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Abstract
Sequential optimality conditions have played a major role in unifying and extending global convergence results for

several classes of algorithms for general nonlinear optimization. In this paper, we extend theses concepts for nonlinear
semidefinite programming. We define two sequential optimality conditions for nonlinear semidefinite programming. The
first is a natural extension of the so-called Approximate-Karush-Kuhn-Tucker (AKKT), well known in nonlinear opti-
mization. The second one, called Trace-AKKT (TAKKT), is more natural in the context of semidefinite programming as
the computation of eigenvalues is avoided. We propose an Augmented Lagrangian algorithm that generates these types of
sequences and new constraint qualifications are proposed, weaker than previously considered ones, which are sufficient
for the global convergence of the algorithm to a stationary point.

Keywords: Nonlinear semidefinite programming, Optimality conditions, Constraint qualifications, Practical algo-
rithms.

1 Introduction
Nonlinear semidefinite programming (NLSDP) is a generalization of the usual nonlinear programming problem, where the
inequality constraints are replaced by a conic constraint defined by the matrix of constraints being negative semidefinite.
The study of nonlinear semidefinite programming problems has grown a great deal in recent years from several application
fields, such as control theory, structural optimization, material optimization, eigenvalue problems and others. See [25, 26,
29, 39, 40, 48, 54, 61] and references therein. Theoretical issues such as optimality conditions, duality and nondegeneracy
were also studied and several algorithms for solving NLSDPs have been proposed. The interested reader may see, for
instance, [1, 13, 19, 31, 38, 44, 51, 52, 64, 66]. The particular case of (linear) semidefinite programming, which generalizes
linear programming, has seen a variety of applications in several fields, and is an important tool in numerical analysis
[22, 28, 58, 60].

For nonlinear programming (NLP), a useful concept is the notion of sequential optimality conditions [4]. These
conditions are genuine necessary optimality conditions, independently of the fulfillment of any constraint qualification,
such as the linear independence of the gradients of active constraints (LICQ), the Mangasarian-Fromovitz constraint
qualification (MFCQ), or the constant positive linear dependence (CPLD). Besides that, the sequences generated by
several classes of algorithms (as Augmented Lagrangians, interior point methods, sequential quadratic programming
and inexact restoration methods; see [6]), are precisely the sequences required for verifying the sequential optimality
condition. This property makes sequential optimality conditions useful tools for naturally providing a perturbed optimality
condition, which is suitable for the definition of stopping criteria and complexity analysis for several algorithms. Also,
a careful study of the relation of sequential optimality conditions with classical stationarity measures under a constraint
qualification, yields global convergence results under weak assumptions [3, 8, 9].

Sequential optimality conditions have been shown to be important tools for extending and unifying global convergence
results for NLP algorithms. In NLSDP, most of the methods proposed need constraint qualifications to guarantee global
∗This work was supported by FAPESP (Grants 2013/05475-7 and 2017/18308-2), CNPq and CAPES.
†Corresponding author: ghaeser@ime.usp.br
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convergence results. Both [62] and [53] present an Augmented Lagrangian method for solving NLSDPs. Although
[62] uses quadratic penalty, and [53] uses modified barrier functions in their Augmented Lagrangian methods, both need
constraint qualifications such as CPLD, MFCQ or Nondegeneracy. With sequential optimality conditions, we introduce
a very natural optimality condition for NLSDP, without constraint qualifications, that is fulfilled by the limit points of
an Augmented Lagrangian algorithm. With this approach, we have also been able to introduce a companion constraint
qualification, weaker than the ones previously considered for NLSDP, in order to provide a classical global convergence
result to a KKT point.

In this article we extend the Approximate-Karush-Kuhn-Tucker (AKKT) condition, known in nonlinear programming,
to the context of NLSDP. We also introduce a new sequential optimality condition that we call Trace-AKKT (TAKKT).
We will show that these conditions are genuine necessary optimality conditions for nonlinear semidefinite programming
and we will show that an Augmented Lagrangian method produces AKKT and TAKKT sequences.

This paper is organized as follows: In Section 2, we formally define the nonlinear semidefinite programming, the
notation, and we present some preliminary results for NLSDP needed in the remaining sections. In Section 3, we define
the AKKT condition and we prove that it is a genunine optimality condition without constraint qualifications. In Section 4,
we show that an Augmented Lagrangian method, based on the quadratic penalization, generates a sequence whose feasible
limit points satisfy AKKT. In Section 5, we introduce a new sequential optimality condition called TAKKT, which is more
suitable for nonlinear semidefinite programming. In Section 6, we introduce new constraint qualifications, weaker than
the ones previously considered for global convergence results of nonlinear semidefinite programming algorithms, which
are suitable for our global convergence analysis. In Section 7, we present our conclusions and final remarks.

2 Preliminaries
In this section we introduce the main notations adopted throughout the paper, together with known optimality conditions
for nonlinear semidefinite programming. We will consider the following problem

Minimize
x∈Rn

f (x),

subject to G(x)� 0,
(NLSDP)

where f : Rn → R and G : Rn → Sm are continuously differentiable functions. For simplicity, we do not take equality
constraints into consideration. We denote by Sm the set of symmetric m×m matrices equipped with the inner product
〈A,B〉 := tr(AB),A,B ∈ Sm, where tr(A) denotes the trace of the matrix A. The set F will denote the feasible set F :=
{x ∈ Rn | G(x) � 0}. The notation G(x) � 0 means that G(x) is a symmetric negative semidefinite matrix. The set of
symmetric positive semidefinite matrices will be denoted by Sm

+, while the set of symmetric negative semidefinite matrices
will be denoted by Sm

−. Given a matrix A ∈ Sm and an orthogonal diagonalization A =UΛUT of A, we denote by λU
i (A)

the eigenvalue of A at position i on the diagonal matrix Λ, that is, λU
i (A) = Λii, i = 1, . . . ,m. We omit U when dealing

with a diagonalization that places the eigenvalues of A in ascending order in Λ, namely, λ1(A)≤ ·· · ≤ λm(A).
The Frobenius norm of a matrix A ∈ Sm is the norm associated with the companion inner product, that is,

‖A‖ :=
√
〈A,A〉=

√
m

∑
i, j=1

A2
i, j =

√
m

∑
i=1

λi(A)2.

Given A ∈ Sm, we denote by [A]+ the projection of A onto Sm
+. Namely, if

A =Udiag(λU
1 (A), . . . ,λU

m (A))UT

is an orthogonal decomposition of A, then

[A]+ :=Udiag([λU
1 (A)]+, . . . , [λU

m (A)]+)UT ,

where [v]+ := max{0,v},v ∈ R. It is clear that [A]+ does not depend on the choice of U . The following lemma provides
an upper bound on the inner product of two matrices in terms of the inner product of their ordered eigenvalues. The
subsequent lemma provides additional information when the matrices are positive/negative semidefinite.

Lemma 2.1 (von Neumann-Theobald [57]). Let A,B ∈ Sm be given. Then,

〈A,B〉 ≤
m

∑
i=1

λi(A)λi(B),

where equality holds if and only if A and B are simultaneously diagonalizable with eigenvalues in ascending order.
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Lemma 2.2 ([53]). Let A ∈ Sm
+ and B ∈ Sm

− be given. Then, the following conditions are equivalent:

a) 〈A,B〉= 0,

b) AB = 0,

c) A and B are simultaneously diagonalizable by an orthogonal matrix U and λU
i (A)λU

i (B) = 0 for all i = 1, . . . ,m,

d) A and B are simultaneously diagonalizable in ascending order and λi(A)λi(B) = 0 for all i = 1, . . . ,m.

Note that with A =

(
0 0
0 1

)
and B =

(
0 0
0 −1

)
, 〈A,B〉 6= 0, but λi(A)λi(B) = 0, i = 1,2, even though A and B

are simultaneously diagonalizable by the identity matrix I. Note however that, as claimed by Lemma 2.2, it is not the case
that λ I

i (A)λ
I
i (B) = 0 for all i = 1,2. The notation λU

i corrects the statement of this lemma in [53], with a similar proof,
which we omit. Note also that these matrices are not simultaneously diagonalizable in ascending order.

Another useful result is the Weyl Lemma below. A lower and upper bound for the eigenvalues of the sum of two
symmetric matrices are obtained, by means of the sum of the eigenvalues of these matrices.

Lemma 2.3 (Weyl [35]). Let A,B ∈ Sm be given matrices. For k = 1, . . . ,m,

λ1(A)+λk(B)≤ λk(A+B)≤ λm(A)+λk(B).

We proceed to define the main concepts associated with problem (NLSDP). We define the Lagrangian function
L : Rn×Sm→ R associated with (NLSDP) by

L(x,Ω) := f (x)+ 〈G(x),Ω〉.

The derivative of the mapping G : Rn→ Sm at a point x ∈ Rn is given by DG(x) : Rn→ Sm, defined by

DG(x)h :=
n

∑
i=1

Gi(x)hi, h ∈ Rn,

where Gi(x) :=
∂G(x)

∂xi
∈ Sm, i = 1, . . . ,m, are the partial derivative matrices with respect to xi. Also, we define the adjoint

operator DG(x)∗ : Sm→ Rn by

DG(x)∗Ω := (〈G1(x),Ω〉, . . . ,〈Gn(x),Ω〉)T , Ω ∈ Sm,

where it is easy to see that 〈DG(x)h,Ω〉= 〈h,DG(x)∗Ω〉 for all h ∈ Rn, x ∈ Rn and Ω ∈ Sm.

