, 105]) to identify data patterns
about solutions to facilitate newcomers’ onboarding in software
projects. In particular, we evaluated how far the proposed soft-
ware solutions mitigate newcomers’ barriers to joining software
projects and how they address the diversity and inclusion of
newcomers.

In this section, we detail the protocol used for the systematic
literature review, specifying the research questions and defin-
ing the search strategy, selection process, selection criteria, and
data collection and synthesis processes. We present the results
for the research questions in Section 3.

2.1. Research questions

According to Park and Jensen [80], the continuous influx of
newcomers and their active participation in development activ-
ities play a vital role in the success of software projects. In this
context, this SLR aims to identify studies that propose software
solutions that facilitate the onboarding processes for newcom-
ers in software projects. We translated our research goal into
the following research questions (RQs):

RQ1. What software solutions are proposed in the literature
to facilitate newcomers’ onboarding in software projects?

As the field of software development continually evolves,
the challenges newcomers face during their onboarding process
continue. By answering RQ1, we aim to provide a comprehen-
sive understanding of the existing software solutions for sup-
porting newcomers during the onboarding process. By lever-
aging existing knowledge and commonly used onboarding so-
lutions, organizations can create a smooth onboarding process,
promote productivity, and foster a positive team dynamic.

RQ2. How were the software solutions implemented?

While numerous software solutions have been proposed to
enhance newcomers’ integration into software projects, under-
standing the specific implementation details is essential to as-
sess their feasibility, effectiveness, and real-world impact. An-
swering RQ2 enables the software development community to
identify successful approaches and technological gaps.

RQ3. How do the proposed software solutions improve new-
comers’ onboarding?

Onboarding is a complex and multifaceted process. By an-
swering RQ3, we aim to provide evidence and insights into
which aspects of onboarding have been addressed by existing
solutions. Understanding the goals of those proposed software
solutions enables software projects to find solutions that better
address their needs.

RQ4. How do the software solutions mitigate newcomers’
barriers to joining software projects?

Newcomers face a variety of onboarding barriers [107]. By
answering RQ4, we aim to gain insights into how existing soft-
ware solutions address these barriers. This investigation aims
to guide software projects in selecting appropriate software so-
lutions and to identify potential gaps in the field.

RQ5. What research strategies were employed to evaluate
the software solutions?

2

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 3

Software projects considering the adoption of a software
solution may be particularly interested in how these solutions
have been evaluated, especially in practical settings. Address-
ing RQ5 helps to understand the research strategies employed
to evaluate the quality and applicability of these solutions, guid-
ing transfer to practice and future research in the field.

RQ6. How do the software solutions address the diversity
and inclusion of newcomers?

Literature shows [19, 23, 98] that the way information cur-
rently provided in software projects (e.g., documentation, issue
description) benefits certain cognitive styles (e.g., those who
learn by tinkering) over others (e.g., process-oriented learners).
The prevalent approach in building software solutions is more
beneficial to the majority, and the literature shows that not con-
sidering the minorities in the design increases barriers to their
participation [92]. This is counter-intuitive to most designers
because software is often built/designed by representatives of
the majorities. Therefore, the information architecture of doc-
umentation and tools usually appeals to those who have high
self-efficacy and are motivated by individual pursuits such as in-
tellectual stimulation, competition, and learning technology for
fun. These pursuits cater to characteristics associated with men,
which can neglect women and other contributors who may have
different motivations and personal characteristics [19]. RQ6
brings this awareness and contributes to the effort of making
projects more welcoming for people who do not follow the cog-
nitive and behavioral standards of the majority.

2.2. Selection criteria
For the selection criteria, we established one Inclusion Cri-

teria (IC) and five Exclusion Criteria (EC), detailed below:

IC1 – The primary study proposes software solutions for
newcomers’ onboarding in software projects;

EC1 – The study does not have an abstract;

EC2 – The study is just published as an abstract;

EC3 – The study is not written in English;

EC4 – The study is an older version of another study already
considered;

EC5 – The study is not a scientific paper—such as editori-
als, summaries of keynotes, workshop proposals/reports, and
tutorials.

In our review, we focused on papers that propose software
solutions—such as tools, applications, or platforms—designed
to facilitate the onboarding of newcomers to software projects.
These software solutions support various aspects of onboard-
ing, such as reducing time and cost and aiding newcomers learn-
ing. We excluded papers that only investigated the onboarding
process without proposing software solutions, such as studies
that examined the code of conduct, as they do not align with our
focus on automated and software-driven solutions. To clarify,

we consider that software solutions are alternatives to mitigate
onboarding barriers and offer (semi-)automated support, help-
ing newcomers adapt to new environments, understand com-
plex systems, and access the necessary information without re-
quiring constant human guidance.

2.3. Search strategy and selection process
We systematically searched for relevant studies, as illus-

trated in Figure 1. The search process included eight stages,
applied sequentially, as follows.

Stage 1. For our search string formulation, we defined our
population as ’software projects’ and the intervention as ’on-
boarding newcomers’ derived from our research questions.
Upon careful analysis of terms associated with the popula-
tion and intervention components, we formulated a set of
keywords and their synonyms to construct our search string.
The selection of these synonyms was carried out with the
assistance of domain experts, and we also drew upon rele-
vant SLR [56, 105] to enrich our collection of synonyms fur-
ther. Subsequently, we performed a pilot search on Google
Scholar to fine-tune the search string, and we created a con-
trol group containing a set of five (5) studies previously known
by the authors for search string validation [3, 48, 99, 106,
120]. The first author (named R1—Researcher 1—from this
point on) used the keywords and their respective synonyms,
presented in Table 1, to build the search string, as detailed
in Table 2. The final search string was derived after nu-
merous trials and iterations, considering the studies estab-
lished as the control group. R1 applied the search string in
the most commonly used publication databases in Computer
Science [13, 32, 60], including IEEE Xplore,1 ACM digi-
tal library,2, Scopus,3 Springer link,4 and Web of science.5

We did not include Google Scholar in our search because it
can produce inaccurate results and has considerable overlap
with other databases we used in our search. For example,
Valente et al. [116] found that Scopus alone returns 93% of
relevant papers in a computer science literature review, and
although Google Scholar’s recall is high, its precision is low
due to the inclusion of non-peer-reviewed documents like
arXiv, PhD theses, and technical reports. Similarly, Harz-
ing and Alakangas [45] concluded that while Google Scholar
provides broader coverage for most disciplines, Web of Sci-
ence and Scopus yield fairly similar results. This is con-
sistent with the concerns of other researchers [22, 59, 126]
about Google Scholar’s effectiveness in retrieving primary
studies. For instance, Kitchenham et al. [59] suggest that
Google Scholar is more suitable for searching grey literature,
which was not the focus of our review.

Our search across the five selected digital libraries yielded
9,734 candidate studies, was conducted in January 2023, and

1http://ieeexplore.ieee.org
2http://portal.acm.org
3http://www.scopus.com
4https://link.springer.com/
5https://www.webofscience.com/wos/woscc/basic-search

3

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 4

 Selection
 criteria

 7489

Round 1

01, 2023

Search String

 9734 Stage 1
(Remove duplicate)

Search process

Stage 7 (Snowballing)

 References (1048)

 Citations (1294)

 Selection criteria

 6

2336

 32

 5

 2245 Selection
 criteria

 Selection
 criteria

Stage 4
(Read conclusion)

Stage 3
(Read introduction)

Stage 2
(Read title, abstract, and keywords)

Stage 5
(Consensus Meeting)

Stage 6
(Author Snowballing)

Dataset

Round 2

 References (146)

 Citations (259)

 1

404

 References (19)

 Citations (26)

 0

45

Round 3

Stage 8 (Read Paper Full-Text)

Consensus
Meeting

 7489

S

 37

S

 9734

S

 1049

S

 1049 6440 314 735

 314

S

 Selection
 criteria

 43

 271

 Selection
 criteria

 43

S 25

 18

 Selection
 criteria

 25

S 5

 2342
S

 Selection criteria

 45
S

 Selection criteria

 405
S

Figure 1. Search and selection process describing the number of studies selected in each stage: Ⓢ: studies —
√

: included — ×: excluded.

no period restrictions were applied. Subsequently, we re-
moved 2,245 duplicate candidate studies, resulting in an ini-
tial set of 7,489 unique candidate studies to commence the
selection process. To mitigate biases related to the search
string, we included the forward and backward snowballing
approaches to find other relevant studies that could not be
returned in the initial search.

Table 1. Keyword and synonyms used to build search string terms.
Keyword Synonyms

Software
project

“software project”, “software engineering”, “software development”
OSS, “open source”, “open-source”, “free software”, FOSS, FLOSS,
“OSS projects”, “open source software”

Onboarding
newcomers

Onboarding, onboard, joining, engagement, newcomer, contributors,
novice, newbie, “new developer”, “early career”, “new member”,
“new contributor”, “new people”, beginner, “potential participant”,
joiner, “new committer”

Table 2. Final search string.
(“software project” OR “software engineering” OR
“software development” OR “open source” OR
“open-source” OR “free software” OR FOSS OR FLOSS
OR OSS OR “OSS projects” OR “open source software”)
AND (“joining process” OR onboarding OR onboard OR
joining OR engagement OR newcomer OR novice OR
newbie OR “new developer” OR “early career” OR
“new member” OR “new contributor” OR beginner OR
“potential participant” OR joiner OR entrance)

Stage 2. Our study selection was a multistage process [60].
Initially, R1 reviewed the candidate studies’ titles and ab-
stracts to assess their adherence to the inclusion and exclu-
sion criteria described in Subsection 2.2, and 1,049 studies
were included. We applied the selection criteria, and unless a
study could be excluded only based on the title and abstract,
we obtained its full text to have additional information [60].

Stage 3. Since many SE abstracts are too poor to rely on
when selecting studies [16], we decided to exclude a study
after reading other sections (such as the introduction and, if
necessary, the conclusions). R1 re-evaluated and added the
reading of the introduction section of the studies selected in
the previous stage. 314 candidate studies were included since
they matched the inclusion criteria. For example, in some
cases, we identified that a software solution was proposed
reading the abstract. However, whether it could support on-
boarding newcomers needs to be clarified, as required in our
inclusion criteria (IC1 - The primary study proposes software
solutions for newcomers’ onboarding in software projects).
Therefore, we read the introduction section to clarify the con-
text. In cases of doubt, we also read the conclusion to un-
derstand better how the software solutions proposed support
newcomers to ensure that the IC1 was met.

Stage 4. Aiming to obtain a new layer of information, in
addition to the sections already read, the conclusions of the
studies included in the previous stage were then analyzed,
and R1 reapplied the selection criteria, resulting in 43 studies

4

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 5

Table 3. List of included studies.
ID Reference Title Public.

year
PS01 Azanza et al. [3] Onboarding in Software Product Lines: Concept Maps as Welcome Guides 2021
PS02 Canfora et al. [21] Who is Going to Mentor Newcomers in Open Source Projects? 2012
PS03 Cubranic and Murphy [25] Hipikat: Recommending Pertinent Software Development Artifacts 2003
PS04 Diniz et al. [30] Using Gamification to Orient and Motivate Students to Contribute to OSS projects 2017
PS05 Dominic et al. [31] Conversational Bot for Newcomers Onboarding to Open Source Projects 2020
PS06 Fu et al. [39] Expert Recommendation in OSS Projects Based on Knowledge Embedding 2017
PS07 Guizani et al. [44] Attracting and Retaining OSS Contributors with a Maintainer Dashboard 2022
PS08 He et al. [47] GFI-Bot: Automated Good First Issue Recommendation on GitHub 2022
PS09 Kagdi et al. [54] Who Can Help Me with this Source Code Change? 2008
PS10 Medeiros and Dı́az [69] Assisting Mentors in Selecting Newcomers’ Next Task in Software Product Lines: A Recommender System Approach 2022
PS11 Nagel et al. [75] Ontology-Based Software Graphs for Supporting Code Comprehension During Onboarding 2021
PS12 Sarma et al. [94] Training the Future Workforce through Task Curation in an OSS Ecosystem 2016
PS13 Serrano Alves et al. [95] How to Find My Task? Chatbot to Assist Newcomers in Choosing Tasks in OSS Projects 2022
PS14 Stanik et al. [99] A Simple NLP-Based Approach to Support Onboarding and Retention in Open Source Communities 2018
PS15 Steinmacher et al. [106] Overcoming Open Source Project Entry Barriers with a Portal for Newcomers 2016
PS16 Steinmacher et al. [100] Recommending Mentors to Software Project Newcomers 2012
PS17 Toscani et al. [113] A Gamification Proposal to Support the Onboarding of Newcomers in the FLOSScoach Portal 2015
PS18 Wang and Sarma [120] Which Bug Should I Fix: Helping New Developers Onboard a New Project 2011
PS19 Xiao et al. [124] Recommending Good First Issues in GitHub OSS Projects 2022
PS20 Yin et al. [127] Automatic Learning Path Recommendation for Open Source Projects Using Deep Learning on Knowledge Graphs 2021
PS21 Ford et al. [36] ReBOC: Recommending Bespoke Open Source Software Projects to Contributors 2022
PS22 Liu et al. [65] Recommending GitHub Projects for Developer Onboarding 2018
PS23 Santos et al. [92] Designing for Cognitive Diversity: Improving the GitHub Experience for Newcomers 2023
PS24 Santos et al. [90] Can I Solve It? Identifying APIs Required to Complete OSS Tasks 2021
PS25 Minto and Murphy [71] Recommending Emergent Teams 2007
PS26 Heimburger et al. [48] Gamifying Onboarding: How to Increase Both Engagement and Integration of New Employees 2020
PS27 Malheiros et al. [67] A Source Code Recommender System to Support Newcomers 2012
PS28 Yang et al. [125] RepoLike: Personal Repositories Recommendation in Social Coding Communities 2016
PS29 Zhou et al. [131] GHTRec: A Personalized Service to Recommend GitHub Trending Repositories for Developers 2021
PS30 Venigalla et al. [118] GitQ- Towards Using Badges as Visual Cues for GitHub Projects 2022
PS31 Sun et al. [111] Personalized Project Recommendation on GitHub 2018
PS32 Sarma et al. [93] Tesseract: Interactive Visual Exploration of Socio-Technical Relationships in Software Development 2009

included.

