Lista 6

Espaços com produto interno.

- 1. Consideremos o espaço euclidiano \mathbb{R}^2 . Sendo u=(1,2) e v=(-1,1) em \mathbb{R}^2 determine um vetor w desse espaço tal que $\langle u,w\rangle=-1$ e $\langle u,v\rangle=-1$.
- 2. Sejam u e v vetores de um espaço euclidiano tais que ||v|| = 1, ||u|| = 1 e ||u v|| = 2. Determinar $\langle u, v \rangle$.
- 3. Num espaço vetorial euclidiano provar que $||u|| = ||v|| \Leftrightarrow \langle u+v, u-v \rangle = 0$.
- 4. Sejam $u=(x_1,x_2)$ e $v=(y_1,y_2)$ vetores em \mathbb{R}^2 . Mostrar que $\langle u,v\rangle=x_1y_1-2x_1y_2-2x_2y_1+5x_2y_2$ define um produto interno sobre \mathbb{R}^2 . Determinar a norma de u=(1,2) em relação ao produto interno usual e também em relação ao produto definido nesse exercío.
- 5. Em cada um dos itens abaixo determinar d(u, v).
 - a) $V = \mathbb{R}^4$, com o produto interno usual, u = (1, 1, 1, 1), v = (0, 0, 1, 1).
 - b) $V = P_2(\mathbb{R})$, com o produto interno usual, u = 1 + t, $v = \frac{3}{4}t + 3t^2$.
 - c) $V = M_3(\mathbb{R})$, com produto interno $\langle A, B \rangle = \text{traço}(A^t B)$,

$$u = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 1 \end{pmatrix} \qquad v = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 2 & 2 & 2 \end{pmatrix}.$$

- 6. Considere em $P_2(\mathbb{R})$ o produto interno dado por $\langle p,q\rangle=\int_0^1 p(t)q(t)dt$. Seja $S=\{p(t)\in P_2(\mathbb{R})\mid p(1)=0\}$. Determine uma base ortogonal de S. Dado $p(t)\in P_2(\mathbb{R})$, encontre vetores $p_1(t)\in S$ e $p_2(t)\in S^\perp$ tais que $p(t)=p_1(t)+p_2(t)$.
- 7. Sejam u e v vetores fixos de um espaço vetorial euclidiano. Achar o vetor de menor norma de conjunto $\{u+tv\mid t\in\mathbb{R}\}$, supondo $v\neq 0$.
- 8. Sejam $u=(x_1,x_2)$ e $v=(y_1,y_2)$ vetores em \mathbb{R}^2 . Para que valores de $t\in\mathbb{R}$ a função $\langle u,v\rangle=x_1y_1+tx_2y_2$ é um produto interno sobre \mathbb{R}^2 .
- 9. Sendo $V=M_2(\mathbb{R})$, mostre que $\langle A,B\rangle=\mathrm{traco}(B^tA)$ define um produto interno sobre V. Calcule $\langle A,B\rangle,\|A\|,\|B\|$ se

$$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right], \quad B = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right].$$

Se $W = \left\{ \begin{bmatrix} x & y \\ z & t \end{bmatrix} \mid x + y - z = 0 \right\}$, determine uma base ortonormal para W.

10. Consideremos em $P_2(\mathbb{R})$ o produto interno dado por

$$\langle f(t), g(t) \rangle = \int_{2}^{1} f(t)g(t)dt$$

Nessas condições, para que valor de m temos que $f(t)=mt^2-1$ é ortogonal a g(t)=t?

11. Ortonormalizar a base $u_1=(1,1,1),\ u_2=(1,-1,1),\ u_3=(-1,0,1)$ do \mathbb{R}^3 pelo processo de Gram-Schmidt.

- 12. Determinar a projeção ortogonal de u=(1,1) sobre o sub-espaço V=[(1,3)] do \mathbb{R}^2 .
- 13. Determinar a projeção ortogonal de $f(t)=2t-1\in P_2(\mathbb{R})$ sobre o sub-espaço U=[t], em relação ao produto interno usual.
- 14. Em $P_2(\mathbb{R})$ com o produto interno usual, ortonormalizar a base $\{1, 1+t, 2t^2\}$. Achar o complemento orthogonal do subespaço W = [5, 1+t].
- 15. Determinar a projeção ortogonal do vetor $(1,1,0,-1)\in\mathbb{R}^4$ sobre o subespaço

$$W = \{(x, y, z, t) \mid x - y - z = 0, z - 2t = 0\}.$$

- 16. Mostre que $\{1, \cos(x), \cos(2x), \cos(3x), \dots\}$ é um conjunto ortogonal em $C[0, \pi]$ usando o produto interno $\langle f, g \rangle = \int_0^\pi f(x)g(x)dx$.
- 17. Determinar uma isometria em $P_2(\mathbb{R})$ cuja matriz em relação a base canônica é

$$\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\
0 & 0 & 1\\
x & y & z
\end{array}\right)$$

(onde $x, y, z \in \mathbb{R}$ devem ser determinados).

18. Verifique se $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ dada por $T(A) = A^t, A \in M_2(\mathbb{R})$, é uma isometria.