Definition 2.1. We say that Ω ∈ Sm is a Lagrange multiplier associated with x̄ ∈Rn if the following Karush-Kuhn-Tucker
(KKT) conditions hold:

∇xL(x̄,Ω) = ∇ f (x̄)+DG(x̄)∗Ω = 0, (1)
〈G(x̄),Ω〉= 0, (2)

G(x̄) ∈ Sm
−, (3)

Ω ∈ Sm
+. (4)

When there exists a Lagrange multiplier associated with x̄, we say that x̄ is a KKT point. Condition (2) is known as the
complementarity condition, and it can be equivalently replaced by λU

i (G(x̄))λU
i (Ω) = 0 for all i = 1, . . . ,m, where G(x̄)

and Ω are simultaneously diagonalizable by U . See Lemma 2.2.
In order to prove the validity of the KKT conditions at a local minimizer of (NLSDP), a constraint qualification is

needed. In general, more stringent assumptions are needed in order to prove global convergence results of an algorithm,
that is, that every feasible accumulation point of a sequence generated by the algorithm is a KKT point. The most com-
mon assumptions of these kind are the nondegeneracy constraint qualification and the Mangasarian-Fromovitz constraint
qualification (MFCQ) that we define below. More details can be found, e.g., in [51, 19].

Definition 2.2. We say that the feasible point x̄∈F satisfies the nondegeneracy constraint qualification if the n-dimensional
vectors (eT

i G1(x̄)e j, . . . ,eT
i Gn(x̄)e j), i, j = 1, . . . ,m− r are linearly independent, where r = rank G(x̄) and the vectors

e1, . . . ,em−r form a basis of the null space of the matrix G(x̄).

Definition 2.3. We say that the feasible point x̄ ∈F satisfies the Mangasarian-Fromovitz constraint qualification if there
is a vector h ∈ Rn such that G(x̄)+DG(x̄)h is negative definite.
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As in the nonlinear programming case, the Mangasarian-Fromovitz constraint qualification is equivalent to the non-
emptiness and boundedness of the set of Lagrange multipliers. Similarly, the more stringent nondegeneracy condition
(also called transversality condition), implies the uniqueness of the Lagrange multiplier, so this condition is treated in the
literature as an analogous of the linear independence constraint qualification for nonlinear programming. This analogy
is not perfect, as it does not reduce to the classical linear independence constraint qualification when the matrix G(x)
is diagonal. However, Lourenço, Fukuda and Fukushima [42], showed that if one reformulates the NLSDP such as an
NLP using squared slack variables, where the conic constraint is replaced by the equality constraints G(x)+Y 2 = 0 with
Y ∈ Sm, if (x,Y ) ∈ Rn× Sm satisfies the linear independence constraint qualification for this new NLP, then x satisfies
the nondegeneracy condition. On the other hand, if x satisfies the nondegeneracy condition, then (x,Y ) satisfies the linear
independence constraint qualification for the NLP, where Y is the square root of the positive semidefinite matrix−G(x). In
this sense, the nondegeneracy condition is essentially the linear independence constraint qualification for NLSDP. Finally,
we note that since G(x̄)Ω = 0, rank G(x̄)+ rank Ω ≤ m always holds at a KKT point. When the equality holds, we say
that x̄ and Ω satisfy the strict complementarity.

In the survey paper [64], the two types of Augmented Lagrangian methods are discussed: one with quadratic pe-
nalization (by [62]) and another with a modified barrier function (by [53]), where both need a strict complementarity
assumption for the local convergence results. In [63] and [65], the authors present an interior point method for NLSDP
where for the convergence results, the first one adopts MFCQ while the second one assumes nondegeneracy and strict
complementarity. In [20], the global convergence of a sequential SDP (SSDP), which is a method based on sequential
quadratic programming (SQP) for NLP, has been proved under MFCQ. Another global convergent method presented in
[31] applies a filter algorithm to SSDP where MFCQ is also assumed. In constrast with most of the literature, we will
prove global convergence for an Augmented Lagrangian method without assuming strict complementarity and under a
constraint qualification weaker than MFCQ, that we define in Section 4. In particular, our results allow the algorithm to
generate an unbounded sequence of Lagrange multipliers, without hampering the global convergence results to a KKT
point.

3 Sequential Optimality Condition for NLSDPs
In this section we will define the notion of an Approximate-KKT (AKKT) point for nonlinear semidefinite programming.
This concept has been defined for nonlinear programming in [4, 49]. Many first- and second-order global convergence
proofs of algorithms have been done, under weak assumptions, based on this and similar notions [2, 3, 5, 6, 7, 8, 9, 11,
12, 14, 15, 16, 17, 24, 32, 33, 34, 46, 47, 50, 59].

The Approximate-KKT (AKKT) condition is the most natural sequential optimality condition in nonlinear program-
ming. Most algorithms generate this type of sequence [1, 6, 11, 14, 45, 49]. The following is a natural generalization of
AKKT to the context of NLSDP.

Definition 3.1. We say that x̄∈Rn satisfies the Approximate-KKT (AKKT) condition if G(x̄)� 0 and there exist sequences
xk→ x̄ and {Ωk} ⊂ Sm

+ such that
lim
k→∞

∇ f (xk)+DG(xk)∗Ωk = 0, (5)

λ
U
i (G(x̄))< 0⇒ λ

Sk
i (Ωk) = 0, for all i = 1, . . . ,m and sufficiently large k, (6)

where G(x̄) =Udiag(λU
1 (G(x̄)), . . . ,λU

m (G(x̄)))UT , Ωk = Skdiag(λ Sk
1 (Ωk), . . . ,λ

Sk
m (Ωk))ST

k , where U and Sk are orthogo-
nal matrices with Sk→U.

All KKT points satisfy AKKT by considering constant sequences. We refer to Section 6 concerning the reciprocal
implication.

Note that the definition of AKKT is independent of the choices of U and of the sequence {Sk}. Note also that given
any orthogonal Sk that diagonalizes Ωk, one can take a convergent subsequence. Hence, the definition above restricts the
choice of {Ωk}, in such a way that the limit of its eigenvectors coincides with the eigenvectors of G(x̄). Note however
that the corresponding eigenvalues of {Ωk} may be unbounded.

One of the reasons the extension of AKKT from NLP to NLSDP is not straightforward lies in the fact that in NLSDP
the concept of active/inactive constraint is not apparent, which plays a key role in the definition of AKKT for NLP. In
NLSDP, the eigenvalues less than zero play the role of the inactive constraints, hence, the “corresponding” Lagrange
multiplier should vanish. However, it is not clear how to “correspond” an inactive eigenvalue of the constraint with an
eigenvalue of the Lagrange multiplier matrix to vanish (in the definition of a KKT point, this correspondence is made
by the assumption of simultaneous diagonalization). In this sense, the relation given by Sk →U provides the necessary
notion for pairing the eigenvalues, which makes it a natural assumption for defining AKKT. In some sense, the definition
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says that the matrices must be approximately simultaneously diagonalizable. Note that when considering NLP as a
particular case of an NLSDP with diagonal matrix, by considering a diagonal Lagrange multiplier matrix, both matrices
are simultaneously diagonalizable by the identity, and we arrive at the usual AKKT concept for NLP.

When {xk} is a sequence as in the above definition, we say that {xk} is an AKKT sequence. Note that the sequence
does not have to be formed by feasible points. The sequence {Ωk} will be called the corresponding dual sequence.

Let us see that AKKT is closely related to a natural stopping criterion for numerical algorithms:

Lemma 3.1. A point x̄ ∈ Rn satisfies AKKT if, and only if, there are sequences {xk} ⊂ Rn, {Ωk} ⊂ Sm
+, {εk} ⊂ R with

xk→ x̄, εk→ 0+ such that for all k,

‖∇ f (xk)+DG(xk)∗Ωk‖ ≤ εk, (7)

‖[G(xk)]+‖ ≤ εk, (8)

for all i = 1, . . . ,m and sufficiently large k, λ
Uk
i (G(xk))<−εk⇒ λ

Sk
i (Ωk) = 0, (9)

‖Uk−Sk‖ ≤ εk, (10)

where G(xk) =Ukdiag(λUk
1 (G(xk)), . . . ,λ

Uk
m (G(xk)))UT

k , Ωk = Skdiag(λ Sk
1 (Ωk), . . . ,λ

Sk
m (Ωk))ST

k are orthogonal diagonal-
izations of G(xk) and Ωk for all k.

Proof. Suppose that x̄ ∈ Rn satisfies AKKT. Let us take diagonalizations Uk of G(xk), Sk of Ωk and U of G(x̄) in such a
way that, for an appropriate subsequence, Uk→U , Sk→U and (5) and (6) hold. Let us define the sequence {εk} ⊂ R in
order to satisfy (7-10). Define

εk := max{‖∇ f (xk)+DG(xk)∗Ωk‖,‖[G(xk)]+‖,‖Uk−Sk‖,−λ
Uk
i (G(xk)) : i ∈ I(x̄)},

where I(x̄) is the set of all i ∈ {1, . . . ,m} such that λU
i (G(x̄)) = 0. Hence, (7), (8) and (10) hold. To prove (9), note that

if j0 ∈ {1, . . . ,m} is such that λ
Uk
j0
(G(xk)) < −εk, then −λ

Uk
j0
(G(xk)) > εk ≥ −λ

Uk
j (G(xk)) for all j ∈ I(x̄). In particular,

j0 /∈ I(x̄). Therefore, by the definition of AKKT, λ
Sk
j0
(Ωk) = 0. The definition of AKKT ensures also that εk→ 0+.