Stage 5. At this stage, another researcher (R2) applied the
selection criteria (Section 2.2) in the previously selected can-
didate studies, independently. They reached 88% of agree-
ment. R1 and R2 conducted a consensus decision-making
meeting for the cases of disagreement. When a consensus
was not possible (only 1 case), we included the study to avoid
premature exclusion. As a result, we selected 25 primary
studies and excluded 18.

Stage 6. R1 applied author snowballing on the 25 studies
selected by the search in the digital libraries. R1 searched
other papers published by the 68 authors of these 25 studies
by checking the authors’ Google Scholar profiles. In cases
where R1 could not find the author’s profile page, R1 scru-
tinized other sources, such as ACM Digital Library, IEEE
Xplore, and DBLP. R1 found 5,436 other candidate papers,
which were analyzed using the same process used for papers
found in digital libraries: title, abstract, and keyword analysis
(Stage 2), resulting in 5 more studies included.

Stage 7. We also conducted citation backward and forward
snowballing to mitigate the risk of missing studies. R1 con-
ducted full snowballing, which identifies new studies based
on the starting set, followed by backward and forward snow-
balling, according to the guidelines for snowballing proposed
in [121]. R1 performed three rounds of full snowballing, ap-
plying the same selection process for papers found in digital
libraries: title, abstract, and keyword analysis (Stage 2).

1. Round 1. Thirty studies formed the starting set. The
backward snowballing resulted in 1,048 papers and the
forward in 1,294 papers. Six (6) studies met the inclu-
sion criteria and were included.

2. Round 2. R1 analyzed the six (6) studies selected in
Round 1 and applied backward snowballing, finding
146 other candidate studies. The forward snowballing
identified 259 studies. In this round, we included only
one (1) study.

3. Round 3. R1 analyzed the study selected in Round
2 and applied the backward and forward snowballing,
finding 19 and 26 studies, respectively. We did not in-
clude any new studies in this round.

Stage 8. R1 and R2 independently read the full text of the 37
candidate studies at this stage and jointly conducted a con-
sensus decision-making meeting with 100% agreement, in-
cluding 32 out of the 37 studies (Table 3). Supplementary
material related to this paper can be found online6 and in-
cludes files detailing aspects of the study selection and anal-
ysis process.

2.4. Data collection and analysis
We extracted two types of data from the primary studies: (i)

general bibliometric information (i.e., author affiliations, coun-
tries, publication type, title, year, keywords) and (ii) specific

6https://zenodo.org/records/10211339

5

https://zenodo.org/records/10211339

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 6

data related to the research questions identified during the full-
text analysis (i.e., type of software solution, implementation
methods, focus of the solution, research strategies used to as-
sess them, barriers the solutions mitigate, and diversity and in-
clusion aspects), as illustrated in Table 4.

Table 4. Form containing items extracted from selected studies.
General extracted data
Author affiliations and countries
Publication type (journal, conference, or workshop)
Study metadata (title, authors, year)
Keywords
Research questions
RQ1 - Type of software solution
RQ2 - Software solution implementation
RQ3 - Outcomes of software solutions for onboarding
RQ4 - Research strategies to assess the software solution
RQ5 - Newcomers’ barriers mitigated by the software solution
RQ6 - Software solutions focus on newcomers aspects of diversity and inclusion

We compiled the quantitative and qualitative data extracted
from each study included in our SLR. The quantitative data al-
lowed us to examine the trends reported in the literature. We
also analyzed qualitative data, applying an inductive approach
inspired by open coding and axial coding from Grounded The-
ory (GT) [24] to establish data categories and systematically
organize the insights provided by the literature regarding soft-
ware solutions for onboarding. Although the purpose of the GT
method is the construction of substantive theories, according to
Corbin and Strauss [24], the researcher may use only some of
its procedures to meet one’s research goals. While addressing
each research question, specific data properties were defined
and consistently extracted from all relevant publications.

2.5. Data synthesis

Most primary studies were published in conferences, ac-
counting for 30 primary studies (94%), while we identified only
two (2) studies published in journals (6%). Table 5 provides a
comprehensive list of the conferences and journals where these
primary studies were published. This information can be valu-
able for practitioners and researchers interested in this topic, as
it helps identify relevant conferences for future publication op-
portunities. Notably, ICSE, the flagship software engineering
conference, had the highest number of published primary stud-
ies, followed by the FSE conference. The journals that featured
publications were IEEE Access and Science China Information
Sciences.

Table 6 presents the geographic distribution of the selected
primary studies, which originate from five continents and nine
different countries. Notably, many primary studies involved
collaboration among authors from multiple countries. The ma-
jority of publications were from the USA (34%), followed by
Brazil (28%) and China (25%). The remaining countries con-
tributed with approximately 1 to 3 publications each.

Figure 2 illustrates the yearly distribution of primary stud-
ies published over time. The analysis reveals that researchers
published the earliest study in the dataset in 2003. From 2003
to 2011, there was a consistent trend of one study published

Table 5. Selected studies classified by published venue.
Venue # of studies ID %

ICSE 7
PS01, PS03,
PS07, PS15,

PS19, PS23, PS32
22%

FSE 3 PS02, PS08, PS12 9%
CHASE 2 PS04, PS18 6%
ICSME 2 PS09, PS14 6%
COMPSAC 2 PS20, PS27 6%
MSR 2 PS24, PS25 6%
BotSE 1 PS05 3%
IWCSN 1 PS06 3%
CAiSE 1 PS10 3%
SEAA 1 PS11 3%
CONVERSATIONS 1 PS13 3%
RSSE 1 PS16 3%
IHC 1 PS17 3%
VL/HCC 1 PS21 3%
AHFE 1 PS26 3%
ICWS 1 PS29 3%
ICPC 1 PS30 3%
IEEE Access 1 PS22 3%
Internetware 1 PS28 3%
Science China
Information Sciences 1 PS31 3%

Table 6. Selected studies per country.
Continent Country # of studies %

Asia China 8 25%
India 1 3%

Europe
Germany 3 9%
Italy 1 3%
Spain 2 6%

North America Canada 2 6%
USA 11 34%

South America Brazil 9 28%

Oceania Australia 1 3%

per year. Furthermore, starting in 2012, there was a notable in-
crease in published primary studies, with the count rising from
3 to 7. This growth suggests a heightened interest and research
activity in the field during the subsequent years.

1 1 1 1 1

3

1

3

2

3

2

5

7

1
11111

3

1

3

2

3

2

5

7

1

2003 2007 2008 2009 2011 2012 2015 2016 2017 2018 2020 2021 2022 2023
Publication Year

N
um

be
r

of
 P

ap
er

s

Number of Papers vs. Publication Year

Figure 2. Publication years and relevant paper counts.

We created a word cloud by aggregating the keywords ex-
tracted from the 32 chosen primary studies, as illustrated in Fig-
ure 3. Word clouds gained popularity as a simple yet visually
captivating method for representing textual information. They
are widely employed in various domains to provide an overview
by highlighting the most frequently occurring words, serving as
a concise textual summary [49].

6

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 7

Figure 3. Keywords word cloud.

3. SLR results

The following subsections discuss the findings for each re-
search question.

3.1. RQ1. What software solutions are proposed in the lit-
erature to facilitate newcomers’ onboarding in software
projects?

We identified three primary categories of software solution
strategies to support newcomers onboarding in software projects
as observed in Table 7.

Recommendation system. According to Robillard et al.
[86], recommendation systems help users find information and
make decisions where they lack experience or cannot consider
all the data at hand. These systems proactively tailor sugges-
tions that meet users’ information needs and preferences. Rec-
ommendation systems play a crucial role by offering tailored
recommendations to assist in various aspects of project engage-
ment. These recommendations can span a wide range of ar-
eas. For example, multiple studies suggest projects that align
with newcomers’ skills, preferences, and interests (PS05, PS21,
PS22, PS28, PS29, PS31).

Some software solutions recommend initial issues for new-
comers to contribute (PS07, PS08, PS14, PS19, PS24). The
goal of those solutions is to aid in task labeling, mainly those
suitable for newcomers, by enhancing those tasks’ visibility,
and it contributes to easing newcomers’ integration into OSS
projects.

Other software solutions focused on facilitating connections
between newcomers and experienced mentors (PS02, PS06, PS09,
PS16, PS25). These studies aim to ease newcomers’ integra-
tion, enhance learning, and foster collaboration within software
development environments. The studies introduce software so-
lutions to connect newcomers with proficient developers, men-
tors, or experts who can offer guidance, support, and collabo-
ration. The studies used historical records (PS09, PS02, PS16),
emergent team information (PS25), or knowledge embedding
(PS06) to recommend suitable mentors or experts to newcom-
ers. Each of these studies emphasized the importance of person-
alization in matching newcomers with mentors or experts who

Table 7. Software solution strategies for newcomers onboarding.

Category Software
solution Description Study

references

Recommendation
system

(23 studies)

Project
recommendation

(6 studies)

Assign suitable
projects for newcomers
based on their skills
and interests.

PS05, PS21,
PS22, PS28,
PS29, PS31

Issue label
recommendation

(5 studies)

Label tasks or issues
for newcomers to engage
with OSS projects.

PS07, PS08,
PS14, PS19,

PS24
Mentor/expert

recommendation
(5 studies)

Recommend
experienced mentors
in OSS projects.

PS02, PS06,
PS09, PS16,

PS25

Artifact
recommendation

(4 studies)

Recommend artifacts
(related tasks, software
product line features,
learning paths, and
source files) for
newcomers to explore
and integrate into
projects.

PS03, PS10,
PS20, PS27

Task/bug
recommendation

(3 studies)

Recommend relevant
tasks or bugs for new-
comers to tackle in soft-
ware projects.

PS12,
PS13, PS18

Presentation
of project

information
(8 studies)

Information
visualization
(5 studies)

Use visualization
tools for organizing
and representing
knowledge.

PS01, PS11,
PS18, PS20,

PS32

Metrics
(2 studies)

Create metrics
to support community
managers to track and
acknowledge new-
comers’ contributions.

PS07, PS30

Structured
documentation

(1 study)

Guide newcomers by
structuring existing
project documents.

PS15

Environment
redesign

(4 studies)

Gamification
(3 studies)

Apply gamification
to enhance newcomer
engagement and moti-
vation in software
projects.

PS04,
PS17, PS26

Platform
usability

enhancement
(1 study)

Modify newcomers’
interaction with the
OSS project
environment.

PS23

Note: A single study may fit into multiple categories.

possess the relevant skills and knowledge for the tasks at hand.
Furthermore, these studies underscore the significance of men-
torship and expert guidance in easing newcomers’ integration
and enhancing their skills.

Some other papers propose software solutions recommend-
ing artifacts (PS03, PS10, PS20, PS27). They focus on design-
ing software solutions to expedite newcomers’ productivity and
engagement in OSS projects. The studies offered tailored rec-
ommendations (e.g., relevant artifacts (PS03), feature selection
(PS10), learning paths (PS20), and change requests (PS27) to
guide newcomers during the contribution process.

Other software solutions guided newcomers toward rele-
vant tasks/bugs to tackle (PS12, PS13, PS18), providing mecha-
nisms for newcomers to discover and select tasks suited to their
skills and interests. These studies aimed to streamline the task
selection process, making it easier for newcomers to engage in
the OSS process. PS12 and PS18 indirectly aid newcomers in
selecting tasks by providing curated tasks and bug-related re-
sources.

Presentation of project information. According to Moody
[72], visual representations are effective because they leverage
the capabilities of the robust and highly parallel human opti-

7

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 8

cal system. Humans prefer receiving information in a graphic
format to process it efficiently. Some solutions focused on in-
formation visualization tools (PS01, PS11, PS18, PS20, PS32)
that provide dynamic and visual representations of project re-
sources, documentation, and contributions. In addition, some
solutions use tools and techniques to capture, organize, and
present data within a project environment, enhancing the acces-
sibility and comprehensibility of project-related information,
including metrics (PS07, PS30) and structured documentation
(PS15).

Information visualization tools can enhance user engage-
ment and retention by making content more interactive. PS01,
PS11, PS18, PS20, and PS32 propose dependency visualization
tools for organizing and visually presenting information related
to the project. For example, Azanza et al. [3] (PS01) intro-
duced SPL Cmaps to aid newcomers in grasping the complexity
of SPL by visually representing concepts and connections, and
Nagel et al. [75] (PS11) developed node-link diagrams to vi-
sually represent source code by presenting code relationships.
The other three studies (PS18, PS20, PS32) explored the dif-
ferent aspects of relationships between OSS projects: socio-
technical networks including developers, code, and software
bugs (PS18 and PS32); and the relationship between program
structure and project versions to explore the software evolution
(PS20).

In the metrics subcategory, Guizani et al. [44] (PS07) pro-
pose a dashboard solution to support community managers in
monitoring and acknowledging newcomers’ contributions. In
addition, Venigalla et al. [118] (PS30) presents GitQ to auto-
matically augment GitHub repositories with badges represent-
ing source code and project maintenance information.

Concerning structured documentation, Steinmacher et al.
[106] (PS15) proposed a web portal that guides newcomers in
their first contribution. These solutions encompass pertinent
and complementary concepts and provide valuable information
for software projects, aiding the onboarding of new contribu-
tors.

Environment redesign. Some software solutions were de-
signed to foster an environment facilitating active newcomer
engagement. The studies often include the implementation of
gamification (PS04, PS17, PS26), which introduces game-like
elements to enhance newcomers’ motivation, participation, and
learning within the project context. Among the studies, two
(PS04 and PS17) delved into the integration of game design ele-
ments such as Rankings, Quests, Points, and Levels (PS04) and
Gameboard, Unlocking, Tips, Badges, Forum, Voting, Profile,
and Leaderboard (PS17). The authors applied those game ele-
ments in distinct contexts, specifically in GitLab (PS04) and the
FLOSScoach portal (PS17). Heimburger et al. [48] (PS26) was
the only study that explored gamification by developing a mo-
bile onboarding application tailored explicitly for youth genera-
tions. The gamification solutions used game elements to orient,
engage, and motivate users (PS04, PS17, PS26). These findings
emphasize increased newcomers’ motivation when using these
solutions, even though they took place in specific contexts, like
OSS platforms (PS04 and PS17) and private companies (PS26).

