Lista 3

MAT0460/MAT6674 — 2° semestre de 2018

Let k be a field and S be a finite poset.

Exercício 1. Calculate J(kS).

Exercício 2. Let S be a poset given by

and consider two matrix representations of S

A =	0 1	01	1 0	1	01	01
	0	0	1	0	1	0
	1	1	0	0	0	0
B =	0	1	1	1	0	1
	0	1	0	0	1	0

Show that A represents a decomposable class in Mat_8 , whereas B represents indecomposable class. Prove that the endomorphism ring of F(B) in $Mat_8^{\alpha d}$ is isomorphic k. Construct non-trivial idempotent in endomorphism ring of F(A) in $Mat_8^{\alpha d}$.

Exercício 3.

Let S and T be finite posets. Prove that there is a poset isomorphism $S \cong T$ (i.e., a bijection which preserves order) if and only if the incidence k-algebras kS and kT are isomorphic.

Exercício 4.

Suppose that \$ is a poset consisting of three incomparable elements 1, 2, 3. Describe indecomposable classes in Mat_{\sigma}.

Exercício 5.

Let \mathcal{A} and \mathcal{A}' be two additive categories with the unique decomposition property and that $H : \mathcal{A} \to \mathcal{A}'$ is a representation equivalence (i.e., H is full, dense and reflects isomorphisms). Prove that any object X in \mathcal{A} is indecomposable iff H(X) is indecomposable in \mathcal{A}' .

Exercício 6.

Let S be a poset as in Exercise 2. Show that in this case the reduction functor $H : (Mat_S^{ad})_0 \to S - sp$ is not an equivalence of categories.

Exercício 7.

Let $S = \{1 \rightarrow 2, 3 \rightarrow 4\}$ be a poset consisting of two incomparable chains. Construct the diagram of indecomposable objects in Mat_{S}^{ad} . Prove that the functor $H : (Mat_{S}^{ad})_{0} \rightarrow S - sp$ is an equivalence of categories.

Exercício 8.

Let S be a poset given by

Construct S'_7 and calculate $\partial_7(V)$, where V is a subspace representations corresponding to A.

Exercício 9.

Prove that poset S below

is representation-finite and find the number of indecomposable S-spaces up to isomorphism.

Exercício 10.

Let $V, W \in S - sp$, and $f : V \to W$ be proper morphism. Prove that Coker $f \in S - sp$.

Exercício 11.

Let $V, W \in S - sp$, and $f : V \to W$ be a morphism. Prove that f is essential if, and only if, for each $t \in \{\emptyset\} \cup S$ the induces map

$$V(t^+)/V_t \rightarrow W(t^+)/W_t$$

is a bijection.

and let

Exercício 12.

Let $V, W \in S - sp$. Prove that $f : V \to W$ is a proper injection if, and only if, for each $t \in \{\emptyset\} \cup S$ the induces map

$$V(t^+)/V_t \to W(t^+)/W_t$$

is an injection.

Exercício 13.

Let S be a poset as in Exercise 2. Calculate $\int_6 \partial_6$ for subspace representation of S which corresponds to matrix representations A and B (as in Exercise 2). Describe all subspaces representations V of S, such that $\int_6 \partial_6 V$ is not isomorphic to V.