Suppose now that conditions (7-10) are valid. Since {Uk} and {Sk} are bounded, by (10) we may take a subsequence
and U , that diagonalizes G(x̄), such that Uk→U and Sk→U . The limit ∇ f (xk)+DG(xk)∗Ωk→ 0 follows trivially, while
the continuity of the functions involved ensures that x̄ ∈F . Now, suppose that λU

i (G(x̄))< 0. Then, since λ
Uk
i (G(xk))→

λU
i (G(x̄)), for k large enough λ

Uk
i (G(xk))<−εk. Therefore, λ

Sk
i (Ωk) = 0 and AKKT is satisfied.

Lemma 3.1 provides a natural stopping criterion associated with AKKT. Given small tolerances εopt > 0, εfeas >
0, εdiag > 0 and εcompl > 0 associated with optimality, feasibility simultaneous diagonalization and complementarity,
respectively, an algorithm that aims at solving NLSDP and generates an AKKT sequence {xk} ⊂ Rn together with a dual
sequence {Ωk} ⊂ Sm

+ should be stopped at iteration k when

‖∇ f (xk)+DG(xk)∗Ωk‖ ≤ εopt, (11)

‖[G(xk)]+‖ ≤ εfeas, (12)
‖Uk−Sk‖ ≤ εdiag, (13)

λ
Uk
i (G(xk))<−εcompl⇒ λ

Sk
i (Ωk) = 0. (14)

As it is usual in the literature of sequential optimality condition, three properties must be satisfied: i) It must be a
genuine necessary optimality condition, independently of the fulfillment of constraint qualifications. This gives a meaning
with respect to optimality to the stopping criterion (11-14), independently of constraint qualifications. ii) The condition
must be satisfied by limit points of sequences generated by relevant algorithms. Note that this simplifies the usual global
convergence proofs to KKT points, also providing a guide to how new algorithms could be proposed. iii) It must be a
strong optimality condition. This is shown by defining a weak constraint qualification that makes every point that satisfies
the condition a true KKT point.

We are going to show that AKKT satisfies all these requirement. In the remainder of this section we show that it
satisfies the first requirement, that is, it is indeed a necessary optimality condition. For this, let us first consider the
external penalty algorithm for the problem:

Minimize f (x), subject to G(x)� 0, x ∈ Σ, (15)

where Σ⊆ Rn is a non-empty closed set.
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Theorem 3.1. Choose a sequence {ρk} ⊂R with ρk→+∞ and for each k, let xk be the global solution, if it exists, of the
problem

Minimize f (x)+
ρk

2
P(x),

subject to x ∈ Σ,

where P(x) := tr
(
[G(x)]2+

)
= ‖ [G(x)]+ ‖2 is the penalty function. Then, any limit point of this sequence, if any exist, is a

solution of problem (15) provided that its feasible region is non-empty.

Proof. See [27].

The penalization function x 7→ P(x) is a measure of infeasibility of x, as P(x) ≥ 0 is continuous, and x is feasible if,
and only if, P(x) = 0. We will also need the following result about the derivative of P(x):

Lemma 3.2. Let G : Rn→ Sm be a differentiable function and P(x) := tr
(
[G(x)]2+

)
. Then, the gradient of P at x ∈ Rn is

given by
∇P(x) = 2DG(x)∗[G(x)]+.

Proof. It follows from [41, Corollary 3.2].

We are now ready to prove the main result of this section.

Theorem 3.2. Let x̄ be a local minimizer of (NLSDP). Then, x̄ satisfies AKKT.

Proof. To show that AKKT is an optimality condition we will apply the external penalty algorithm to the following
problem

Minimize f (x)+
1
2
‖x− x̄‖2 subject to G(x)� 0, x ∈ B(x̄,δ ), (16)

where δ > 0 is small enough and B(x̄,δ ) denotes the closed ball of center x̄ and radius δ . Clearly, δ can be chosen such
that x̄ is the unique solution of (16). Let ρk→+∞ and for each k, let xk be a solution of

Minimize f (x)+
1
2
‖x− x̄‖2 +

ρk

2
tr
(
[G(x)]2+

)
subject to x ∈ B(x̄,δ ). (17)

By the non-emptiness and compactness of B(x̄,δ ), and continuity of the objective function, xk is well defined for all k ∈N.
By the boundedness of {xk}, the uniqueness of the solution of problem (16), and Theorem 3.1, xk→ x̄. Furthermore, note

that xk is in the interior of B(x̄,δ ) for k large enough; hence, the gradient of f (x)+ 1
2‖x− x̄‖2 +

ρk

2
P(x) vanishes at xk,

that is, from Lemma 3.2, we have

∇ f (xk)+ xk− x̄+ρkDG(xk)∗
[
G(xk)

]
+
= 0.

Defining Ωk := ρk
[
G(xk)

]
+

, and taking the limit when k tends to infinity in the above equality we obtain

lim
k→∞

∇ f (xk)+DG(xk)∗Ωk = 0.

Since G(xk), Ωk, and G(x̄) are symmetric matrices we can diagonalize

G(xk) =Ukdiag(λUk
1 (G(xk)), . . . ,λUk

m (G(xk)))UT
k ,

Ω
k = ρk

[
G(xk)

]
+
=Ukdiag(ρk[λ

Uk
1 (G(xk))]+, . . . ,ρk[λ

Uk
m (G(xk))]+)UT

k ,

and
G(x̄) =Udiag(λU

1 (G(x̄)), . . . ,λU
m (G(x̄)))UT ,

where UkUT
k = I, UUT = I and Uk → U . By the definition of Ωk, the matrices G(xk) and Ωk are simultaneously di-

agonalizable. Thus, the matrix Sk in the definition of AKKT is taken coinciding with Uk. Now, if λU
i (G(x̄)) < 0 then

λ
Uk
i (G(xk))< 0 for all sufficiently large k; which implies that λ

Uk
i (Ωk) = ρk[λ

Uk
i (G(xk))]+ = 0.
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In the next example, we consider a local minimizer that does not satisfy the KKT conditions. Let us then build an
AKKT sequence guaranteed to exist by Theorem 3.2.

Example 3.1 (AKKT sequence at a non-KKT solution). Consider the following problem

Minimize
x∈R

2x,

Subject to G(x) :=
[

0 x
x −1

]
� 0.

Since the unique feasible point is x̄ := 0, this is the unique global minimizer.

(i) x̄ = 0 is not a KKT point. Let Ω :=
[

µ11 µ12
µ12 µ22

]
. We have

∇ f (x̄)+DG(x̄)∗Ω = 2+2µ12 = 0⇒ µ12 =−1,

and
〈G(x̄),Ω〉= 0⇒ µ22 = 0.

Thus, Ω =

[
µ11 −1
−1 0

]
, which is an indefinite matrix, regardless of µ11. Therefore, x̄ can not be a KKT point.

(ii) x̄ = 0 is an AKKT point. Define xk :=− k
k2−1

and Ωk :=
[

k −1
−1 1/k

]
. Then,

∇ f (xk)+DG(xk)∗Ωk = 2−2 = 0.

Note that, in the way that we have defined xk and Ωk, we have that ΩkG(xk) = G(xk)Ωk, which is a well known
necessary and sufficient condition for simultaneous diagonalization. Computing the eigenvectors, G(xk) and Ωk

share a common basis of eigenvectors given by uk
1 :=

(
1√

1+ k2
,

k√
1+ k2

)
and uk

2 :=
(
−k√
1+ k2

,
1√

1+ k2

)
, with

corresponding eigenvalues

λ
Uk
1 (G(xk)) =

−k2

k2−1
, λ

Uk
2 (G(xk)) =

1
k2−1

, λ
Sk
1 (Ωk) = 0, λ

Sk
2 (Ωk) =

1
k
+ k,

where Uk = Sk is the matrix with first and second columns given by uk
1 and uk

2, respectively. Let U :=
[

0 −1
1 0

]
be the limit of {Sk}. Now, since λU

1 (G(x̄)) = −1 < 0 and λU
2 (G(x̄)) = 0, AKKT holds since the eigenvalue of Ωk

corresponding to the negative eigenvalue is λ
Sk
1 (Ωk), which is zero for all k.