Additionally, other software solutions encompass changes

to the project interface (PS23), such as platform usability en-
hancements, to create a more user-friendly and welcoming at-
mosphere for newcomers. PS23 aims to optimize GitHub’s ef-
fectiveness by addressing distinct aspects. Santos et al. [92]
(PS23) included in the GitHub interface visual elements such
as tooltips, progress bars, and feedback messages. Environment
redesign solutions focus on enhancing the platform’s usability
for newcomers during the contribution process (PS23). Santos
et al. [92] (PS23) highlight that the current environment does
not adequately support newcomers’ onboarding. However, with
changes in the interface, the platform can become more inclu-
sive (PS23) and enhance users’ performance when onboarding.

Research Question 1
Answer: The software solution strategies proposed in the
literature incorporate systems that recommend projects, arti-
facts, tasks, labels, labeling, and mentors. Other solutions fo-
cus on gamification for engagement and enhancements, pro-
viding information via dashboards, web portals, and graphi-
cal aids.

3.2. RQ2. How were the software solutions implemented?
The software solutions for onboarding were organized in a

taxonomy by implementation type, presented in Table 8. The
lines represent categories on how the software solutions are im-
plemented, such as web environment, machine learning model,
and IDE plugin. The columns are the software solutions types
previously mentioned in RQ1, including project and issue label
recommendations. It is important to note that a study may fit
into multiple categories.

Web environment. In a web environment, end users can
configure or program applications using domain-specific or even
application-specific languages [55]. Throughout our research,
we identified studies that proposed modifications to the envi-
ronment to facilitate the success of newcomers during the on-
boarding process and implemented in a web environment set-
ting, with a focus on gamification (PS04, PS17), platform us-
ability enhancement (PS23), metrics (PS07, PS30), structured
documentation (PS15), information visualization (PS18, PS32),
issue label (PS07, PS08), mentor/expert (PS02), project (PS21),
artifact (PS03, PS10, PS27) and task/bug (PS12, PS13, PS18).

Concerning the gamification solutions, two studies (PS04
and PS17) demonstrate the potential of integrating gamification
elements into web environments to enhance engagement and
motivation among newcomers in OSS projects. Diniz et al. [30]
(PS04) integrated gamification elements on GitLab for under-
graduate students, and Toscani et al. [113] (PS17) demonstrate
that gamification can be effective in engaging a diverse range of
newcomers. This opportunity implies that gamification can be
customized to cater to various demographic groups, ensuring
inclusivity and widespread participation.

Platform usability enhancement solutions, such as the OSS
environment redesign (PS23), facilitated newcomers’ understand-
ing of repositories and aided their decision-making process.
Santos et al. [92] (PS23) tackled inclusivity bugs on the GitHub
interface by implementing fixes via a JavaScript plugin, con-
tributing to a more inclusive experience.

8

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 9

Table 8. Taxonomy overview of software solutions for newcomers’ onboarding by implementation types.

Project
recommendation

Issue label
recommendation

Mentor/Expert
recommendation

Artifact
recommendation

Task/Bug
recommendation

Information
visualization

Metrics
Structured

documentation
Gamification

Platform
usability

enhancement

Web
environment

PS21 PS07*, PS08* PS02 PS03, PS10,
PS27

PS12, PS13*
PS18* PS18*, PS32 PS07*, PS30 PS15 PS04, PS17 PS23

Machine
learning model

PS22, PS28,
PS29

PS08*, PS14,
PS19, PS24 PS06

IDE plugin PS31 PS09, PS16,
PS25

Interactive
graph

PS20* PS01, PS11,
PS20*

Chatbot PS05 PS08* PS13*

Mobile
application

PS26

Concerning project information visualization, PS30 presented
visual cues conveying project information to developers on GitHub
repositories, and PS07 introduced dashboard prototypes. In ad-
dition, PS15 developed a web portal to provide targeted in-
formation and recommendations. Other studies (PS03, PS10,
PS27, PS15) emphasize the need to facilitate newcomers’ ac-
cess to relevant information. Some studies proposed software
solutions that assist newcomers with issue labels (PS07, PS08).
Moreover, other studies presented software solutions to engage
newcomers with tasks matching their skills and interests (PS12,
PS13) and enabling newcomers to explore project bug descrip-
tions (PS18).

Machine learning. According to Lo et al. [66], machine
learning is adopted broadly in many areas, and data plays a crit-
ical role in machine learning systems due to its impact on model
performance. Machine learning is an artificial intelligence tech-
nique that makes decisions or predictions based on data [1].
We identified eight (8) studies that harnessed the power of ma-
chine learning techniques. These studies predominantly cen-
ter on offering recommendations to newcomers, honing in on
crucial aspects such as issue label (PS08, PS14, PS19, PS24),
mentor/expert (PS06) and projects (PS22, PS28, PS29). Across
these studies, Fu et al. [39] (PS06) used machine learning tech-
niques to provide expert recommendations by using the random
forest method to suggest suitable experts for developers based
on domain-specific file embedding. Meanwhile, He et al. [47]
(PS08) showcases the integration of machine learning into new-
comer onboarding by automating task selection and enhanc-
ing newcomers’ participation. Software projects can optimize
collaboration and knowledge sharing using domain-specific file
embedding and behavioral patterns, as demonstrated by Fu et al.
[39] (PS06), by connecting newcomers with experienced indi-
viduals who can guide them.

The utilization of historical data and machine learning tech-
niques (PS14, PS19, PS22, PS24) highlights the importance of
automating the categorization of issues based on their charac-
teristics and historical context. Projects can improve efficiency
by automatically assigning relevant labels and tags, analyzing
resolved issues, extracting pertinent details from titles and de-
scriptions, and simplifying the issue management process.

Two studies (PS28 and PS29) introduced ML-driven solu-

tions recommending repositories to developers. Both works
leverage historical development activities, technical features,
and social connections to predict developers’ interests and pref-
erences.

IDE plugin. Integrated Development Environment (IDE)
plugins are software extensions or add-ons that enhance the
functionality and features of software. Four software solutions
(PS09, PS16, PS25, PS31) developed a plugin they applied as
an external software component in an IDE, which users can
add to enhance and extend its functionality. Those software
solutions are related to mentor/expert (PS09, PS16, PS25) and
project recommendation (PS31).

Each study offers unique perspectives on how the solutions
can guide and engage developers. A significant subset of stud-
ies (PS09, PS16, PS25) focuses on enhancing collaboration among
newcomers, developers, and the project community through var-
ious means, such as suggesting mentors (PS16) and identifying
experts in real-time (PS25). Some studies (PS09, PS16, PS25,
PS31) leverage historical project data, such as source code his-
tory, email threads, development activities, and social connec-
tions, to inform their recommendations and tailor their software
solutions to individual newcomers.

Interactive graph. When developers aim to commit a con-
tribution to an existing project, their initial step involves read-
ing and comprehending the project’s code in alignment with
their contribution objectives [127]. In our results, we came
across three studies (PS01, PS11, PS20) incorporating visual-
izations to aid newcomers in understanding complex aspects
of software projects. These visualizations range from domain-
specific visualizations in SPL (PS01), visualizations for un-
familiar codebases (PS11), and visualizations for knowledge
graphs (PS20). These studies support newcomers’ comprehen-
sion of complex concepts, navigate project environments, and
facilitate their learning paths within software projects.

Chatbot. According to Nagarhalli et al. [74], chatbots can
perform many tasks at lower costs across a wide range of fields,
such as customer service, healthcare, pedagogy, and personal
assistance, many companies have invested heavily in this tech-
nology. Three primary studies proposed chatbots to aid on-
boarding. They proposed chatbots that focus on different types
of interactions with users by recommending issue label (PS08),

9

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 10

project (PS05), and task/bug (PS13). These chatbots utilize ma-
chine learning techniques (PS08), natural language processing
(NLP) methods (PS05), and conversational interfaces (PS13)
to interact with newcomers and provide tailored recommenda-
tions. These studies emphasize the potential of chatbots as soft-
ware solutions to enhance the onboarding journey for newcom-
ers in OSS projects. Using chatbots to implement those solu-
tions enhanced the engagement and productivity of newcomers
in software projects.

Mobile application. Mobile devices and their applications
offer substantial benefits to users, including portability, location
awareness, and accessibility [77]. One study (PS26) proposed a
mobile application solution to guide and assist newcomers dur-
ing onboarding. Heimburger et al. [48] (PS26) incorporated
gamification elements, such as QR-Hunting, Company-Quiz,
Team Bingo, Company-Whisper, and the Onboarding Tree, show-
casing how gamification solutions tap into the intrinsic motiva-
tion of newcomers. PS26 underscores the app’s potential to
revolutionize onboarding for tech-savvy professionals.

Research Question 2
Answer: The studies implemented software solutions utiliz-
ing web environment enhancements, machine learning, IDE
plugins, interactive graphs, chatbots, and mobile applica-
tions. A trend is the prevalence of web-based implementa-
tions over the years.

3.3. RQ3. How do the proposed software solutions improve
newcomers’ onboarding?

To address RQ3, we categorized the goal of each primary
study into four categories, as presented in Table 9. The cate-
gories draw parallels with the categorization outlined by Balali
et al. [4], although we tailored them to the context of software
solutions for onboarding. Software solutions focusing on pro-
cess revolve around refining onboarding procedures and work-
flows within a software project. Regarding the personal as-
pects, we found solutions geared toward enhancing individual
newcomers’ needs and experiences during the onboarding pro-
cess. Software solutions that focus on interpersonal aspects
encompass those that enhance relationships among team mem-
bers, including both newcomers and existing contributors. Fur-
thermore, software solutions focusing on technical aspects aimed
to provide newcomers with the necessary tools, resources, and
technical skills required for their roles within the software project.
It is important to note that some studies appeared in multiple
categories.

Process. PS08, PS10, PS13, PS14, and PS24 proposed
solutions that improved how newcomers select a task to start
contributing by streamlining the assignment process based on
newcomers’ skills and interests. Additionally, PS07, PS19, and
PS24 improved how issues could be better labeled to support
maintainers. Four studies (PS01, PS11, PS20, PS32) changed
the artifact representation and enabled interactive exploration of
the relationships among different project elements to reduce in-
formation overload. Furthermore, some primary studies (PS21,
PS22, PS28, PS29, PS30, PS31) enhanced project discovery,

Table 9. Onboarding aspects focused by the software solutions.
Category
impacted

Onboarding
aspect

Study
references

Process
(19 studies)

Project discovery (6 studies)
PS21, PS22,
PS28, PS29,
PS30, PS31

Choosing tasks (5 studies)
PS08, PS10,
PS13, PS14,

PS24

Information overload (4 studies) PS01, PS11,
PS20, PS32

Issue labeling (3 studies) PS07,
PS19, PS24

Mitigation of barriers related to the
orientation and contribution process (1 study) PS15

Personal
(4 studies)

Engagement and motivation (3 studies) PS04,
PS17, PS26

Self-efficacy (1 study) PS23
Onboarding of newcomers with
different cognitive styles (1 study) PS23

Interpersonal
(5 studies)

Mentor/expert recommendation (4 studies) PS02, PS06,
PS09, PS25

Social integration and team building (1 study) PS26
Technical
(3 studies)

Artifact selection (2 studies) PS03, PS27
Code comprehension (1 study) PS11

Note: A single study may fit into multiple categories.

helping newcomers find projects aligned with their interests and
skills.

Personal. In our analysis, we identified four studies (PS04,
PS23, PS17, PS26) that enhanced individual newcomers’ needs
and experiences. Such solutions increased engagement and mo-
tivated newcomers to accomplish tasks (PS04, PS17, PS26).
These software solutions primarily utilized gamification tech-
niques with newcomers, fostering their engagement and boost-
ing motivation. Additionally, the solution proposed by San-
tos et al. [92] (PS23) improved the newcomers’ self-efficacy
by providing a software solution that enhances newcomers’ be-
lief in their ability to perform tasks within the project context.
Further, their solution improved the onboarding experience of
newcomers with different cognitive styles.

Interpersonal. We identified five studies (PS02, PS06, PS09,
PS25, PS26) that propose solutions that foster community build-
ing among newcomers in OSS projects. One of these solutions
(PS26) enhanced social integration and team building by in-
troducing an application designed to support the onboarding
process within a software company, particularly targeting users
from generations Y and Z. Four solutions (PS02, PS06, PS09,
PS25) facilitate mentorship for newcomers by enhancing men-
tor and expert recommendations.

Technical. Two studies (PS03, PS27) improved artifact
recommendation based on user requirements. PS03 and PS27
aimed to refine how OSS projects suggest and deliver artifacts
to newcomers, aligning with their needs and preferences. Addi-
tionally, one study (PS11) enhanced newcomers’ code compre-
hension by providing visual representations of OSS projects.

10

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 11

Table 10. Software solutions for onboarding to overcome barriers identified by Steinmacher et al. [107], only 18 out of the 58 barriers are addressed by existing
software solutions.