4 An Augmented Lagrangian algorithm that generates AKKT sequences
In this section we will present an Augmented Lagrangian method for NLSDP based on the quadratic penalty function,
which we will prove to generate an AKKT sequence. This is one of the most popular methods for solving NLSDPs [55].
For more details, see [1, 21, 23, 36, 62, 56, 64]. Our algorithm is inspired by the Augmented Lagrangian method with
safeguards for nonlinear programming, introduced in [1, 2] (see also [14]), which turns out to be the same as the one from
[62] for NLSDP. Let us discuss in some details the contributions of [62], which is most related to our approach. In [62],
the authors studied global convergence properties of four Augmented Lagrangian methods using different algorithmic
strategies. For their study, the following NLSDP is considered:

Minimize
x∈Rn

f (x),

subject to G(x)� 0, h(x) = 0, x ∈ V ,
(18)

where V := {x ∈ Rn | g(x)≤ 0} and f : Rn→ R, h : Rn→ Rp, g : Rn→ Rq and G : Rn→ Sm are continuously differen-
tiable functions. Note that this problem differs from ours by the presence of additional standard nonlinear constraints. For
(18), an Augmented Lagrangian method is presented using the safeguarded technique from [14]. The constraints G(x)� 0
and h(x) = 0 are penalized (upper-level constraints) with the use of the Powell-Hestenes-Rockafellar (PHR) Augmented
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Lagrangian function for NLSDP, while the constraints in V are kept in the subproblems (lower-level constraints). The
proposed algorithm then finds an approximate minimizer of the Augmented Lagrangian function over the set V , followed
by standard updates of the penalty parameter and safeguarded multipliers approximations. They then proceed to investi-
gate global convergence results in a similar fashion as in [2, 7]. In one of their main results, the authors show that a limit
point is either feasible or, if the constant positive linear dependence (CPLD) constraint qualification with respect to V
holds, then it is a KKT point for an infeasibility problem with respect to the upper-level constraints. They then resort to
MFCQ in order to prove that a feasible limit point is a KKT point of (18). That is, they only consider a weak constraint
qualification (CPLD) for the standard nonlinear programming constraints in V , but not for the conic constraints G(x)� 0.
We will provide global convergence results for this Augmented Lagrangian method for (NLSDP), which can be formu-
lated with a new constraint qualification weaker than MFCQ. That is, for simplicity, we will consider problems only with
conic constraints and no additional nonlinear constraints. Any additional nonlinear constraints could also be penalized or
incorporated in the conic constraints in a standard way. Although we consider only unconstrained Augmented Lagrangian
subproblems, the theory we develop is general enough in order to consider even subproblems with conic constraints, with
an approach similar to what is done in [1, 16]. We leave the details of this more general approach for a later study, while
we now focus on an Augmented Lagrangian method that penalizes all constraints and solves unconstrained subproblems.

Given a penalty parameter ρ > 0, the Augmented Lagrangian function Lρ : Rn×Sm→ R, associated with (NLSDP),
is defined by:

Lρ(x,Ω) := f (x)+
1

2ρ

{
‖[Ω+ρG(x)]+‖2−‖Ω‖2} . (19)

This function is a natural extension of the Augmented Lagrangian function for nonlinear programming.
Similarly to the external penalty method, our goal is to solve (NLSDP) by solving a sequence of unconstrained

minimization problems with respect to x, obtaining at each iteration k a primal iterate xk, where the objective function
is given by (19), and Ω := Ω̄k and ρ := ρk are iteratively updated according to some performance criterion. We expect
that, for suitable choices of the parameters, the sequence of solutions generated will converge to the solution of problem
(NLSDP). From the definition of the Augmented Lagrangian function above, we have that its gradient, with respect to x,
is given by:

∇xLρ(x,Ω) = ∇ f (x)+DG(x)∗ [Ω+ρG(x)]+ .

Therefore, a natural update rule for the dual sequence is:

Ω← [Ω+ρG(x)]+ ,

however, to avoid solving the next subproblem with a Lagrange multiplier approximation too large (given that we do not
assume MFCQ, and Lagrange multipliers may be unbounded), we take the Lagrange multiplier approximation for the
next subproblem as the projection of the natural update above onto a safeguarded box as in [14]. This means that when
the penalty parameter is large, the method reduces to the external penalty method. To update the penalty parameter, we
will rely on a joint measure of feasibility and complementarity. The formal statement of the algorithm is as follows:
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Algorithm 1 Augmented Lagrangian Algorithm
STEP 0 (Initialization): Let τ ∈ (0,1), γ > 1, ρ1 > 0 and Ωmax ∈ Sm

+. Take {εk} ⊂ R a sequence of positive scalars such
that limεk = 0. Define 0� Ω̄1 �Ωmax. Choose x0 ∈ Rn an arbitrary starting point. Initialize k := 1.

STEP 1 (Solve subproblem): Use xk−1 to find an approximate minimizer xk of Lρk(x,Ω̄
k), that is, a point xk such that

‖∇xLρk(x
k,Ω̄k)‖ ≤ εk.

STEP 2 (Penalty parameter update): Define

V k :=
[

Ω̄k

ρk
+G(xk)

]
+

− Ω̄k

ρk
.

If
‖V k‖ ≤ τ‖V k−1‖,

define
ρk+1 := ρk,

otherwise, define
ρk+1 := γρk.

STEP 3 (Multiplier update): Compute
Ω

k :=
[
Ω̄

k +ρkG(xk)
]
+
,

and define Ω̄k+1 := pro jS(Ωk), the orthogonal projection of Ωk onto S, where S := {X ∈ Sm|0�X �Ωmax}. Set k := k+1,
and go to Step 1.

Note that V k = 0 if, and only if xk is feasible and complementarity holds. Indeed,

V k = 0⇒
[

Ω̄k

ρk
+G(xk)

]
+

=
Ω̄k

ρk
⇒ Ω̄

k =
[
Ω̄

k +ρkG(xk)
]
+
,

and then, computing the orthogonal decomposition, we have

Ω̄
k +ρkG(xk) =Ukdiag(λUk

1 , . . . ,λUk
m )UT

k and

Ω̄
k = [Ω̄k +ρkG(xk)]+ =Ukdiag([λUk

1 ]+, . . . , [λ
Uk
m ]+)UT

k .

Hence,
G(xk) = (1/ρk)Ukdiag(λUk

1 − [λ
Uk
1 ]+, . . . ,λ

Uk
m − [λUk

m ]+)UT
k .

As λ
Uk
i − [λ

Uk
i ]+ ≤ 0 for all i = 1, . . . ,m, we have G(xk) � 0. Also, the multiplier Ω̄k is such that, if λ

Uk
i (G(xk)) < 0

then λ
Uk
i < [λ

Uk
i ]+ and thus, λ

Uk
i (Ω̄k) = [λ

Uk
i ]+ = max{0,λUk

i } = 0. The reciprocal implication follows similarly. Thus,
the algorithm keeps the previous penalty parameter unchanged if ‖V k‖ is sufficiently reduced, otherwise, the penalty
parameter is increased to force feasibility and complementarity.

Note also that we consider {Ωk} as the dual sequence generated by the algorithm in order to check a stopping criterion,
since this sequence together with {xk} fulfills the stopping criterion related to optimality (11) when εk ≤ εopt.

The following result shows that Algorithm 1 finds stationary points of an infeasibility measure. This shows that the
algorithm tends to find feasible points, which are global minimizers of the infeasibility measure, whenever the feasible
region is non-empty.

Theorem 4.1. Let x̄ ∈ Rn be a limit point of a sequence {xk} generate by Algorithm 1. Then, x̄ is a stationary point for
the optimization problem

Minimize
x∈Rn

P(x) := tr
(
[G(x)]2+

)
. (20)

Proof. If {ρk} is bounded, that is, for k ≥ k0 the penalty parameter remains unchanged, we have that V k → 0. The
sequence {Ω̄k} is bounded, then, there is an infinite subset K1 ⊂

∞
N such that lim

k∈K1
Ω̄

k = Ω̄. Now, from V k→ 0 we get

Ω̄ = lim
k∈K1

Ω̄
k = lim

k∈K1

[
Ω̄

k +ρk0G(xk)
]
+
= lim

k∈K1
Ω

k =
[
Ω̄+ρk0G(x̄)

]
+
.
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The computation is now similar to our previous discussion where V k was assumed to be zero. Writing the orthogonal
decomposition of the matrix Ω̄, we have

Ω̄ = [Ω̄+ρk0G(x̄)]+ =Udiag([λU
1 ]+, . . . , [λ

U
m ]+)UT ,

with UUT = I . Moreover,
Ω̄+ρk0G(x̄) =Udiag(λU

1 , . . . ,λU
m )UT .

In this way,
G(x̄) = (1/ρk0)Udiag((λU

1 − [λU
1 ]+), . . . ,(λ

U
m − [λU

m ]+))UT ,

thus, G(x̄)� 0. Therefore, x̄ is a global minimizer of the optimization problem (20). If {ρk} is unbounded, let us define

δ
k := ∇ f (xk)+DG(xk)∗Ωk,

where Ωk := [Ω̄k +ρkG(xk)]+. Clearly, from Step 1 of the algorithm, we have that ‖δ k‖ ≤ εk. Dividing δ k by ρk,

δ k

ρk
=

∇ f (xk)

ρk
+DG(xk)∗

[
Ω̄k

ρk
+G(xk)

]
+

,

since Ω̄k is bounded and ∇ f (xk)→ ∇ f (x̄), we have that DG(x̄)∗[G(x̄)]+ = 0. Thus, the result follows from Lemma 3.2.

Next, we will show that a feasible limit point of a sequence {xk} generated by the algorithm is an AKKT point. In
fact, {xk} is an associated AKKT sequence and {Ωk} is the corresponding dual sequence.

Theorem 4.2. Assume that x̄ ∈ Rn is a feasible limit point of a sequence {xk} generated by Algorithm 1. Then, x̄ is an
AKKT point.

Proof. Let x̄ ∈F be a limit point of a sequence {xk} generated by Algorithm 1. Let us assume without loss of generality
that xk→ x̄. From Step 1 of the algorithm we have that

‖∇ f (xk)+DG(xk)∗Ωk‖ ≤ εk⇒ lim
k→∞

∇ f (xk)+DG(xk)∗Ωk = 0,

where
Ω

k =
[
Ω̄

k +ρkG(xk)
]
+
.

Now, let us prove that for appropriate matrices U and Sk →U , we have that for all i = 1, . . . ,m, if λU
i (G(x̄)) < 0 then

λ
Sk
i (Ωk) = 0 for all sufficiently large k. We have two cases to analyze:

(i) If ρk→+∞, since the sequence {Ω̄k} is bounded we have that
Ω̄k

ρk
+G(xk)→ G(x̄). Let us take a diagonalization

Ω̄k

ρk
+G(xk) = Skdiag(λ k

1 , . . . ,λ
k
m)S

T
k ,

where SkST
k = I. Taking a subsequence if necessary, let us take a diagonalization

G(x̄) =Udiag(λ1, . . . ,λm)UT ,

where UUT = I with Sk→U , λ k
i → λi for all i. Then,

Ω
k = [Ω̄k +ρkG(xk)]+ = Skdiag(ρk[λ

k
1 ]+, . . . ,ρk[λ

k
m]+)S

T
k .

Now, assume that λU
i (G(x̄)) := λi < 0. Then, λ k

i < 0 for all sufficiently large k; which implies that λ
Sk
i (Ωk) :=

ρk[λ
k
i ]+ = 0.

(ii) If {ρk} is bounded, similarly to what was done in Theorem 4.1, for k ≥ k0 we have ρk = ρk0 ; hence, V k→ 0. Thus,
taking a subsequence if necessary, we have

Ω̄ = lim Ω̄
k = lim

[
Ω̄

k +ρk0G(xk)
]
+
= lim Ω

k =
[
Ω̄+ρk0G(x̄)

]
+
.
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Let us take an orthogonal decomposition of the matrix Ω̄k +ρk0 G(xk), that is,

Ω̄
k +ρk0G(xk) = Skdiag(λ Sk

1 , . . . ,λ Sk
m )ST

k ,

and let us take a subsequence such that {Sk} converges to some orthogonal matrix U . Then,

Ω̄+ρk0G(x̄) = lim Ω̄
k +ρk0G(xk) =Udiag(λU

1 , . . . ,λU
m )UT ,

where λ
Sk
i → λU

i for all i. In this way, since

Ω̄ =Udiag([λU
1 ]+, . . . , [λ

U
m ]+)UT ,

we have that
G(x̄) = (1/ρk0)Udiag((λU

1 − [λU
1 ]+), . . . ,(λ

U
m − [λU

m ]+))UT ,

and then, λU
i (G(x̄)) =

λU
i − [λU

i ]+
ρk0

. Assuming that it is negative, we have that λU
i < [λU

i ]+; hence, λU
i < 0. Then,

λ
Sk
i < 0 for all sufficiently large k; which implies that λ

Sk
i (Ωk) = [λ

Sk
i ]+ = 0.

5 A new sequential optimality condition for NLSDP
In Section 3, we presented an extension of the classical AKKT sequential optimality condition known for NLP. However,
for NLSDP, it turns out that we can define a much more natural and simpler sequential optimality condition, which is new
even in the context of NLP. The new condition does not rely on eigenvalue computations for treating the complementarity,
which are replaced by a simpler inner product of the constraint matrix and the dual matrix. The new condition also does
not require the convergence Sk→U , which relates the eigenvectors of the dual sequence with the ones of the limit of the
constraint matrix. This new condition is called Trace-Approximate-KKT (TAKKT) and is defined below.

Definition 5.1. We say that a point x̄ ∈Rn satisfies the Trace-Approximate-KKT (TAKKT) condition if G(x̄)� 0 and there
exist sequences xk→ x̄ and {Ωk} ⊂ Sm

+ such that

lim
k→∞

∇ f (xk)+DG(xk)∗Ωk = 0, (21)

lim
k→∞
〈Ωk,G(xk)〉= 0. (22)

Remark 5.1. Note that, lim
k→∞
〈Ωk,G(xk)〉= 0 does not imply that Ωk and G(xk) are (approximately) simultaneously diag-

onalizable. Indeed, consider the matrices

G(xk) :=
[

1/k 0
0 −1/k

]
∈ S2 and Ω

k :=
[

k k
k k

]
∈ S2

+.

Then, lim
k→∞
〈Ωk,G(xk)〉 = 0 but these matrices are not simultaneously diagonalizable since ΩkG(xk) 6= G(xk)Ωk. More

precisely, let us consider the orthogonal diagonalizations

Ω
k = Skdiag(λ Sk

1 (Ωk),λ
Sk
2 (Ωk))ST

k =

[
−1/
√

2 1/
√

2
1/
√

2 1/
√

2

][
0 0
0 2k

][
−1/
√

2 1/
√

2
1/
√

2 1/
√

2

]
and

G(xk) =Ukdiag(λUk
1 (G(xk)),λ

Uk
2 (G(xk)))UT

k =

[
1 0
0 1

][
1/k 0
0 −1/k

][
1 0
0 1

]
.

Thus, no matter how the eigenvalues are ordered, we always have that λ
Uk
i (G(xk))λ

Sk
i (Ωk) 6→ 0 for some i.

In this section, we will show that TAKKT is indeed an optimality condition and that the Augmented Lagrangian
algorithm generates TAKKT sequences under the generalized Lojasiewicz inequality. In some sense, TAKKT plays the
role of the Complementarity-AKKT (CAKKT) condition known for NLP [10] in the global convergence analysis of
NLSDP algorithms, under a very natural stopping criterion for NLSDP, which is based on the simple lemma below. More
remarks about the relationship with CAKKT for NLP will follow at the end of this section.
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Lemma 5.1. The point x̄ ∈ Rn satisfies TAKKT if, and only if, there exist sequences xk→ x̄, {Ωk} ⊂ Sm
+, and {εk} ⊂ R+

such that xk→ x̄, εk→ 0+ and for all k ∈ N,

‖∇ f (xk)+DG(xk)∗Ωk‖ ≤ εk, (23)

‖[G(xk)]+‖ ≤ εk, (24)

|〈Ωk,G(xk)〉| ≤ εk. (25)

To prove that TAKKT is an optimality condition for NLSDP, it is sufficient to note that in the proof of Theorem 3.2,
where we proved that AKKT is an optimality condition, the dual sequence is defined as Ωk := ρk[G(xk)]+. We also note
that from the definition of {xk} in the proof of Theorem 3.2 as the global solution of problem (17), the additional property
holds:

f (xk)− f (x̄)+
1
2
‖xk− x̄‖2 +

ρk

2
tr
([

G(xk)
]2

+

)
≤ 0. (26)

Let us see that these observations are sufficient to prove that TAKKT is an optimality condition.

Theorem 5.1. Let x̄ be a local minimizer of (NLSDP). Then x̄ satisfies TAKKT.

Proof. Let {xk} be the AKKT sequence defined in the proof of Theorem 3.2. In particular, the dual sequence is defined
for all k as Ωk := ρk[G(xk)]+ and (26) holds with some ρk > 0. It remains to prove that 〈G(xk),Ωk〉 → 0. Taking the limit
in (26) we have that

〈[G(xk)]+,Ω
k〉=

m

∑
i=1

ρk[λi(G(xk))]2+ = ρk tr
([

G(xk)
]2

+

)
→ 0.

Since
λi(G(xk))[λi(G(xk))]+ = [λi(G(xk))]2+ for all i = 1, . . . ,m,

it follows that 〈G(xk),Ωk〉=
m

∑
i=1

ρkλi(G(xk))[λi(G(xk))]+→ 0. Therefore, x̄ is a TAKKT point.

Note that in Example 3.1, where a local minimizer that is not a KKT point is presented, the same sequence used to
verify that AKKT holds can be used to check that TAKKT holds. Let us see an additional example from [43, Example
6.3.6] that illustrates the same thing, but where there is a non-zero duality gap.

Example 5.1 (TAKKT sequence at a non-KKT solution). Consider the following problem

Minimize
x∈R2

x1,

Subject to G(x) :=

 0 −x1 0
−x1 −x2 0

0 0 −1− x1

� 0.

The point x̄ := (0,0) is a global minimizer, with an optimal value of zero. The dual problem can be stated as

Maximize
Ω∈S3

−µ33,

Subject to Ω :=

µ11 µ12 µ13
µ12 µ22 µ23
µ13 µ23 µ33

� 0,

µ33 +2µ12 = 1,
µ22 = 0,

where the conic constraint implies µ12 = 0 and hence the optimal value is −1.
Now, it is easy to check that the KKT condition does not hold at x̄, but TAKKT holds with the sequence xk := ( 1

k ,
1
k )

and Ωk :=

(k−1)2 k−1
2k 0

k−1
2k

1
4k2 0

0 0 1
k

 ∈ S3
+.

In the following example we can see that AKKT does not imply TAKKT.
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Example 5.2 (AKKT does not imply TAKKT). Consider the following problem

Minimize
x∈R2

x2,

Subject to G(x) :=

x1 0 0
0 −x1 0
0 0 x1− x2

1x2

� 0.

(i) The feasible point x̄ := (0,1) is an AKKT point. Define xk
1 := 1/k, xk

2 := 1 and Ωk :=

µk
11 0 0
0 µk

22 0
0 0 µk

33

 ∈ S3
+ with

µk
11 := 2k,µk

22 := k2, and µk
33 := k2. Also, we have

∇ f (xk)+DG(xk)∗Ωk = (µk
11−µ

k
22 +µ

k
33−2xk

1xk
2µ

k
33,1− (xk

1)
2
µ

k
33) = (0,0).

Note that G(xk) and Ωk are simultaneously diagonalizable by the identity matrix. Since all eigenvalues of G(x̄) are
zero, there is nothing else to check.