BARRIERS/SOFTWARE
SOLUTIONS

PS
01

PS
02

PS
03

PS
04

PS
05

PS
06

PS
07

PS
08

PS
09

PS
10

PS
11

PS
12

PS
13

PS
14

PS
15

PS
16

PS
17

PS
18

PS
19

PS
20

PS
21

PS
22

PS
23

PS
24

PS
25

PS
26

PS
27

PS
28

PS
29

PS
30

PS
31

PS
32

Newcomers’ orientation
Finding a task to start with – – – X X – X X – – – X X X X – X X X – – – – X – – – – – – X –

Finding a mentor – X – – X X – – X – – X X – X X – – – – – – – – X – – – – – – –

Finding the correct artifacts to fix
an issue – – X –

Poor “How to Contribute” available – – – – – – – – – – – – – – X – – – – – – – – – – – – – – – – –

Newcomers don’t know what is the
contribution flow – – – – – – – – – – – – – – X – – – – – – – – – – – – – – – – –

Newcomers' characteristics

Lack of domain expertise X – X – X – X X – X X X – – X – – – – X – – X – – – X – X – X X

Lack of knowledge in project
process and practices X X X X X X X X – X X – – – X X X – – X X X X X – X X X X X X –

Lack of technical background X – X – X – – – X X X – – – X – – X – X – – X – X – X – – – X –

Communication
Not receiving an answer – – – – – – – – – – – – – – X X – – – – – – – – X – – – – – – –

Send a message that is considered
impolite – – – – – – – – – – – – – – X X – – – – – – – – X – – – – – – –

Need to contact a real person – X – – X X – – X – – X – – X X – – – – – – – – X X – – – – – –

Delayed answers – – – – – – – – – – – – – – – X – – – – – – – – X – – – – – – –

Documentation problems

Information overload X – X – – – – – – – X – – – X – – – – X – – X – – – – – – – – X

Lack of documentation – – – – – – – – – – – – – – X – – – – – – – – – – – – – – – – –

Spread documentation – – – – – – – – – – – – – – X – – – – – – – – – – – – – – – – –

Technical hurdles
Local environment setup hurdles X – X X – – – – – X – – – – X – – – – – – – – – – – – – – – – –

Code/architecture hurdles – – X – – – – – – – X – – – X – – – – X – – – – – – X – – – – –

Understanding flow of information – X – – – – – – – – –

Research Question 3
Answer: Our research emphasizes the significant impact
of software solutions on newcomers’ onboarding in OSS
projects, categorizing onboarding into personal aspects (fo-
cusing on boosting motivation and self-efficacy); interper-
sonal (focusing on community building and mentorship);
process (addressing task selection and information over-
load); and technical (emphasizing skill development and ar-
tifact recommendations).

3.4. RQ4. How do the software solutions mitigate newcomers’
barriers to joining software projects?

Steinmacher et al. [107] conducted a qualitative analysis of
relevant literature and collected data from practitioners to iden-
tify the barriers that hinder newcomers’ initial contributions to
OSS projects. As a result of their comprehensive investigation,
the authors developed a model comprising 58 distinct barriers.
Based on the previously published studies, our study analyzes
the existing software solutions for onboarding and how they
could mitigate these identified barriers. It is important to note
that only 18 out of the 58 barriers were covered by the existing
software solutions, as illustrated in Table 10.

Newcomers’ orientation. Newcomers’ orientation is a crit-
ical phase in facilitating newcomers’ successful integration and
contribution to various settings, and several barriers hinder this
process. Among the primary studies, 13 could address the chal-
lenge of finding a task for newcomers. PS12, PS13, PS18, and
PS24 offer insights into task selection, providing clear guide-
lines (PS04, PS14, PS15, PS17), utilizing task recommendation

system (PS08, PS19), and leveraging task complexity levels
to match newcomers’ skills and interests (PS05, PS07, PS31).
Concerning the barrier of finding a mentor, some studies shed
light on solutions to streamline finding a mentor from differ-
ent perspectives, such as mentorship programs (PS12, PS15),
mentor-mentee and matching systems (PS02, PS06, PS09, PS16,
PS25), and establishing efficient communication channels be-
tween newcomers and mentors (PS05, PS13).

The literature lacks methods to assist newcomers in find-
ing the correct artifacts to fix an issue. Cubranic and Mur-
phy [25] (PS03) is the only study that presents a solution to
recommended artifacts from the archives that are relevant to
a task that a newcomer is trying to perform–and it was pub-
lished 20 years ago. Concerning the barrier of poor “How to
Contribute” availability, it is crucial to emphasize the need
for improving the availability and accessibility of comprehen-
sive, user-friendly resources that can guide newcomers through
the contribution process. To overcome this barrier, PS15 de-
livers well-structured documentation, tutorials, and interactive
guides. Only the solution presented by Steinmacher et al. [106]
(PS15) offers clear and concise guidance to address the bar-
rier of newcomers’ lack of awareness of the contribution flow,
ensuring that newcomers comprehend the necessary steps and
expectations for their contributions.

Newcomers’ characteristics. Newcomers are expected to
possess a minimum requirement of previous technical back-
ground to perform a development task [107]. Fifteen solutions
can address the barrier of lack of domain experience, bridging
the knowledge gap and gradually empowering newcomers to

11

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 12

acquire domain expertise, enabling them to contribute to their
expertise domain. These solutions include broadening new-
comers’ domain knowledge and reducing information overload
(PS01, PS11, PS20, PS32), forming an implicit group mem-
ory from the information stored in a project’s archives (PS03,
PS31), and providing newcomers’ support not only during their
first contribution (PS23, PS27, PS29) but by acting as an agent
to engage them in the project (PS05, PS10, PS12, PS15) and
promoting collaboration between newcomers and domain ex-
perts (PS07, PS08).

To mitigate the barrier of lack of knowledge in project pro-
cess and practices, 24 solutions can enhance newcomers’ tech-
nical skills, fill the gaps in their knowledge, and build their
confidence to contribute to technical projects actively. These
include providing comprehensive documentation (PS03, PS15)
and resources that explain project workflows (PS01, PS04, PS07,
PS11, PS17, PS20, PS23, PS26), provides project recommen-
dation (PS05, PS21, PS22, PS28, PS29, PS31) mentoring (PS02,
PS06, PS10, PS16), coding standards (PS08, PS24, PS27, PS30),
and communication channels (PS05). Additionally, to over-
come the barrier of lack of technical background, 13 solutions
can help by offering guidance during the contribution process
(PS01, PS11, PS15, PS20, PS23, PS27), recommendation of
project documentation (PS03, PS05, PS15, PS18, PS31), and
pairing newcomers with experienced developers as mentors (PS09,
PS10, PS25).

Communication. According to Steinmacher et al. [107],
newcomers are sometimes unaware of community communica-
tion protocol. Three solutions (PS15, PS16, PS25) can tackle
the barriers related to not receiving an answer and sending im-
polite messages. To alleviate the first barrier, PS15 focuses on
creating designated communication channels to better visibility
of newcomers’ questions and increase the chances of receiving
timely answers from the community members. PS16 and PS25
recommend appointing experienced members as mentors, en-
suring newcomers receive timely responses. For the second bar-
rier, PS15 offers newcomers guidance on effective communica-
tion with other project members, while PS16 and PS25 recom-
mend avoiding unintentional rudeness or misunderstandings.

Nine studies can address the barrier of need to contact a
“real” person. These include mentoring initiatives such as pair-
ing newcomers with experienced community members by rec-
ommending mentors to newcomers (PS02, PS06, PS09, PS16,
PS25) and providing clear guidelines (PS05, PS12, PS15, PS26).
Concerning the barrier of receiving delayed answers, two solu-
tions (PS16, PS25) recommended mentors who can expedite re-
sponses and collaborate with newcomers to assist them in their
initial contributions.

Documentation problems. We identified six (6) software
solutions that can mitigate barriers related to documentation
problems. The solutions can tackle the barrier of information
overload include creating clear and concise documentation (PS15),
breaking down complex concepts into manageable sections (PS03),
providing a straightforward visual representation of the project
(PS01, PS11, PS20, PS32), and offering contextual guidance
to help newcomers find the most relevant information based on
their specific needs (PS23). Moreover, to mitigate the barrier

of lack of documentation, only one solution (PS15) focuses on
actively creating and improving documentation resources, in-
cluding dedicating resources and efforts to document essential
aspects of the project. To tackle the barrier of spread docu-
mentation, one solution (PS15) delved into methods of consol-
idating and centralizing documentation resources. Steinmacher
et al. [106] (PS15) offered newcomers a dedicated “Documen-
tation” section, housing project documentation organized into
subsections for easy access and navigation.

Technical hurdles. We found 9 (nine) software solutions
targeting technical challenges newcomers encounter when try-
ing to understand and navigate the technical aspects of a project.
Concerning the barrier of local environment setup hurdles, three
solutions (PS04, PS10, PS15) can provide orientation on how to
set up the development environment. PS01 and PS03 suggest
pre-configured development environments to ensure a smooth
onboarding experience. Five (5) software solutions can mit-
igate the barrier of code/architecture hurdles. These solutions
encompass various initiatives to assist newcomers in their code-
base navigation and comprehension of the project’s architec-
ture, such as furnishing architectural diagrams (PS15) and pre-
senting high-level project structure overviews (PS03, PS10, PS20,
PS27). We want to highlight that Santos et al. [92] (PS23) was
the only work that could mitigate newcomers’ cognitive barriers
during the contribution process.

Research Question 4
Answer: Most software solutions for onboarding presented
in the literature focus on mitigating the barriers related to
newcomers’ characteristics. The software solutions assist
newcomers in finding suitable tasks and mentors, bridging
gaps in domain knowledge, project processes, and technical
background, improving communication, maintaining user-
friendly documentation, simplifying technical aspects, and
enhancing their onboarding experience. Our results also re-
veal a need for solutions that target communication barriers,
documentation issues, technical challenges, and newcomers’
orientation.

3.5. RQ5. What research strategies were employed to evaluate
the software solutions?

This question investigates the research strategies used to
evaluate the proposed software solutions for newcomers’ on-
boarding. Table 11 presents the study types identified in the
selected primary studies.

We categorized the evaluation methods employed in the pri-
mary studies according to the ABC Framework, as initially de-
fined by Stol and Fitzgerald [109]. The ABC Framework under-
scores the essence of knowledge-seeking research, emphasizing
the involvement of actors (A) engaging in behavior (B) within a
specific context (C). Within this framework, we identified three
predominant research strategies to assess primary studies con-
cerning software solutions for onboarding.

The predominant research strategy employed by the pri-
mary studies (23 studies, 71%) was laboratory experimentation,
involving meticulous manipulation of variables to precise mea-
surements of actors’ behavior [109]. These experiments encom-

12

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 13

Table 11. Evaluation strategies of software solutions.
Study type Study references

Laboratory experiment
(23 studies)

Programmed actors
(10 studies)

PS06, PS08, PS09,
PS10, PS19, PS22,

PS25, PS27, PS28, PS29
Both (human and

programmed actors)
(7 studies)

PS02, PS14, PS15,
PS20, PS21, PS24, PS31

Human participants
(6 studies)

PS04, PS11, PS13,
PS23, PS26, PS30

Judgment study
(16 studies)

External experts
(7 studies)

PS02, PS13, PS14,
PS17, PS20, PS21, PS32

Newcomers
(7 studies)

PS01, PS13, PS15,
PS17, PS26, PS30, PS32

Maintainers
(2 studies) PS07, PS24

Experimental simulation (2 studies) PS01, PS03

Note: A single study may fit into multiple categories.

passed diverse studies involving human participants and pro-
grammed actors—such as algorithms or prototype tools. Fur-
thermore, it is noteworthy that a subset of primary studies (PS04,
PS11, PS13, PS23, PS26, PS30) utilized laboratory experiments
involving human participants. These studies typically featured
treatment and control groups, allowing precise measurements
to detect potential differences. Conversely, other studies (PS06,
PS08, PS09, PS10, PS19, PS22, PS25, PS27, PS28, PS29)
employed programmed actors, such as algorithms or prototype
tools, in their laboratory experiments. It is worth mentioning
that particular studies (PS02, PS14, PS15, PS20, PS21, PS24,
PS31) conducted laboratory experiments involving humans and
algorithms, encompassing a more comprehensive evaluation.

Our results show that among the primary studies, 13 (40%)
applied judgment studies. According to Stol and Fitzgerald
[108], a judgment study involves collecting empirical data from
a group of participants who assess or rate behaviors in response
to stimuli presented by a researcher. In these instances, re-
searchers introduced specific stimuli to observe participants’
responses. The goal was to gather input or “judgment” from
stakeholders, requiring intensive stimulus-response communi-
cation, as discussed by Stol and Fitzgerald [109].

Two studies (PS01 and PS03) employed experimental sim-
ulation to evaluate participants’ behavior in tasks that mimic
real-world scenarios. As defined by Stol and Fitzgerald [108],
experimental simulation studies assess the behavior of partici-
pants or systems in a controlled setting that resembles the real
world. The studies conducted these simulations in SPL settings
(PS01) and the software development environment (PS03).

Four studies (PS05, PS12, PS16, PS18) did not evaluate
their proposed software solutions, as they were still in the early
stages of their development process at publication. In terms of
analysis type, more than half of the studies, 16 out of 32 (50%),
employed qualitative analysis to gain insights into software so-
lutions for onboarding by interpreting data to understand sub-
jective experiences associated with the onboarding process from
the perspectives of newcomers (PS01, PS02, PS03, PS04, PS07,
PS10, PS13, PS14, PS15, PS17, PS20, PS21, PS23, PS26, PS31,
PS32). Additionally, 13 studies (40%) made use of quantita-
tive analysis to evaluate their proposed solutions, collecting and
analyzing measurable data related to onboarding, such as suc-

cess rates, completion times, user satisfaction ratings, or perfor-
mance metrics (PS01, PS02, PS06, PS11, PS13, PS14, PS15,
PS19, PS22, PS23, PS24, PS29, PS30). Out of these studies,
six (19%) employed mixed methods (PS01, PS02, PS13, PS14,
PS15, PS23).

Research Question 5
Answer: The primary studies employed three research
strategies to evaluate software solutions for onboarding:
experimental simulation, laboratory experimentation, and
judgment studies. Laboratory experiments were the most
frequently used research strategy (mostly comparing algo-
rithms, with no human in the loop).

3.6. RQ6. How do the software solutions address diversity and
inclusion of newcomers?

According to Jehn et al. [52], team diversity encompasses
individual differences among team members, manifesting in di-
mensions like value diversity (e.g., beliefs, goals, values), in-
formation diversity (e.g., experience, knowledge, background),
and social diversity (e.g., gender, age, race). Our study exam-
ined the software solutions for onboarding proposed in the lit-
erature to assess their potential for facilitating diversity and in-
clusion among newcomers in OSS projects. Table 12 illustrates
each software solution’s specific target populations.