(ii) TAKKT does not hold at x̄. First, note that since G(xk) is diagonal we can take Ωk a diagonal matrix without loss

of generality. Now, suppose that there exist sequences xk→ x̄ and Ωk :=

µk
11 0 0
0 µk

22 0
0 0 µk

33

 ∈ S3
+ such that

∇ f (xk)+DG(xk)∗Ωk = (µk
11−µ

k
22 +µ

k
33−2xk

1xk
2µ

k
33,1− (xk

1)
2
µ

k
33)→ 0,

and

〈G(xk),Ωk〉= xk
1(µ

k
11−µ

k
22 +µ

k
33)− (xk

1)
2xk

2µ
k
33 = xk

1(µ
k
11−µ

k
22 +µ

k
33−2xk

1xk
2µ

k
33)+(xk

1)
2xk

2µ
k
33→ 0.

Note that, since µk
11 − µk

22 + µk
33 − 2xk

1xk
2µk

33 → 0, we conclude that (xk
1)

2xk
2µk

33 → 0. Since xk
2 → 1, this yields

(xk
1)

2µk
33→ 0, which constradicts 1− (xk

1)
2µk

33→ 0. Thus, TAKKT does not hold at x̄ = (0,1).

Note that in the previous example, the point x̄ = (0,1) is an AKKT point that is not a solution. Hence, following
our global convergence result given by Theorem 4.2, we can not rule out the possibility of the augmented Lagrangian
algorithm converging to this undesirable point. However, let us show that indeed the algorithm avoids the point x̄ in
this example. For this, let us prove the new global convergence result of the algorithm, that is, that it generates TAKKT
sequences. We will need the following smoothness assumption, which is known as the generalized Lojasiewicz inequality
[18]:

Assumption 1. Every feasible limit point x̄ of a sequence {xk} generated by Algorithm 1 satisfies the generalized Lo-
jasiewicz inequality below:

There is δ > 0 and a function ϕ : B(x̄,δ )→ R, where B(x̄,δ ) is the closed ball centered at x̄ and radius δ , with
ϕ(x)→ 0 when x→ x̄ such that for all x ∈ B(x̄,δ ),

|P(x)−P(x̄)| ≤ ϕ(x)‖∇P(x)‖,

where P(x) := tr
(
[G(x)]2+

)
.

Note that, by Lemma 3.2, for all x ∈ Rn we have ∇P(x) = 2DG(x)∗[G(x)]+.
Assumption 1 is a natural extension of the smoothness assumption that is required in nonlinear programming to

prove convergence of the Augmented Lagrangian method to CAKKT points [10]. Note that this is an assumption about
the smoothness of the function G(·), which holds, for instance, when G(·) is an analytic function (see [10]). More
importantly, this is not an assumption about how the function G(·) behaves in the conic constraint G(x) � 0, such as in
constraint qualification assumptions. We are now ready to prove the result.

Theorem 5.2. Let Assumption 1 hold. Assume that x̄ ∈ Rn is a feasible limit point of a sequence {xk} generated by
Algorithm 1. Then x̄ is a TAKKT point.
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Proof. By the proof of Theorem 4.2, it is sufficient to verify that lim
k→∞
〈Ωk,G(xk)〉 = 0. Let us consider the following

decomposition:

Ω̄k

ρk
+G(xk) = Skdiag(λ k

1 , . . . ,λ
k
m)S

T
k ⇒Ω

k = Skdiag(ρk[λ
k
1 ]+, . . . ,ρk[λ

k
m]+)S

T
k , (27)

and
G(xk) =Ukdiag(λUk

1 (G(xk)), . . . ,λUk
m (G(xk)))UT

k ,

where, for all k, Sk and Uk are orthogonal matrices such that

λ
k
1 ≤ λ

k
2 ≤ ·· · ≤ λ

k
m and λ

Uk
1 (G(xk))≤ λ

Uk
2 (G(xk))≤ ·· · ≤ λ

Uk
m (G(xk)). (28)

In addition, taking a subsequence if necessary, we have

G(x̄) =Udiag(λU
1 (G(x̄)), . . . ,λU

m (G(x̄)))UT ,

where U is orthogonal and λU
1 (G(xk))≤ λU

2 (G(x̄))≤ ·· · ≤ λU
m (G(x̄)) with Uk→U.

(i) Assume that ρk→+∞. By Step 1 of the algorithm, the sequence {∇xLρk(x
k,Ωk)} is bounded. Also, as

∇xLρk(x
k,Ωk) = ∇ f (xk)+DG(xk)∗[Ω̄k +ρkG(xk)]+

= ∇ f (xk)+ρkDG(xk)∗
[

Ω̄k

ρk
+G(xk)

]
+

,

and since
Ω̄k

ρk
→ 0, there is some M > 0 such that

ρk‖∇P(xk)‖=
∥∥∥ρkDG(xk)∗[G(xk)]+

∥∥∥≤M

for all k. Taking the function ϕ given by Assumption 1 and using the fact that P(x̄) = 0, we have for all k:∣∣∣ρkP(xk)
∣∣∣≤ ϕ(xk)

∥∥∥ρk∇P(xk)
∥∥∥≤Mϕ(xk).

Taking the limit in k we have:

lim
k→∞

ρkP(xk) = 0⇒ lim
k→∞

ρk tr([G(xk)]2+) = 0. (29)

From (27), we get

G(xk) = Skdiag(λ k
1 , . . . ,λ

k
m)S

T
k −

Ω̄k

ρk
.

Now,

〈Ωk,G(xk)〉 =

〈
Ω

k,Skdiag(λ k
1 , . . . ,λ

k
m)S

T
k −

Ω̄k

ρk

〉
=

〈
Ω

k,Skdiag(λ k
1 , . . . ,λ

k
m)S

T
k

〉
−
〈

Ω
k,

Ω̄k

ρk

〉
. (30)

Let us show that 〈Ωk,G(xk)〉 → 0 in an infinite subsequence k ∈ K1 ⊂ N. For this, let us show that〈
Ω

k,Skdiag(λ k
1 , . . . ,λ

k
m)S

T
k

〉
→ 0 and

〈
Ω

k,
Ω̄k

ρk

〉
→ 0.

Firstly, 〈
Ω

k,
Ω̄k

ρk

〉
=

〈[
Ω̄

k +ρkG(xk)
]
+
,

Ω̄k

ρk

〉
=

〈[
Ω̄k

ρk
+G(xk)

]
+

,Ω̄k
〉
. (31)
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Thus, by the boundedness of {Ω̄k} and since ρk → +∞ and
[
G(xk)

]
+
→ 0, we have that

[
Ω̄k

ρk
+G(xk)

]
+

→ 0;

therefore,
〈

Ωk,
Ω̄k

ρk

〉
→ 0. Furthermore,

〈
Ω

k,Skdiag(λ k
1 , . . . ,λ

k
m)S

T
k

〉
=

m

∑
i=1

ρk[λ
k
i ]+λ

k
i

=
m

∑
i=1

[
λ

Sk
i

(
Ω̄

k +ρkG(xk)
)]

+
λ

Sk
i

(
Ω̄k

ρk
+G(xk)

)
.

Let us now show that
[
λ

Sk
i

(
Ω̄k +ρkG(xk)

)]
+

λ
Sk
i

(
Ω̄k

ρk
+G(xk)

)
→ 0 for all i = 1, . . . ,m. From the order given in

(28), we can apply Lemma 2.3 to get

λ1(Ω̄
k)+ρkλ

Uk
i (G(xk))≤ λ

Sk
i (Ω̄k +ρkG(xk))≤ λm(Ω̄

k)+ρkλ
Uk
i (G(xk)). (32)

From now on, since the diagonalizations were taken in such a way that the eigenvalues of all the matrices considered
are ordered, we can omit the super-indexes in λ

Uk
i (·), λ

Sk
i (·), and λU

i (·). Now, if λi(G(x̄))< 0, we have from (32),
since λi(G(xk))→ λi(G(x̄)), {Ω̄k} is bounded, and ρk→+∞, that λi(Ω̄

k +ρkG(xk))< 0 for all sufficiently large k.
Hence, for sufficiently large k, [

λi

(
Ω̄

k +ρkG(xk)
)]

+
λi

(
Ω̄k

ρk
+G(xk)

)
= 0.

Now, if λi(G(x̄)) = 0 but λi(G(xk))≤ 0 for an infinite set of indices K1 ⊂ N, we have that

0≤ λi(Ω
k) = max{0,λi(Ω̄

k +ρkG(xk))}
≤ max{0,λm(Ω̄

k)+ρkλi(G(xk))}
≤ max{0,λm(Ω̄

k)}+ρk max{0,λi(G(xk))}
= λm(Ω̄

k). (33)

Thus, for k ∈ K1, {λi(Ω
k)} is bounded. Since λi

(
Ω̄k

ρk
+G(xk)

)
→ 0, we have

lim
k∈K1

[
λi

(
Ω̄

k +ρkG(xk)
)]

+
λi

(
Ω̄k

ρk
+G(xk)

)
= 0.

Finally, if λi(G(x̄)) = 0 and λi(G(xk))> 0 for all sufficiently large k, let us multiply (32) by λi

(
Ω̄k

ρk
+G(xk)

)
> 0

to arrive at

λ1(Ω̄
k)λi

(
Ω̄k

ρk
+G(xk)

)
+ρkλi(G(xk))λi

(
Ω̄k

ρk
+G(xk)

)
≤ λi(Ω̄

k +ρkG(xk))λi

(
Ω̄k

ρk
+G(xk)

)
(34)

and

λi(Ω̄
k +ρkG(xk))λi

(
Ω̄k

ρk
+G(xk)

)
≤ λm(Ω̄

k)λi

(
Ω̄k

ρk
+G(xk)

)
+ρkλi(G(xk))λi

(
Ω̄k

ρk
+G(xk)

)
. (35)

Note that

λ1(Ω̄
k)λi

(
Ω̄k

ρk
+G(xk)

)
→ 0 and λm(Ω̄

k)λi

(
Ω̄k

ρk
+G(xk)

)
→ 0,

then, it remains to show that

ρkλi(G(xk))λi

(
Ω̄k

ρk
+G(xk)

)
= λi(G(xk))λi

(
Ω̄

k +ρkG(xk)
)
→ 0.

Since λi(G(xk)) → 0, {Ω̄k} is bounded, and ρkλi(G(xk))2 → 0 (by (29)), this follows by multiplying (32) by
λi(G(xk)):

λ1(Ω̄
k)λi(G(xk))+ρkλi(G(xk))2 ≤ λi(Ω̄

k +ρkG(xk))λi(G(xk))≤ λm(Ω̄
k)λi(G(xk))+ρkλi(G(xk))2. (36)

Thus, we conclude that lim
k→∞
〈Ωk,G(xk)〉= 0.
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(ii) If {ρk} is bounded, the proof follows as in the proof of Theorem 4.2, item (ii), by noting that

lim
k→∞
〈Ωk,G(xk)〉 =

m

∑
i=1

λ
U
i (Ω̄)λU

i (G(x̄))

=
m

∑
i=1

1
ρk0

[λU
i ]+(λ

U
i − [λU

i ]+) = 0.

To end this section, we discuss about the relevance of TAKKT in the context of sequential optimality conditions for
NLP. For this, let us consider G(x) := diag(g1(x), . . . ,gm(x)) and Ωk := diag(µk

1 , . . . ,µ
k
m) � 0. Thus, a feasible point x̄

satisfies TAKKT if, and only if,

lim
k→∞

∇ f (xk)+DG(xk)∗Ωk = lim
k→∞

∇ f (xk)+
m

∑
i=1

µ
k
i ∇gi(xk) = 0, (37)

lim
k→∞
〈Ωk,G(xk)〉= lim

k→∞

m

∑
i=1

µ
k
i gi(xk) = 0, (38)

while for verifying AKKT, condition (38) is replaced by

gi(x̄)< 0⇒ µ
k
i = 0, for all sufficiently large k and i = 1, . . . ,m,

which, for the sake of this discussion, we may consider its equivalent form

gi(x̄)< 0⇒ µ
k
i → 0+, for all i = 1, . . . ,m. (39)

That is, the AKKT condition (37) + (39) says that the dual sequence {µk} may be unbounded, but the corresponding
gradient of the Lagrangian function should vanish in the limit. Also, the gradient of an inactive constraint at the limit
should not be considered, eventually, in the computation of the gradient of the Lagrangian. AKKT is typically considered
as the most natural (and weakest) sequential optimality condition, as these properties are the least one would expect to
hold at KKT-related conditions.

The complementarity condition imposed by TAKKT, namely, condition (38), has not been considered before in the
context of NLP, as it is not natural in this context. The issue is that it does not immediately imply that µk

i → 0+ when
gi(x̄) < 0. Namely, (38) may not be adequate to assert complementarity in the limit, as one could satisfy it, for instance,
with an inactive constraint at the limit but with a corresponding Lagrange multiplier sequence bounded away from zero.
For instance, with constraints (g1(xk),g2(xk)) := (−1+ 1

k ,
1
k )→ (−1,0) and (µk

1 ,µ
k
2) := (1,k). That is, TAKKT may not

correctly identify the active constraints in the verification of (37). Surprisingly, as we will show later, under MFCQ this
issue is not present, as a TAKKT point is in fact a KKT point. The notion of a TAKKT point for NLP is closely related to
the so-called Sum Converging to Zero (SCZ) concept defined in [30]; however, a thorough investigation of the relevance
of TAKKT in NLP, together with its relations with other sequential optimality conditions, would be in order, but out of the
scope of this paper. For example, even for NLP, although we conjecture that TAKKT would not imply AKKT, we were
not able to find an example. That is, it is not clear if the concern raised above can actually happen.

Another known way to measure complementarity, in the case of NLP, is the so-called Complementarity-Approximate-
KKT (CAKKT) condition defined in [10], where (38) is replaced by the complementarity measurement:

lim
k→∞

gi(xk)µk
i = 0, for all i = 1, . . . ,m. (40)

Clearly, (40) implies (38) and (39), hence CAKKT is stronger than TAKKT and AKKT for NLP. Note that since these
are necessary optimality conditions, a stronger condition is more desirable than a weaker one. For inactive constraints,
(40) and (39) impose the same condition on the multiplier, namely, that it should converge to zero. The difference is with
respect to an active constraint gi(x̄) = 0: while AKKT allows the corresponding Lagrange multiplier µk

i to diverge to
infinity arbitrarily fast, CAKKT imposes a bound on its rate of growth, namely, it should go to infinity slower than 1

|gi(xk)|
(see [32] for further discussions under this point of view). The CAKKT condition is natural in the context of interior point
methods [32] and it is also generated by augmented Lagrangian methods under the generalized Lojasiewicz inequality
[10]. In [10] it was also shown that CAKKT is able to detect non-optimality in some cases where AKKT does not detect
it.

Hence, another interesting endeavour would be to define an extension of CAKKT to NLSDP. Similarly to what was
done for AKKT, such an extension would need to take into account the “correspondence” among the eigenvalues of Ωk
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and G(xk), in such a way that the condition would reduce to CAKKT for NLP in the diagonal case. A first idea would be
to define CAKKT for NLSDP by replacing the complementarity measurement in AKKT by the stronger one

lim
k→∞

λ
Uk
i (G(xk))λ

Sk
i (Ωk) = 0, for all i = 1, . . . ,m,

where Uk and Sk are orthogonal matrices that diagonalize G(xk) and Ωk, respectively, such that Sk→U and Uk→U . Note
that in the definition of AKKT we asked that Sk →U to obtain a correspondence between an inactive eigenvalue of the
constraint matrix with an eigenvalue of the Lagrange multiplier matrix to vanish. In addition, for CAKKT we would ask
that Uk→U to ensure that λ

Uk
i (G(xk))→ λU

i (G(x̄)) for all i = 1, . . . ,m.
Even though CAKKT defined in this way would be an optimality condition, we were not able to prove that the

augmented Lagrangian algorithm generates this type of sequences under the generalized Lojasiewicz inequality. The
crucial difficulty is that, as in the proof that the algorithm generates TAKKT sequences, it is important to take orthogonal
diagonalizations of G(xk) and Ωk in such a way that the eigenvalues are ordered. This is not an issue in TAKKT since it
does not require any correspondence among the eigenvalues; however, the correspondence imposed by the definition of
CAKKT does not allow us to arbitrarily order the eigenvalues of G(xk) and Ωk.

In the next section we will show that our global convergence results to AKKT or TAKKT points are strictly stronger
than standard global convergence results to a KKT point under MFCQ. In particular, our results do not require bounded-
ness of Lagrange multipliers in order to assert that a feasible limit point of the algorithm is a KKT point.

6 Strength of the sequential optimality conditions
At this point, we have not yet mentioned that the optimality conditions that we have defined are strong in any sense.
Namely, they could be satisfied at any feasible point, which would make our results up to now meaningless. Let us show
that this is not the case. We start by discussing the strength of AKKT.

First, let us show that the global convergence results that we have proved are at least as good as standard global
convergence results to a KKT point under MFCQ.

Theorem 6.1. Let x̄ ∈F be a feasible point that satisfies MFCQ. Then, for any objective function f in (NLSDP) such
that x̄ satisfies AKKT, x̄ satisfies in addition the KKT conditions for this problem.

Proof. From the definition of AKKT, there exist sequences {xk} ⊂ Rn,xk→ x̄ and {Ωk} ⊂ Sm
+, together with orthogonal

matrices Sk and U that diagonalize Ωk for each k and G(x̄), respectively, with Sk→U , such that

lim
k→∞

∇ f (xk)+DG(xk)∗Ωk = 0, (41)

and
λ

U
i (G(x̄))< 0⇒ λ

Sk
i (Ωk) = 0. (42)

If {Ωk} is contained in a compact set, there is K ⊂ N, Ω ∈ Sm
+, such that lim

k∈K
Ω

k = Ω. Let us consider the partition of

{1, . . . ,m} into the index sets:

I1 := {i | λU
i (G(x̄))< 0} and I2 := {i | λU

i (G(x̄)) = 0}.

From (41), we have that
∇ f (x̄)+DG(x̄)∗Ω = 0,

and by noting that G(x̄) and Ω are simultaneously diagonalizable, we have that

lim
k→∞
〈Ωk,G(xk)〉= 〈Ω,G(x̄)〉= ∑

i∈I1

λ
U
i (Ω)λU

i (G(x̄))+ ∑
i∈I2

λ
U
i (Ω)λU

i (G(x̄)) = 0,

where the previous equality is due to the fact that λU
i (Ω) = 0 for i ∈ I1 and λU

i (G(x̄)) = 0 for i ∈ I2. Therefore, x̄ satisfies
the KKT conditions.