Table 12. Software solutions target population.

Target population Diversity
dimension

Study
reference

Newcomers with
different educational

background
(10 studies)

Information
(Background)

PS01, PS03, PS04, PS11, PS13,
PS15, PS17, PS26, PS30, PS32

Newcomers with
different professional

experience
(9 study)

Information
(Experience)

PS02, PS07, PS13, PS14, PS17,
PS20, PS21, PS24, PS32

Newcomers with
different cognitive styles

(1 study)
Social (Gender) PS23

Newcomers from
generations Y and Z

(1 study)
Social (Age) PS26

Many companies are aware of the lack of diversity in their
organizations, prompting a surge in initiatives to enhance em-
ployee diversity across global technology companies [88]. Past
research has revealed challenges related to perceived diversity
within software engineering teams in industrial and OSS set-
tings [14, 88].

The importance of social diversity in OSS projects has been
well-established, with numerous studies showing its positive
impact on productivity, teamwork, and the quality of contri-
butions [50, 117]. Conversely, the lack of diversity has sig-
nificant drawbacks: (i) OSS projects miss out on the benefits
of a broader range of contributors and the diverse perspectives
they bring; (ii) underrepresented groups miss out on valuable
learning and experience opportunities offered by these projects;
and (iii) individuals from minority backgrounds may face lim-
ited job opportunities when hiring decisions use OSS contribu-
tions [68, 92, 97]. Despite the long-standing recognition of the

13

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 14

diversity gap in OSS, progress in addressing this issue has been
limited [35, 87, 115].

Our analysis of the selected studies showed that 15 out of
32 (47%) proposed software solutions for onboarding targeting
a general newcomer population without considering or evalu-
ating their effectiveness for integrating different types of users
into OSS projects. Ten studies (PS01, PS03, PS04, PS11, PS13,
PS15, PS17, PS26, PS30, PS32) proposed solutions address-
ing the diversity aspect of educational backgrounds, specifically
aiding students during the onboarding process. This is particu-
larly pertinent given previous research indicating that variations
in educational backgrounds can lead to heightened task-related
discussions within work teams [52]. Additionally, nine stud-
ies (PS02, PS07, PS13, PS14, PS17, PS20, PS21, PS24, PS32)
presented software solutions targeting newcomers with more
development experience—developers transitioning to new soft-
ware projects seeking solutions to comprehend project charac-
teristics and source code structures.

Only two studies (PS23 and PS26) focused on providing
support tailored to newcomers with specific cognitive styles
(PS23) and concerning newcomers’ age (PS26). Santos et al.
[92] (PS23), focused on mitigating cognitive barriers faced by
newcomers due to inclusivity bugs. The study revealed that
platforms like GitHub, which newcomers use to contribute to
OSS, create barriers for users with different characteristics, dis-
proportionately impacting underrepresented groups. Heimburger
et al. [48] (PS26) developed a mobile app for generations Y and
Z entering the workforce. This solution acknowledges these
generations’ unique characteristics and communication styles,
allowing organizations to create onboarding experiences that
resonate with their target audience. Our results highlight the
need for more research in the software engineering field that
specifically targets increasing diversity and inclusion in soft-
ware communities to improve and facilitate more inclusive soft-
ware solutions for onboarding.

Research Question 6
Answer: Among the 32 analyzed studies, the predominant
focus on diversity and inclusion dimensions pertained to in-
formation diversity (i.e., background and experience). Only
two studies specifically addressed the unique needs of new-
comers from minority groups, focusing on gender and age.

4. Discussion

This section delves into our research findings, exploring in-
sights and potential areas for further investigation.

Momentum of recommendation systems and machine
learning. There is a rise in recommendation systems designed
to aid newcomers in diverse activities. These systems assist
developers in finding relevant information and evaluating al-
ternative decisions, thereby covering a broad spectrum of soft-
ware engineering tasks [26, 86]. Machine learning and soft-
ware engineering intersection has become increasingly promi-
nent [63, 70]. By harnessing machine learning techniques, it
can tackle software engineering problems that are challenging

to model purely through algorithms or lack satisfactory solu-
tions [128]. This integration allows for innovative solutions and
advancements in the field. Among the primary studies, machine
learning techniques were employed to improve recommenda-
tion systems, enabling personalized and automated suggestions.

Web environment offers a versatile platform for creating
software applications that are universally accessible and can be
executed through web browsers. Furthermore, the openness
and flexibility of the web simplify the process of writing and
deploying code, contributing to the proliferation of a rich and
diverse array of applications globally [78]. In the software solu-
tions highlighted in this study, the predominant implementation
types observed were based on web environments. These solu-
tions significantly contribute to fostering a more welcoming and
supportive onboarding experience for newcomers by leveraging
the advantages offered by web environments.

Increasing newcomers’ engagement and motivation. The
OSS movement has attracted a globally distributed community
of volunteers, and the increasing demand for professionals with
OSS knowledge has prompted students to contribute to OSS
projects [40]. Students gain real-world skills and experiences
by engaging in OSS projects, making them more competitive in
the job market [73, 76]. Additionally, exposing students to OSS
projects benefits the communities by increasing the number of
potential contributors and fostering collaboration.

Gamification has gained attention to enhance student en-
gagement and motivation in software projects. Gamification ap-
plies game elements in non-gaming contexts to motivate and en-
gage participants [28]. In the context of OSS, gamification tech-
niques are vital in promoting healthy competition and instilling
a sense of achievement [10, 12]. Our findings show a growing
interest in utilizing gamification and modifying the OSS envi-
ronment to enhance newcomer engagement and motivation. By
incorporating gaming elements, students remain engaged, per-
sist in their contributions, and derive satisfaction from their in-
volvement. Furthermore, gamification offers learning and skill
development opportunities as students acquire new technical
skills, learn collaboration, and gain insights into project man-
agement practices [6, 29, 81].

Impact of software solutions for onboarding. Newcom-
ers need proper orientation to navigate the project and correctly
make contributions [106]. Motivating, engaging, and retaining
new developers in a project is essential to sustain a healthy OSS
community [84]. Our findings demonstrate that software solu-
tions significantly impact newcomers’ onboarding experiences
in OSS projects, with onboarding aspects categorized into four
key areas (i.e., personal, interpersonal, process, and technical).
Collectively, these software solutions shape and enhance new-
comers’ onboarding journeys, facilitating their integration into
OSS projects. Begel and Simon [9] discuss the importance, ad-
vantages, and challenges of mentoring novices in the software
industry. Mentoring is crucial in pairing experienced contribu-
tors with newcomers to provide guidance, support, and knowl-
edge transfer. By establishing constructive learning relation-
ships between mentors and mentees, these solutions fostered
the growth and integration of newcomers in the OSS project.

Our findings highlight the diverse impact of software solu-
14

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 15

tions on newcomers’ onboarding in OSS projects. Focusing on
solutions such as engagement and motivation, mentoring, label-
ing and task selection, project recommendation, and reducing
information overload contribute to facilitating the integration
of newcomers in software development communities.

Investigating newcomers’ barriers. A better understand-
ing of the barriers enables communities and researchers to de-
sign and produce tools and conceive software solutions to sup-
port newcomers [4]. We identified research gaps in address-
ing barriers newcomers face during onboarding. Only 18 out
of the 58 barriers were covered by the existing software solu-
tions. In particular, software solutions are lacking to tackle bar-
riers related to communication, documentation issues, technical
challenges, and newcomers’ orientation. Additionally, there is
room for exploring tools and techniques to assist newcomers
in finding the correct artifacts to understand the contribution
process workflow. Existing software solutions for onboarding
addressed communication barriers to some extent. However,
research opportunities remain for further improvements to sup-
port newcomers in better communicating with members of the
OSS communities. Furthermore, new studies can explore doc-
umentation barriers by removing the overload of information
newcomers face when onboarding and making it simple to share
documentation. Additionally, future studies can investigate an-
other interesting gap in supporting newcomers in understanding
code and architecture hurdles, focusing on the cognitive pro-
cesses required to comprehend the code information flow.

Beyond the laboratory to explore new horizons. Soft-
ware engineering is a dynamic and interdisciplinary domain en-
compassing various social and technological aspects. It is cru-
cial to deeply understand human activities to explore how indi-
vidual software engineers engage in software development and
how teams and organizations coordinate their efforts to achieve
success. By studying these aspects, researchers can gain a holis-
tic understanding of software engineering practices and enhance
the ability to support software development processes [33]. The
analysis of the selected primary studies revealed several types
of evaluations. Overall, our findings highlight the different re-
search strategies employed to evaluate the software solutions
for onboarding, with the predominant strategy being laboratory
experiments. However, future research endeavors could ben-
efit from transitioning beyond the laboratory and conducting
field experiments in real-world settings to offer a more compre-
hensive evaluation of software solutions for onboarding over an
extended period, ensuring their long-term success.

Diversity and inclusion in software solutions. Newcom-
ers encounter various challenges, which affect underrepresented
populations differently and can result in a steeper learning curve,
a lack of community support, and difficulties in initiating con-
tributions, all contributing to the existing diversity imbalance in
OSS [79, 103, 115]. Numerous studies emphasized the posi-
tive impact of social diversity on productivity, teamwork, and
the quality of contributions. The literature has highlighted con-
cerns regarding the low diversity in OSS, considering factors
such as gender, language, and location [15, 43, 110, 115]. Pre-
vious research has demonstrated that diverse teams are more
productive, reinforcing the significance of addressing diversity-

related issues in OSS [117]. Our analysis revealed that most
of the proposed software solutions for onboarding targeted a
general newcomer population without considering or evaluat-
ing different user types in OSS projects.

Developing inclusive software solutions for onboarding is
required to foster diversity and inclusion in software communi-
ties. Our study underscores the scarcity of software solutions
for onboarding addressing diversity and inclusion. By address-
ing the specific needs and barriers underrepresented groups face,
it is possible to create more inclusive onboarding processes and
foster greater diversity within OSS projects. Our study serves
as a call to action for the software engineering community to
actively work towards creating inclusive environments that wel-
come individuals from diverse backgrounds and leverage their
unique perspectives to benefit the community.

5. Implications for practitioners

In this section, we outline the implications of our study for
practitioners.

Implications for project maintainers. Project maintainers
have many responsibilities, including attracting and retaining
new contributors to promote the project’s growth and sustain-
ability. They can leverage the insights gained from our study
to create welcoming, inclusive, and supportive environments to
onboard and retain newcomers. For example, they can facilitate
the integration of newcomers into their projects by recognizing
the value of mentorship recommendations solutions and focus-
ing on developing structured documentation and resources to
lessen newcomers’ cognitive overload when onboarding a new
software project.

Implications for tool developers. Tool developers can use
our results to understand how to alleviate newcomers’ onboard-
ing barriers and use this knowledge to implement new tools.
These tools could represent project information through dash-
boards, web portals, and visualization techniques to support
newcomers with the necessary resources for successful navi-
gation and performing better at tasks. Moreover, developers
could focus on designing tools that consider the needs of mi-
nority groups, such as women or generations Y and Z.

6. Limitations

Although we have adopted the SLR guidelines proposed by
Kitchenham et al. [58], this study has some limitations. This
section presents the study’s limitations and discusses how we
mitigate them.

Search strategy. It is possible that the search process might
miss relevant primary studies [51]. We defined and followed
the search strategy described in subsection 2.3 to mitigate this
threat. One author extracted the search terms based on our re-
search questions, and the search string was iteratively devel-
oped. The search string terms (detailed in Table 2) are broad,
aiming to retrieve as many relevant studies as possible. More-
over, we incorporated author and citation analysis, which al-
lowed us to identify other studies beyond our initial search.

15

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 16

Studies selection. A significant threat in secondary studies
is recognized to be the validity of study selection [2]. We pre-
defined inclusion and exclusion criteria (see Subsection 2.2) in
the protocol and used them to filter relevant studies. Addition-
ally, two researchers applied the selection criteria in different
stages of the study’s selection process and jointly conducted a
consensus decision-making meeting.

Data extraction. Inconsistency extraction is a fundamental
threat in SLR studies Khan et al. [57]. We mitigate this threat by
defining a data extraction form, detailed in subsection 2.4, to ex-
tract relevant data to answer our RQs consistently. One author
initially extracted the data, and the other authors participated in
the discussion meetings to solve doubt and double-check data,
as suggested by Wohlin et al. [122].

Data analysis. The risk of inaccurate data classification and
mapping can cause subjective interpretation bias. We lessened
this threat following an inductive approach inspired by open
coding and axial coding procedures from GT by Corbin and
Strauss [24] for analyzing qualitative data.

Generalizability. We do not assert the complete generaliz-
ability of this study. Nevertheless, we have tried to enhance its
applicability by providing a comprehensive overview of soft-
ware solutions for onboarding and by logically structuring the
study’s collected data, results, analysis, and conclusions. To
promote the potential for generalizability in our findings, we
thoroughly examined a wide array of studies across various sub-
fields of software engineering. As an outcome, we described
the implications of our results to social coding platforms, soft-
ware development organizations, maintainers of OSS projects,
software projects, tool developers, and researchers.

7. Related work

This section overviews the relevant work concerning new-
comers’ onboarding in software projects and literature reviews
focusing on onboarding practices. By exploring these areas, we
aim to understand the challenges and software solutions associ-
ated with integrating newcomers into software projects.

Newcomer’s onboarding. Onboarding is a crucial pro-
cess that facilitates the transition of new employees and enables
them to acquire the necessary attitudes, knowledge, skills, and
behaviors for effective work [20, 61, 112]. According to Bauer
and Erdogan [8], onboarding is a crucial process encompassing
the activities and initiatives designed to equip new hires with
the knowledge, skills, and behaviors necessary to succeed in the
new work environment. Newcomers in the software develop-
ment environment face challenges in becoming fully integrated
and productive team members, which includes acquiring orga-
nizational knowledge, project knowledge, product and domain
knowledge, and knowledge of the technical environment [41].
Fagerholm et al. [34] executed a case study to evaluate the in-
fluence of mentoring support on developers. Their findings re-
vealed that mentoring played a crucial role in the onboarding
process for newcomers, empowering them to become more en-
gaged and active participants. Gregory et al. [41] examined
onboarding practices in a co-located agile project team within
a large IT department that regularly welcomed inexperienced

newcomers, exploring the activities and adjustments made by
individuals and the workplace. As a result, they developed an
agile onboarding model encompassing various onboarding ac-
tivities, individual adjustments made by newcomers, and work-
place adjustments to facilitate their integration into the team.

A multitude of empirical studies dedicated their focus to
examining the process of newcomers joining community-based
OSS projects [21, 80, 91, 101, 102, 120]. These studies of-
fer insights into the factors influencing newcomers’ onboarding
experiences within OSS communities. Fronchetti et al. [38] in-
vestigated the factors influencing the onboarding of new con-
tributors in OSS projects. The authors analyzed 450 reposito-
ries and identified project popularity, review time for pull re-
quests, project age, and programming languages as the main
factors explaining newcomers’ growth patterns. Understanding
these factors helps project maintainers optimize software solu-
tions for onboarding. Furthermore, a separate body of research
has focused on understanding newcomers’ barriers during their
onboarding journey [104, 123].

Our study stands out from existing literature due to its unique
focus on providing knowledge on software solutions for new-
comers’ onboarding within software projects. To the best of our
knowledge, our research is the first to investigate software so-
lutions for onboarding. We offered a literature review detailing
software solutions and their practical implementation, impact
on the onboarding process, research methodologies employed,
and potential to reduce barriers for newcomers. We also investi-
gated whether these solutions prioritize aspects of diversity and
inclusion for newcomers into software projects.

Literature reviews. The systematic mapping study con-
ducted by Kaur et al. [56] examined community participation
and engagement in OSS projects. The authors analyzed 67 stud-
ies to address the joining process, contribution barriers, motiva-
tion, retention, and abandonment. The study also highlighted
gaps in mentoring newcomers, finding starting tasks, and iden-
tifying factors influencing developer participation and engage-
ment. Steinmacher et al. [105] identified and aggregated 20
studies that provided evidence of barriers newcomers face when
onboarding to OSS projects. The study highlighted the most
studied barriers and shows that successful contributions require
domain knowledge, technical skills, and social interaction, em-
phasizing the importance of community receptivity, simple code,
and organized documentation.

Some literature reviews focused on diversity and inclusion
aspects in software engineering that can influence software de-
velopment. Trinkenreich et al. [115] examined women’s partic-
ipation in OSS projects, focusing on their demographics, mo-
tivations, types of contributions, challenges, and the proposed
strategies to address those challenges. The study reveals a sig-
nificant gender disparity in OSS, with women representing only
about 10% of participants. Gender biases exist in various as-
pects, such as differential acceptance rates for pull requests based
on gender identification. Women also face social challenges,
including a lack of peer parity, non-inclusive communication,
a toxic culture, impostor syndrome, and bias in peer review.
Considering the need for more diversity in software projects,
our study emphasizes the importance of examining and improv-

16

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 17

ing current software solutions for onboarding. Additionally,
Rodrı́guez-Pérez et al. [88] conducted an SLR to understand
the relationship between perceived diversity aspects (gender,
age, race, and nationality) in software engineering. The au-
thors analyzed 131 previous studies to identify factors influenc-
ing diverse developers’ engagement and permanence in soft-
ware engineering, methods used to improve perceived diversity
in teams, and limitations of previous studies. The study high-
lights gaps in the current literature and emphasizes the need for
future action in addressing perceived diversity in software en-
gineering.

Pedreira et al. [81] conducted a mapping study focusing on
the potential benefits of gamification to the Software Engineer-
ing (SE) field. The study findings highlight that gamification
can be a promising field that can help improve software en-
gineers’ daily engagement and motivation in their tasks. The
authors also observed that the adoption of gamification in SE is
going more slowly than in other domains such as marketing, ed-
ucation, or mobile applications. This trend is similar to our find-
ings on only three software solutions that adopted gamification
elements to improve onboarding. Furthermore, Darejeh and
Salim [27] conducted an SLR to thoroughly examine gamifica-
tion solutions addressing user engagement issues across various
software categories. Their findings highlighted gamification as
a viable approach for enhancing user engagement and perfor-
mance. Most gamification solutions aim to motivate users to
contribute more content to software, encourage active software
usage, and improve the software’s appeal to induce behavior
change. Moreover, their results show a limited focus on moti-
vating users to effectively utilize software content, addressing
learning challenges, and integrating users’ real identities within
the software environment.

8. Conclusion

In this paper, we conducted an SLR analyzing 32 primary
studies to investigate the software solutions proposed in the
literature to enhance the onboarding processes for newcomers
in software projects. The proposed software solutions for on-
boarding focused on recommendation systems using web-based
implementations, and the impact of those software solutions in-
volves personal, interpersonal, technical, and process aspects.
Moreover, laboratory experiments were the most common re-
search strategy for evaluation. Concerning diversity, software
solutions for onboarding mainly consider newcomers’ back-
grounds and experience levels.

We recognize that various project domains may exhibit dis-
tinct characteristics and requirements during the onboarding pro-
cess, and the software solutions found in our SLR may not ap-
ply equally to all project domains. As a future work opportu-
nity, exploring onboarding solutions tailored to different project
domains is essential, allowing for a more nuanced understand-
ing of the unique scenarios. Moreover, as future work, we aim
to investigate the diversity and inclusion aspects of onboard-
ing and propose inclusive software solutions that contribute to
the diversity and inclusion of more users in software projects.
Additionally, we aim to explore how large language models

(LLMs) can be used to enhance onboarding processes for new-
comers and evaluate their impacts on newcomers’ activities.

Acknowledgment

The National Science Foundation (NSF) partially supports
this work under grant numbers 2236198, 2247929, 2303042,
and 2303612. Katia Romero Felizardo is funded by a research
grant from the Brazilian National Council for Scientific and
Technological Development (CNPq), Grant 302339/2022 − 1.

References

[1] A. Agrawal, J. S. Gans, and A. Goldfarb. Artificial intelligence adop-
tion and system-wide change. Journal of Economics & Management
Strategy, 2023.

[2] A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek, and A. Chatzige-
orgiou. Identifying, categorizing and mitigating threats to validity in
software engineering secondary studies. Information and Software Tech-
nology, 106:201–230, 2019.

[3] M. Azanza, A. Irastorza, R. Medeiros, and O. Dı́az. Onboarding in soft-
ware product lines: concept maps as welcome guides. In IEEE/ACM
43rd International Conference on Software Engineering: Software En-
gineering Education and Training (ICSE-SEET), pages 122–133. IEEE,
2021.

[4] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. Gerosa. New-
comers’ barriers... is that all? an analysis of mentors’ and newcom-
ers’ barriers in OSS projects. Computer Supported Cooperative Work
(CSCW), 2018.

[5] S. Balali, U. Annamalai, H. S. Padala, B. Trinkenreich, M. A. Gerosa,
I. Steinmacher, and A. Sarma. Recommending tasks to newcomers in
OSS projects: How do mentors handle it? In 16th International Sympo-
sium on Open Collaboration (OpenSym), pages 1–14, 2020.

[6] A. Bartel and G. Hagel. Gamifying the learning of design patterns in
software engineering education. In IEEE Global Engineering Education
Conference (EDUCON), pages 74–79. IEEE, 2016.

[7] V. R. Basili. Evolving and packaging reading technologies. Journal of
Systems and Software, 38(1):3–12, 1997.

[8] T. N. Bauer and B. Erdogan. Organizational socialization: The effec-
tive onboarding of new employees., pages 51–64. APA handbooks in
psychology. American Psychological Association, Washington, DC, US,
2011. doi: 10.1037/12171-002. URL https://doi.org/10.1037/

12171-002.
[9] A. Begel and B. Simon. Novice software developers, all over again.

In Fourth International Workshop on Computing Education Research
(ICER), pages 3–14, 2008.

[10] J. Bell, S. Sheth, and G. Kaiser. Increasing student engagement in soft-
ware engineering with gamification. In 4th International Workshop on
Social Software Engineering (SSE), pages 1–2, 2012.

[11] L. M. Berlin. Beyond program understanding: a look at programming
expertise in industry. ESP, 93(744):6–25, 1993.

[12] A. P. O. Bertholdo and M. A. Gerosa. Promoting engagement in open
collaboration communities by means of gamification. In HCI Interna-
tional 2016–Posters’ Extended Abstracts: 18th International Confer-
ence, pages 15–20. Springer, 2016.

[13] J. Biolchini, P. G. Mian, A. C. C. Natali, and G. H. Travassos. Systematic
review in software engineering. System engineering and computer sci-
ence department COPPE/UFRJ, Technical Report ES, 679(05):45, 2005.

[14] K. Blincoe, O. Springer, and M. R. Wrobel. Perceptions of gender diver-
sity’s impact on mood in software development teams. IEEE Software,
36(5):51–56, 2019.

[15] A. Bosu and K. Z. Sultana. Diversity and inclusion in open source
software (OSS) projects: where do we stand? In ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–11. IEEE, 2019.

[16] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil.
Lessons from applying the systematic literature review process within

17

https://doi.org/10.1037/12171-002
https://doi.org/10.1037/12171-002

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 18

the software engineering domain. Journal of systems and software, 80
(4):571–583, 2007.

[17] R. Britto, D. S. Cruzes, D. Smite, and A. Sablis. Onboarding software
developers and teams in three globally distributed legacy projects: a
multi-case study. Journal of Software: Evolution and Process, 30(4):
e1921, 2018.

[18] J. Buchan, S. G. MacDonell, and J. Yang. Effective team onboarding
in agile software development: techniques and goals. In ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1–11. IEEE, 2019.

[19] M. Burnett, S. D. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Farooq,
V. Grigoreanu, and M. Czerwinski. Gender differences and program-
ming environments: across programming populations. In Proceedings
of the 2010 ACM-IEEE international symposium on empirical software
engineering and measurement, pages 1–10, 2010.

[20] D. M. Cable, F. Gino, and B. R. Staats. Reinventing employee onboard-
ing. MIT Sloan Management Review, 2013.

[21] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. Who is going
to mentor newcomers in open source projects? In ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(FSE), pages 1–11, 2012.

[22] A. Carrera-Rivera, W. Ochoa, F. Larrinaga, and G. Lasa. How-to con-
duct a systematic literature review: A quick guide for computer science
research. MethodsX, 9:101895, 2022.

[23] A.-M. Cazan, E. Cocoradă, and C. I. Maican. Computer anxiety and atti-
tudes towards the computer and the internet with romanian high-school
and university students. Computers in Human Behavior, 55:258–267,
2016.

[24] J. Corbin and A. Strauss. Techniques and procedures for developing
grounded theory. Basics of Qualitative Research, 3rd ed.; Sage: Thou-
sand Oaks, CA, USA, pages 860–886, 2008.

[25] D. Cubranic and G. C. Murphy. Hipikat: recommending pertinent soft-
ware development artifacts. In 25th International Conference on Soft-
ware Engineering (ICSE), pages 408–418. IEEE, 2003.

[26] B. Dagenais and M. P. Robillard. Recommending adaptive changes for
framework evolution. ACM Transactions on Software Engineering and
Methodology (TOSEM), 20(4):1–35, 2011.

[27] A. Darejeh and S. S. Salim. Gamification solutions to enhance soft-
ware user engagement—a systematic review. International Journal of
Human-Computer Interaction, 32(8):613–642, 2016.

[28] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From game design
elements to gamefulness: defining “gamification”. In 15th International
Academic MindTrek Conference: Envisioning Future Media Environ-
ments (MindTrek), pages 9–15, 2011.

[29] D. Dicheva, C. Dichev, G. Agre, and G. Angelova. Gamification in edu-
cation: a systematic mapping study. Journal of Educational Technology
& Society (JSTOR), 18(3):75–88, 2015.

[30] G. C. Diniz, M. A. G. Silva, M. A. Gerosa, and I. Steinmacher. Us-
ing gamification to orient and motivate students to contribute to OSS
projects. In IEEE/ACM 10th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), pages 36–42.
IEEE, 2017.

[31] J. Dominic, J. Houser, I. Steinmacher, C. Ritter, and P. Rodeghero.
Conversational bot for newcomers onboarding to open source projects.
In IEEE/ACM 42nd International Conference on Software Engineering
Workshops (ICSEW), pages 46–50, 2020.

[32] T. Dyba, T. Dingsoyr, and G. K. Hanssen. Applying systematic reviews
to diverse study types: An experience report. In First international sym-
posium on empirical software engineering and measurement (ESEM),
pages 225–234. IEEE, 2007.

[33] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting em-
pirical methods for software engineering research. Guide to Advanced
Empirical Software Engineering, pages 285–311, 2008.

[34] F. Fagerholm, A. S. Guinea, J. Borenstein, and J. Münch. Onboarding
in open source projects. IEEE Software, 31(6):54–61, 2014.

[35] D. Ford, A. Harkins, and C. Parnin. Someone like me: how does
peer parity influence participation of women on stack overflow? In
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE CS, 2017.

[36] D. Ford, N. Shrestha, and T. Zimmermann. Reboc: recommending be-
spoke open source software projects to contributors. In IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC), pages
1–5. IEEE, 2022.

[37] A. Forte and C. Lampe. Defining, understanding, and supporting open
collaboration: Lessons from the literature. American behavioral scien-
tist, 57(5):535–547, 2013.

[38] F. Fronchetti, I. Wiese, G. Pinto, and I. Steinmacher. What attracts new-
comers to onboard on OSS projects? tl; dr: Popularity. In 15th IFIP
Advances in Information and Communication Technology (OSS), pages
91–103. Springer, 2019.

[39] C. Fu, M. Zhou, Q. Xuan, and H.-X. Hu. Expert recommendation in OSS
projects based on knowledge embedding. In International Workshop on
Complex Systems and Networks (IWCSN), pages 149–155. IEEE, 2017.