Now, let us consider a subsequence such that tk := ‖Ωk‖ → ∞. Thus, let us take K1 ⊂ N such that lim
k∈K1

Ωk

tk
= Ω̄ 6= 0

for some Ω̄ ∈ Sm
+ simultaneously diagonalizable with G(x̄). Then, from (41) and (42) we have that

lim
k∈K1

∇ f (xk)

tk
+DG(xk)∗

Ωk

tk
= DG(x̄)∗Ω̄ = 0, and (43)
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lim
k∈K1

〈
Ωk

tk
,G(xk)

〉
= 〈Ω̄,G(x̄)〉= ∑

i∈I1

λ
U
i (Ω̄)λU

i (G(x̄))+ ∑
i∈I2

λ
U
i (Ω̄)λU

i (G(x̄)) = 0. (44)

To see that (43)-(44) contradicts MFCQ, let d ∈ Rn be such that G(x̄)+DG(x̄)d is negative definite. Thus,

0 = 〈Ω̄,G(x̄)〉+ 〈DG(x̄)∗Ω̄,d〉
= 〈Ω̄,G(x̄)〉+ 〈Ω̄,DG(x̄)d〉
= 〈Ω̄,G(x̄)+DG(x̄)d〉,

which implies by Lemma 2.2 that Ω̄ = 0, contradicting the definition of Ω̄.

A result similar to Theorem 6.1 holds for TAKKT. The proof is very similar to the proof of Theorem 6.1 and is omitted.

Theorem 6.2. Let x̄ ∈F be a feasible point that satisfies MFCQ. Then, for any objective function f in (NLSDP) such
that x̄ satisfies TAKKT, x̄ satisfies in addition the KKT conditions for this problem.

One may view Theorem 6.1 as strenghtening the simple fact that MFCQ is a constraint qualification, that is, MFCQ
implies that the KKT condition holds not only at local minimizers, but also at AKKT points (which includes local min-
imizers, as shown in Theorem 3.2). This has been called a strict constraint qualification in [9]. We use Theorem 6.1 to
inspire the definition of a new constraint qualification: note that the property satisfied by points fulfilling MFCQ, given
by Theorem 6.1, is a property of the feasible set of (NLSDP), independently of the objective function. Also, since AKKT
is an optimality condition, it is clear that this property is a constraint qualification (weaker than MFCQ). The same holds
true with respect to the property stated in Theorem 6.2. Let us make these definitions precise.

Definition 6.1 (AKKT/TAKKT-regularity). We say that a feasible point x̄∈F satisfies AKKT-regularity (TAKKT-regularity)
if for any objective function f in (NLSDP) such that x̄ satisfies AKKT (TAKKT, respectively), x̄ satisfies in addition the
KKT conditions for this problem.

Thus, the global convergence result presented in Theorem 4.2 implies that under AKKT-regularity, feasible limit points
of the algorithm are KKT points. Analogously, Theorem 5.2 shows the global convergence of the algorithm to a KKT
point under TAKKT-regularity. This gives a more standard constraint qualification formulation of our global convergence
results, which can be compared with other ones in the literature.

Let us now show that our global convergence results are strictly stronger than the more standard one based on MFCQ.
We do this by showing that neither AKKT-regularity nor TAKKT-regularity imply MFCQ (note that Theorems 6.1 and
6.2 show that AKKT/TAKKT-regularity are weaker than MFCQ). The following example serve this purpose:

Example 6.1 (AKKT-regularity and TAKKT-regularity do not imply MFCQ). Consider x̄ := 0 and the feasible set defined
by

G(x) :=
[

x 0
0 −x

]
� 0.

(i) (x̄ does not satisfies MFCQ.) Indeed,

G(x̄)+DG(x̄)h =

[
h 0
0 −h

]
.

Therefore, there is no h ∈ R such that G(x̄)+DG(x̄)h is negative definite.

(ii) (x̄ satisfies AKKT-regularity and TAKKT-regularity.) This is trivially true as, independently of the objective function,
x̄ = 0 is a KKT point.

The previous example is very simple, as it reduces trivially to a nonlinear programming problem. However one could

arrive at exactly the same conclusions by considering a feasible set defined by G(x1,x2) :=
[

x1 x2
x2 −x1

]
� 0.

Let us note that by revisiting the constraints in Example 5.2 in more details, that is, without a fixed objective function,
we can see that it actually shows that TAKKT-regularity does not imply AKKT-regularity. Note also that in Example
3.1, AKKT-regularity does not hold, given that AKKT holds but KKT does not hold. This shows that AKKT-regularity
may fail for linear constraints (which does not occur for AKKT-regularity in NLP). Similarly, Example 5.1 shows that
TAKKT-regularity may fail for linear constraints.

Similarly to [9], we can provide a geometric interpretation of AKKT/TAKKT-regularity by means of the outer semi-
continuity of a point-to-set mapping. We present this interpretation for TAKKT-regularity, but a similar definition can be
made for AKKT-regularity.
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Theorem 6.3. A feasible point x̄ satisfies TAKKT-regularity if, and only if, the following point-to-set mapping is outer
semicontinuous at (x̄,0):

KTAKKT(x,r) := {DG(x)∗Ω : |〈Ω,G(x)〉| ≤ r, Ω ∈ Sm
+},

that is, limsup
(x,r)→(x̄,0)

KTAKKT(x,r)⊂ KTAKKT(x̄,0).

Proof. Let f be a smooth objective function such that TAKKT holds at x̄. Then, by the definition, there exist sequences
{xk} ⊂ Rn, {Ωk} ∈ Sm

+, {εk} ⊂ Rn, and {rk} ⊂ R+ such that

lim
k→∞

xk = x̄, εk := ∇ f (xk)+DG(xk)∗Ωk→ 0, and rk := |〈Ωk,G(xk)〉| → 0.

Define wk := DG(xk)∗Ωk. Clearly, the sequence wk satisfies

wk ∈ KTAKKT(xk,rk) and wk→−∇ f (x̄).

From the definition of limsup for the point-to-set mapping KTAKKT, we have

−∇ f (x̄) ∈ limsup
(x,r)→(x̄,0)

KTAKKT(x,r)⊂ KTAKKT(x̄,0),

which, by the definition of KTAKKT(x̄,0), implies that the KKT conditions hold. This proves that x̄ satisfies TAKKT-
regularity. Now, let us assume TAKKT-regularity at x̄ and let us prove that

limsup
(x,r)→(x̄,0)

KTAKKT(x,r)⊂ KTAKKT(x̄,0).

Take w ∈ limsup
(x,r)→(x̄,0)

KTAKKT(x,r). So, there are sequences {xk}, {wk} and {rk} such that xk → x̄, wk → w, rk → 0 and

wk ∈ KTAKKT(xk,rk) for all k. Now, let us define the linear function f (x) := −〈w,x〉 for all x ∈ Rn. Let us see that
TAKKT holds at x̄ with this choice of f . Since wk ∈ KTAKKT(xk,rk), there is a multiplier Ωk ∈ Sm

+ such that

wk = DG(xk)∗Ωk and |〈Ωk,G(xk)〉| ≤ rk.

Since rk → 0, we have lim
k→∞
〈Ωk,G(xk)〉 = 0. Also, since wk → w, we have εk := ∇ f (xk)+DG(xk)∗Ωk = −w+wk → 0.

Thus, TAKKT holds at x̄, which implies by TAKKT-regularity that the objective function defined is such that the KKT
conditions hold at x̄. This can be written as −∇ f (x̄) = w ∈ KTAKKT(x̄,0), which concludes the proof.

For NLP, several constraint qualifications strictly weaker than MFCQ that still imply AKKT-regularity have been pro-
posed (such as CPLD [49], RCPLD [7], CRSC [6] and CPG [6] – or CRCQ [37] and RCRCQ [47], which are independent
of MFCQ). These weak constraint qualifications help in ensuring AKKT-regularity in a more tractable way by means of
properties of the derivatives of the constraints in a neighborhood of the point of interest. We expect that extensions of
these concepts to NLSDP would be relevant in characterizing global convergence of algorithms for NLSDP, while also
showing that AKKT-regularity is much weaker than MFCQ, way beyond what our simple Example 6.1 suggests.

7 Conclusions
In the past ten years, sequential optimality conditions have played an increasing role in global convergence analysis of
algorithms for nonlinear programming problems. Without a constraint qualification, the fact that the KKT conditions hold
approximately at any local minimizer justifies the numerical practice of not verifying constraint qualifications at all when
deciding when to stop the execution of an algorithm.

It can be conjectured that the stronger the theoretical properties of limit points of a sequence generated by an algorithm,
the better the algorithm will behave in practice. This indicates the practical relevance of proving global convergence of
algorithms under weak assumptions.

In this paper, we extended the NLP concept of Approximate-KKT point to nonlinear semidefinite programming. This
extension is not straightforward as the KKT conditions for NLSDP require that the constraint matrix and the Lagrange
multiplier matrix to be simultaneously diagonalizable; hence, it is not straightforward to define the notion of “satisfying
the KKT conditions approximately”. Surprisingly, we were able to define a sequential optimality condition, new even in
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the context of NLP, that is naturally presented in NLSDP, as it does not rely on eigenvalue computations, which we call
Trace-Approximate-KKT.

These tools allowed us to define an Augmented Lagrangian algorithm whose global convergence analysis can be done
without relying on the Mangasarian-Fromovitz constraint qualification, that is, a limit point of a sequence generated by
an algorithm may be proven to be a KKT point even though this point may have an unbounded Lagrange multiplier set.

Further research is needed to access the practical performance of the algorithm. We also envision that the theory
presented can be generalized by considering an algorithm that solves constrained augmented Lagrangian subproblems,
or by solving the subproblems up to second-order. Also, we expect other sequential optimality conditions for NLP to be
generalized to NLSDP, such as the Approximate-Gradient-Projection [46], which can be relevant for algorithms that do
not produce a Lagrange multiplier approximation.
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