[40] V. Goduguluri, T. Kilamo, and I. Hammouda. Kommgame: a reputation
environment for teaching open source software. In 7th IFIP Advances
in Information and Communication Technology (OSS), pages 312–315.
Springer, 2011.

[41] P. Gregory, D. E. Strode, H. Sharp, and L. Barroca. An onboarding
model for integrating newcomers into agile project teams. Information
and Software Technology (IST), 143:106792, 2022.

[42] M. Guizani, A. Chatterjee, B. Trinkenreich, M. E. May, G. J. Noa-
Guevara, L. J. Russell, G. G. Cuevas Zambrano, D. Izquierdo-Cortazar,
I. Steinmacher, M. A. Gerosa, et al. The long road ahead: Ongoing chal-
lenges in contributing to large oss organizations and what to do. ACM
on Human-Computer Interaction, 5(CSCW2):1–30, 2021.

[43] M. Guizani, I. Steinmacher, J. Emard, A. Fallatah, M. Burnett, and
A. Sarma. How to debug inclusivity bugs? a debugging process with
information architecture. In ACM/IEEE 44th International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS),
2022.

[44] M. Guizani, T. Zimmermann, A. Sarma, and D. Ford. Attracting and
retaining OSS contributors with a maintainer dashboard. In ACM/IEEE
44th International Conference on Software Engineering: Software En-
gineering in Society (ICSE-SEIS), pages 36–40, 2022.

[45] A.-W. Harzing and S. Alakangas. Google scholar, scopus and the web
of science: a longitudinal and cross-disciplinary comparison. Sciento-
metrics, 106:787–804, 2016.

[46] Ø. Hauge, C. Ayala, and R. Conradi. Adoption of open source soft-
ware in software-intensive organizations–a systematic literature review.
Information and Software Technology, 52(11):1133–1154, 2010.

[47] H. He, H. Su, W. Xiao, R. He, and M. Zhou. Gfi-bot: automated good
first issue recommendation on GitHub. In 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 1751–1755, 2022.

[48] L. Heimburger, L. Buchweitz, R. Gouveia, and O. Korn. Gamifying
onboarding: how to increase both engagement and integration of new
employees. In International Conference on Social and Occupational
Ergonomics (AHFE), pages 3–14. Springer, 2020.

[49] F. Heimerl, S. Lohmann, S. Lange, and T. Ertl. Word cloud explorer:
text analytics based on word clouds. In 47th Hawaii International Con-
ference on System Sciences (HICSS), pages 1833–1842. IEEE, 2014.

[50] S. K. Horwitz and I. B. Horwitz. The effects of team diversity on team
outcomes: a meta-analytic review of team demography. Journal of Man-
agement, 2007.

[51] S. Jalali and C. Wohlin. Systematic literature studies: database searches
vs. backward snowballing. In ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 29–
38, 2012.

[52] K. A. Jehn, G. B. Northcraft, and M. A. Neale. Why differences make a
difference: A field study of diversity, conflict and performance in work-
groups. Administrative Science Quarterly, 44(4):741–763, 1999.

[53] A. Ju, H. Sajnani, S. Kelly, and K. Herzig. A case study of onboard-
ing in software teams: tasks and strategies. In IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE), pages 613–623.
IEEE, 2021.

[54] H. Kagdi, M. Hammad, and J. I. Maletic. Who can help me with this
source code change? In IEEE International Conference on Software
Maintenance (ICSM), pages 157–166. IEEE, 2008.

[55] L. C. Kats, R. G. Vogelij, K. T. Kalleberg, and E. Visser. Software
development environments on the web: a research agenda. In ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), pages 99–116,

18

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 19

2012.
[56] R. Kaur, K. K. Chahal, and M. Saini. Understanding community partic-

ipation and engagement in open source software projects: a systematic
mapping study. Journal of King Saud University - Computer and Infor-
mation Sciences, 34(7):4607–4625, 2022.

[57] A. A. Khan, A. Ahmad, M. Waseem, P. Liang, M. Fahmideh, T. Mikko-
nen, and P. Abrahamsson. Software architecture for quantum computing
systems—a systematic review. Journal of Systems and Software, 201:
111682, 2023.

[58] B. Kitchenham, S. Charters, et al. Guidelines for performing systematic
literature reviews in software engineering version 2.3. Engineering, 45
(4ve):1051, 2007.

[59] B. Kitchenham, L. Madeyski, and D. Budgen. How should software en-
gineering secondary studies include grey material? IEEE Transactions
on Software Engineering, 49(2):872–882, 2022.

[60] B. A. Kitchenham, D. Budgen, and P. Brereton. Evidence-based soft-
ware engineering and systematic reviews, volume 4. CRC press, 2015.

[61] H. J. Klein, B. Polin, and K. Leigh Sutton. Specific onboarding prac-
tices for the socialization of new employees. International Journal of
Selection and Assessment, 23(3):263–283, 2015.

[62] A. J. Ko. Mining the mind, minding the mine: grand challenges in com-
prehension and mining. In 26th Conference on Program Comprehension
(ICPC), pages 1–1, 2018.

[63] Z. Kotti, R. Galanopoulou, and D. Spinellis. Machine learning for soft-
ware engineering: a tertiary study. ACM Computing Surveys, 55(12):
1–39, 2023.

[64] A. Labuschagne and R. Holmes. Do onboarding programs work? In
IEEE/ACM 12th Working Conference on Mining Software Repositories
(MSR), pages 381–385. IEEE, 2015.

[65] C. Liu, D. Yang, X. Zhang, B. Ray, and M. M. Rahman. Recommend-
ing GitHub projects for developer onboarding. IEEE Access, 6:52082–
52094, 2018.

[66] S. K. Lo, Q. Lu, C. Wang, H.-Y. Paik, and L. Zhu. A systematic litera-
ture review on federated machine learning: from a software engineering
perspective. ACM Computing Surveys (CSUR), 54(5):1–39, 2021.

[67] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira. A source code
recommender system to support newcomers. In IEEE 36th Annual Com-
puter Software and Applications Conference (COMPSAC), pages 19–24.
IEEE, 2012.

[68] J. Marlow, L. Dabbish, and J. Herbsleb. Impression formation in on-
line peer production: activity traces and personal profiles in GitHub. In
Conference on Computer Supported Cooperative Work. ACM, 2013.

[69] R. Medeiros and O. Dı́az. Assisting mentors in selecting newcomers’
next task in software product lines: A recommender system approach.
In Advanced Information Systems Engineering: 34th International Con-
ference (CAiSE), pages 460–476. Springer, 2022.

[70] K. Meinke and A. Bennaceur. Machine learning for software engi-
neering: Models, methods, and applications. In IEEE/ACM 40th In-
ternational Conference on Software Engineering: Companion (ICSE-
Companion), pages 548–549, 2018.

[71] S. Minto and G. C. Murphy. Recommending emergent teams. In
Fourth International Workshop on Mining Software Repositories (MSR-
ICSEW), pages 5–5. IEEE, 2007.

[72] D. Moody. The “physics” of notations: toward a scientific basis for con-
structing visual notations in software engineering. IEEE Transactions
on Software Engineering (TSE), 35(6):756–779, 2009.

[73] B. Morgan and C. Jensen. Lessons learned from teaching open source
software development. In 10th IFIP Advances in Information and Com-
munication Technology (OSS), pages 133–142. Springer, 2014.

[74] T. P. Nagarhalli, V. Vaze, and N. Rana. A review of current trends in
the development of chatbot systems. In 6th International Conference
on Advanced Computing and Communication Systems (ICACCS), pages
706–710. IEEE, 2020.

[75] L. Nagel, O. Karras, and J. Klünder. Ontology-based software graphs
for supporting code comprehension during onboarding. In 47th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), pages 158–165. IEEE, 2021.

[76] D. M. Nascimento, K. Cox, T. Almeida, W. Sampaio, R. A. Bittencourt,
R. Souza, and C. Chavez. Using open source projects in software en-
gineering education: a systematic mapping study. In IEEE Frontiers in
Education Conference (FIE), pages 1837–1843. IEEE, 2013.

[77] F. Nayebi, J.-M. Desharnais, and A. Abran. The state of the art of mobile
application usability evaluation. In 25th IEEE Canadian Conference
on Electrical and Computer Engineering (CCECE), pages 1–4. IEEE,
2012.

[78] A. Nederlof, A. Mesbah, and A. V. Deursen. Software engineering for
the web: the state of the practice. In 36th International Conference on
Software Engineering, pages 4–13, 2014.

[79] S. H. Padala, C. J. Mendez, L. F. Dias, I. Steinmacher, Z. S. Hanson,
C. Hilderbrand, A. Horvath, C. Hill, L. D. Simpson, M. Burnett, et al.
How gender-biased tools shape newcomer experiences in OSS projects.
IEEE Transactions on Software Engineering (TSE), 2020.

[80] Y. Park and C. Jensen. Beyond pretty pictures: examining the benefits
of code visualization for open source newcomers. In 5th IEEE Interna-
tional Workshop on Visualizing Software for Understanding and Analy-
sis (VISSOFT), pages 3–10. IEEE, 2009.

[81] O. Pedreira, F. Garcı́a, N. Brisaboa, and M. Piattini. Gamification in
software engineering–a systematic mapping. Information and Software
Technology (IST), 57:157–168, 2015.

[82] R. Pham, S. Kiesling, L. Singer, and K. Schneider. Onboarding inex-
perienced developers: struggles and perceptions regarding automated
testing. Software Quality Journal, 25(4):1239–1268, 2017.

[83] L. Pradel. Quantifying the ramp-up problem in software projects. In
20th International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE), pages 1–4, 2016.

[84] I. Qureshi and Y. Fang. Socialization in open source software projects: a
growth mixture modeling approach. Organizational Research Methods,
14(1):208–238, 2011.

[85] A. Rastogi, S. Thummalapenta, T. Zimmermann, N. Nagappan, and
J. Czerwonka. Ramp-up journey of new hires: do strategic practices
of software companies influence productivity? In 10th Innovations in
Software Engineering Conference (ISEC), pages 107–111, 2017.

[86] M. Robillard, R. Walker, and T. Zimmermann. Recommendation sys-
tems for software engineering. IEEE Software, 27(4):80–86, 2009.

[87] G. Robles, L. A. Reina, J. M. González-Barahona, and S. D. Domı́nguez.
Women in free/libre/open source software: the situation in the 2010s.
In 12th IFIP Advances in Information and Communication Technology
(OSS). Springer, 2016.

[88] G. Rodrı́guez-Pérez, R. Nadri, and M. Nagappan. Perceived diversity in
software engineering: a systematic literature review. Empirical Software
Engineering, 26:1–38, 2021.

[89] K. Rollag, S. Parise, and R. Cross. Getting new hires up to speed quickly.
MIT Sloan Management Review, 2005.

[90] F. Santos, I. Wiese, B. Trinkenreich, I. Steinmacher, A. Sarma, and M. A.
Gerosa. Can i solve it? identifying apis required to complete OSS tasks.
In IEEE/ACM 18th International Conference on Mining Software Repos-
itories (MSR), pages 346–257. IEEE, 2021.

[91] I. Santos, I. Wiese, I. Steinmacher, A. Sarma, and M. A. Gerosa. Hits
and misses: Newcomers’ ability to identify skills needed for oss tasks.
In IEEE SANER, pages 174–183. IEEE, 2022.

[92] I. Santos, J. F. Pimentel, I. Wiese, I. Steinmacher, A. Sarma, and M. A.
Gerosa. Designing for cognitive diversity: improving the GitHub expe-
rience for newcomers. In IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Society (ICSE-SEIS),
pages 1–12, 2023.

[93] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb. Tesseract: in-
teractive visual exploration of socio-technical relationships in software
development. In IEEE 31st International Conference on Software Engi-
neering (ICSE), pages 23–33. IEEE, 2009.

[94] A. Sarma, M. A. Gerosa, I. Steinmacher, and R. Leano. Training the
future workforce through task curation in an OSS ecosystem. In 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), pages 932–935, 2016.

[95] L. P. Serrano Alves, I. S. Wiese, A. P. Chaves, and I. Steinmacher. How
to find my task? chatbot to assist newcomers in choosing tasks in OSS
projects. In Chatbot Research and Design: 5th International Workshop
(CONVERSATIONS), pages 90–107. Springer, 2022.

[96] S. E. Sim and R. C. Holt. The ramp-up problem in software projects:
a case study of how software immigrants naturalize. In 20th Inter-
national Conference on Software Engineering (ICSE), pages 361–370.
IEEE, 1998.

[97] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, and

19

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 20

K. Schneider. Mutual assessment in the social programmer ecosystem:
an empirical investigation of developer profile aggregators. In Confer-
ence on Computer Supported Cooperative Work, 2013.

[98] A. Singh, V. Bhadauria, A. Jain, and A. Gurung. Role of gender, self-
efficacy, anxiety and testing formats in learning spreadsheets. Computers
in Human Behavior, 29(3):739–746, 2013.

[99] C. Stanik, L. Montgomery, D. Martens, D. Fucci, and W. Maalej. A
simple nlp-based approach to support onboarding and retention in open
source communities. In IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 172–182. IEEE, 2018.

[100] I. Steinmacher, I. S. Wiese, and M. A. Gerosa. Recommending men-
tors to software project newcomers. In Third International Workshop
on Recommendation Systems for Software Engineering (RSSE), pages
63–67. IEEE, 2012.

[101] I. Steinmacher, I. Wiese, A. P. Chaves, and M. A. Gerosa. Why do
newcomers abandon open source software projects? In 6th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), pages 25–32. IEEE, 2013.

[102] I. Steinmacher, M. A. Gerosa, and D. Redmiles. Attracting, onboarding,
and retaining newcomer developers in open source software projects.
In Workshop on Global Software Development in a CSCW Perspective,
2014.

[103] I. Steinmacher, T. Conte, M. Gerosa, and D. Redmiles. Social barri-
ers faced by newcomers placing their first contribution in open source
software projects. In 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing (CSCW), 2015.

[104] I. Steinmacher, T. U. Conte, and M. A. Gerosa. Understanding and sup-
porting the choice of an appropriate task to start with in open source soft-
ware communities. In 48th Hawaii International Conference on System
Sciences (HICSS), pages 5299–5308. IEEE, 2015.

[105] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles. A
systematic literature review on the barriers faced by newcomers to open
source software projects. Information and Software Technology (IST),
59:67–85, 2015.

[106] I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa. Overcoming
open source project entry barriers with a portal for newcomers. In 38th
International Conference on Software Engineering (ICSE), pages 273–
284, 2016.

[107] I. Steinmacher, M. Gerosa, T. U. Conte, and D. F. Redmiles. Overcom-
ing social barriers when contributing to open source software projects.
Computer Supported Cooperative Work (CSCW), 28:247–290, 2019.

[108] K.-J. Stol and B. Fitzgerald. The abc of software engineering re-
search. ACM Transactions on Software Engineering and Methodology
(TOSEM), 27(3):1–51, 2018.

[109] K.-J. Stol and B. Fitzgerald. Guidelines for conducting software en-
gineering research. In Contemporary Empirical Methods in Software
Engineering, pages 27–62. Springer, 2020.

[110] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer, and D. M. Ger-
man. How social and communication channels shape and challenge a
participatory culture in software development. IEEE Transactions on
Software Engineering (TSE), 2016.

[111] X. Sun, W. Xu, X. Xia, X. Chen, and B. Li. Personalized project recom-
mendation on GitHub. Science China Information Sciences, 61:1–14,
2018.

[112] N. Talya and D. Bauer. Onboarding new employees: Maximizing suc-
cess, 2014.

[113] C. Toscani, D. Gery, I. Steinmacher, and S. Marczak. A gamification
proposal to support the onboarding of newcomers in the flosscoach por-
tal. In 17th Brazilian Symposium on Human Factors in Computing Sys-
tems (IHC), pages 1–10, 2018.

[114] B. Trinkenreich, M. Guizani, I. Wiese, A. Sarma, and I. Steinmacher.
Hidden figures: Roles and pathways of successful oss contributors. ACM
on Human-Computer Interaction, 4(CSCW):1–22, 2020.

[115] B. Trinkenreich, I. Wiese, A. Sarma, M. Gerosa, and I. Steinmacher.
Women’s participation in open source software: a survey of the liter-
ature. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2022.

[116] A. Valente, M. Holanda, A. M. Mariano, R. Furuta, and D. Da Silva.
Analysis of academic databases for literature review in the computer
science education field. In 2022 ieee frontiers in education conference
(fie), pages 1–7. IEEE, 2022.

[117] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik,
P. Devanbu, and V. Filkov. Gender and tenure diversity in GitHub teams.
In ACM CHI Conference, 2015.

[118] A. S. M. Venigalla, K. Boyalakuntla, and S. Chimalakonda. Gitq-
towards using badges as visual cues for GitHub projects. In
30th IEEE/ACM International Conference on Program Comprehension
(ICPC), pages 157–161, 2022.

[119] G. Viviani and G. C. Murphy. Reflections on onboarding practices in
mid-sized companies. In IEEE/ACM 12th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE),
pages 83–84. IEEE, 2019.

[120] J. Wang and A. Sarma. Which bug should i fix: helping new developers
onboard a new project. In 4th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), pages 76–79,
2011.

[121] C. Wohlin. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In 18th International Con-
ference on Evaluation and Assessment in Software Engineering (EASE),
pages 1–10, 2014.

[122] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén. Experimentation in software engineering. Springer Sci-
ence & Business Media, 2012.

[123] V. Wolff-Marting, C. Hannebauer, and V. Gruhn. Patterns for tearing
down contribution barriers to floss projects. In 12th International Con-
ference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT). IEEE, 2013.

[124] W. Xiao, H. He, W. Xu, X. Tan, J. Dong, and M. Zhou. Recommending
good first issues in GitHub OSS projects. In 44th International Confer-
ence on Software Engineering (ICSE), pages 1830–1842, 2022.

[125] C. Yang, Q. Fan, T. Wang, G. Yin, and H. Wang. Repolike: personal
repositories recommendation in social coding communities. In 8th Asia-
Pacific Symposium on Internetware (Internetware), pages 54–62, 2016.

[126] A. Yasin, R. Fatima, L. Wen, W. Afzal, M. Azhar, and R. Torkar. On
using grey literature and google scholar in systematic literature reviews
in software engineering. IEEE access, 8:36226–36243, 2020.

[127] H. Yin, Z. Sun, Y. Sun, and G. Huang. Automatic learning path recom-
mendation for open source projects using deep learning on knowledge
graphs. In IEEE 45th Annual Computers, Software, and Applications
Conference (COMPSAC), pages 824–833. IEEE, 2021.

[128] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk. On the value of static analysis for fault detection in soft-
ware. IEEE Transactions on Software Engineering, 32(4):240–253,
2006.

[129] M. Zhou and A. Mockus. Developer fluency: achieving true mastery in
software projects. In 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE), pages 137–146, 2010.

[130] M. Zhou and A. Mockus. What make long term contributors: willing-
ness and opportunity in oss community. In 34th International Confer-
ence on Software Engineering (ICSE), pages 518–528. IEEE, 2012.

[131] Y. Zhou, J. Wu, and Y. Sun. Ghtrec: a personalized service to rec-
ommend GitHub trending repositories for developers. In IEEE Interna-
tional Conference on Web Services (ICWS), pages 314–323. IEEE, 2021.

20

Santos et al. / Procedia Computer Science 00 (2024) 1–?? 21

Primary Studies

[PS01] M. Azanza, A. Irastorza, R. Medeiros, O. Dı́az, Onboarding in soft-
ware product lines: concept maps as welcome guides, in: IEEE/ACM
43rd International Conference on Software Engineering: Software En-
gineering Education and Training (ICSE-SEET), IEEE, 2021, pp. 122–
133.

[PS02] G. Canfora, M. Di Penta, R. Oliveto, S. Panichella, Who is going to
mentor newcomers in open source projects?, in: ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 1–11.

[PS03] D. Cubranic, G. C. Murphy, Hipikat: recommending pertinent software
development artifacts, in: 25th International Conference on Software
Engineering (ICSE), IEEE, 2003, pp. 408–418.

[PS04] G. C. Diniz, M. A. G. Silva, M. A. Gerosa, I. Steinmacher, Using gam-
ification to orient and motivate students to contribute to OSS projects,
in: IEEE/ACM 10th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE), IEEE, 2017, pp. 36–42.

[PS05] J. Dominic, J. Houser, I. Steinmacher, C. Ritter, P. Rodeghero, Con-
versational bot for newcomers onboarding to open source projects, in:
IEEE/ACM 42nd International Conference on Software Engineering
Workshops (ICSEW), 2020, pp. 46–50.

[PS06] C. Fu, M. Zhou, Q. Xuan, H.-X. Hu, Expert recommendation in OSS
projects based on knowledge embedding, in: International Workshop on
Complex Systems and Networks (IWCSN), IEEE, 2017, pp. 149–155.

[PS07] M. Guizani, T. Zimmermann, A. Sarma, D. Ford, Attracting and re-
taining OSS contributors with a maintainer dashboard, in: ACM/IEEE
44th International Conference on Software Engineering: Software Engi-
neering in Society (ICSE-SEIS), 2022, pp. 36–40.

[PS08] H. He, H. Su, W. Xiao, R. He, M. Zhou, Gfi-bot: automated good
first issue recommendation on GitHub, in: 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2022, pp. 1751–1755.

[PS09] H. Kagdi, M. Hammad, J. I. Maletic, Who can help me with this source
code change?, in: IEEE International Conference on Software Mainte-
nance (ICSM), IEEE, 2008, pp. 157–166.

[PS10] R. Medeiros, O. Dı́az, Assisting mentors in selecting newcomers’ next
task in software product lines: A recommender system approach, in:
Advanced Information Systems Engineering: 34th International Confer-
ence (CAiSE), Springer, 2022, pp. 460–476.

[PS11] L. Nagel, O. Karras, J. Klünder, Ontology-based software graphs for
supporting code comprehension during onboarding, in: 47th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA), IEEE, 2021, pp. 158–165.

[PS12] A. Sarma, M. A. Gerosa, I. Steinmacher, R. Leano, Training the future
workforce through task curation in an OSS ecosystem, in: 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE), 2016, pp. 932–935.

[PS13] L. P. Serrano Alves, I. S. Wiese, A. P. Chaves, I. Steinmacher, How
to find my task? chatbot to assist newcomers in choosing tasks in OSS
projects, in: Chatbot Research and Design: 5th International Workshop
(CONVERSATIONS), Springer, 2022, pp. 90–107.

[PS14] C. Stanik, L. Montgomery, D. Martens, D. Fucci, W. Maalej, A simple
nlp-based approach to support onboarding and retention in open source
communities, in: IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), IEEE, 2018, pp. 172–182.

[PS15] I. Steinmacher, T. U. Conte, C. Treude, M. A. Gerosa, Overcoming
open source project entry barriers with a portal for newcomers, in: 38th
International Conference on Software Engineering (ICSE), 2016, pp.
273–284.

[PS16] I. Steinmacher, I. S. Wiese, M. A. Gerosa, Recommending mentors to
software project newcomers, in: Third International Workshop on Rec-
ommendation Systems for Software Engineering (RSSE), IEEE, 2012,
pp. 63–67.

[PS17] C. Toscani, D. Gery, I. Steinmacher, S. Marczak, A gamification pro-
posal to support the onboarding of newcomers in the flosscoach portal,
in: 17th Brazilian Symposium on Human Factors in Computing Systems
(IHC), 2018, pp. 1–10.

[PS18] J. Wang, A. Sarma, Which bug should i fix: helping new developers
onboard a new project, in: 4th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), 2011, pp. 76–
79.

[PS19] W. Xiao, H. He, W. Xu, X. Tan, J. Dong, M. Zhou, Recommending
good first issues in GitHub OSS projects, in: 44th International Confer-
ence on Software Engineering (ICSE), 2022, pp. 1830–1842.

[PS20] H. Yin, Z. Sun, Y. Sun, G. Huang, Automatic learning path recom-
mendation for open source projects using deep learning on knowledge
graphs, in: IEEE 45th Annual Computers, Software, and Applications
Conference (COMPSAC), IEEE, 2021, pp. 824–833.

[PS21] D. Ford, N. Shrestha, T. Zimmermann, Reboc: recommending bespoke
open source software projects to contributors, in: IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), IEEE,
2022, pp. 1–5.

[PS22] C. Liu, D. Yang, X. Zhang, B. Ray, M. M. Rahman, Recommend-
ing GitHub projects for developer onboarding, IEEE Access 6 (2018)
52082–52094.

[PS23] I. Santos, J. F. Pimentel, I. Wiese, I. Steinmacher, A. Sarma, M. A.
Gerosa, Designing for cognitive diversity: improving the GitHub expe-
rience for newcomers, in: IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Society (ICSE-SEIS),
2023, pp. 1–12.

[PS24] F. Santos, I. Wiese, B. Trinkenreich, I. Steinmacher, A. Sarma, M. A.
Gerosa, Can i solve it? identifying apis required to complete OSS
tasks, in: IEEE/ACM 18th International Conference on Mining Soft-
ware Repositories (MSR), IEEE, 2021, pp. 346–257.

[PS25] S. Minto, G. C. Murphy, Recommending emergent teams, in:
Fourth International Workshop on Mining Software Repositories (MSR-
ICSEW), IEEE, 2007, pp. 5–5.

[PS26] L. Heimburger, L. Buchweitz, R. Gouveia, O. Korn, Gamifying on-
boarding: how to increase both engagement and integration of new em-
ployees, in: International Conference on Social and Occupational Er-
gonomics (AHFE), Springer, 2020, pp. 3–14.

[PS27] Y. Malheiros, A. Moraes, C. Trindade, S. Meira, A source code recom-
mender system to support newcomers, in: IEEE 36th Annual Computer
Software and Applications Conference (COMPSAC), IEEE, 2012, pp.
19–24.

[PS28] C. Yang, Q. Fan, T. Wang, G. Yin, H. Wang, Repolike: personal repos-
itories recommendation in social coding communities, in: 8th Asia-
Pacific Symposium on Internetware (Internetware), 2016, pp. 54–62.

[PS29] Y. Zhou, J. Wu, Y. Sun, Ghtrec: a personalized service to recommend
GitHub trending repositories for developers, in: IEEE International Con-
ference on Web Services (ICWS), IEEE, 2021, pp. 314–323.

[PS30] A. S. M. Venigalla, K. Boyalakuntla, S. Chimalakonda, Gitq-towards
using badges as visual cues for GitHub projects, in: 30th IEEE/ACM
International Conference on Program Comprehension (ICPC), 2022, pp.
157–161.

[PS31] X. Sun, W. Xu, X. Xia, X. Chen, B. Li, Personalized project recom-
mendation on GitHub, Science China Information Sciences 61 (2018)
1–14.

[PS32] A. Sarma, L. Maccherone, P. Wagstrom, J. Herbsleb, Tesseract: in-
teractive visual exploration of socio-technical relationships in software
development, in: IEEE 31st International Conference on Software Engi-
neering (ICSE), IEEE, 2009, pp. 23–33.

21

	Introduction
	Research method
	Research questions
	Selection criteria
	Search strategy and selection process
	Data collection and analysis
	Data synthesis

	SLR results
	RQ1. What software solutions are proposed in the literature to facilitate newcomers' onboarding in software projects?
	RQ2. How were the software solutions implemented?
	RQ3. How do the proposed software solutions improve newcomers' onboarding?
	RQ4. How do the software solutions mitigate newcomers' barriers to joining software projects?
	RQ5. What research strategies were employed to evaluate the software solutions?
	RQ6. How do the software solutions address diversity and inclusion of newcomers?

	Discussion
	Implications for practitioners
	Limitations
	Related work
	Conclusion

