Lista 3

MAT0460/MAT6674 — 2° SEMESTRE DE 2018

Let k be a field and \mathcal{S} be a finite poset.

Exercício 1.

Calculate J(kS).

Exercício 2.

Let S be a poset given by

and consider two matrix representations of \mathcal{S}

$$
\begin{aligned}
& \mathrm{A}=\begin{array}{|l|l|l|l|l|l|}
\hline 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
\hline \mathrm{~B} & =\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Show that A represents a decomposable class in Mats, whereas B represents indecomposable class. Prove that the endomorphism ring of $\mathrm{F}(\mathrm{B})$ in Mat ${ }_{\mathrm{g}}^{\mathrm{ad}}$ is isomorphic k. Construct non-trivial idempotent in endomorphism ring of $F(A)$ in Mat ${ }_{S}^{\text {ad }}$.

Exercício 3.

Let \mathcal{S} and \mathcal{T} be finite posets. Prove that there is a poset isomorphism $S \cong T$ (i.e., a bijection which preserves order) if and only if the incidence k-algebras $k S$ and $k T$ are isomorphic.

Exercício 4.

Suppose that \mathcal{S} is a poset consisting of three incomparable elements $1,2,3$. Describe indecomposable classes in Mats.

Exercício 5.

Let \mathcal{A} and \mathcal{A}^{\prime} be two additive categories with the unique decomposition property and that $\mathrm{H}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ is a representation equivalence (i.e., H is full, dense and reflects isomorphisms). Prove that any object X in \mathcal{A} is indecomposable iff $\mathrm{H}(\mathrm{X})$ is indecomposable in \mathcal{A}^{\prime}.

Exercício 6.

Let \mathcal{S} be a poset as in Exercise 2. Show that in this case the reduction functor $\mathrm{H}:\left(\text { Mat }_{\mathcal{S}}{ }^{\mathrm{ad}}\right)_{0} \rightarrow \mathcal{S}-\mathrm{sp}$ is not an equivalence of categories.

Exercício 7.

Let $\mathcal{S}=\{1 \rightarrow 2,3 \rightarrow 4\}$ be a poset consisting of two incomparable chains. Construct the diagram of indecomposable objects in Mat ${ }_{\mathcal{S}}{ }^{\text {ad }}$. Prove that the functor $\mathrm{H}:\left(\mathrm{Mat}_{\mathcal{S}}{ }^{\mathrm{ad}}\right)_{0} \rightarrow \mathcal{S}-\mathrm{sp}$ is an equivalence of categories.

Exercício 8.

Let S be a poset given by

and let

$$
A=\begin{array}{|l|l|l|l|l|l|ll|}
\hline 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
\end{array}
$$

Construct S_{7}^{\prime} and calculate $\partial_{7}(V)$, where V is a subspace representations corresponding to A.

Exercício 9.

Prove that poset \mathcal{S} below

is representation-finite and find the number of indecomposable \mathcal{S}-spaces up to isomorphism.

Exercício 10.

Let $V, W \in \mathcal{S}-s p$, and $f: V \rightarrow W$ be proper morphism. Prove that Coker $f \in \mathcal{S}-s p$.

Exercício 11.

Let $V, W \in \mathcal{S}-s p$, and $f: V \rightarrow W$ be a morphism. Prove that f is essential if, and only if, for each $t \in\{\emptyset\} \cup \mathcal{S}$ the induces map

$$
\mathrm{V}\left(\mathrm{t}^{+}\right) / \mathrm{V}_{\mathrm{t}} \rightarrow \mathrm{~W}\left(\mathrm{t}^{+}\right) / \mathrm{W}_{\mathrm{t}}
$$

is a bijection.

Exercício 12.

Let $V, W \in \mathcal{S}-s p$. Prove that $f: V \rightarrow W$ is a proper injection if, and only if, for each $t \in\{\emptyset\} \cup \mathcal{S}$ the induces map

$$
\mathrm{V}\left(\mathrm{t}^{+}\right) / \mathrm{V}_{\mathrm{t}} \rightarrow \mathrm{~W}\left(\mathrm{t}^{+}\right) / \mathrm{W}_{\mathrm{t}}
$$

is an injection.

Exercício 13.

Let \mathcal{S} be a poset as in Exercise 2. Calculate $\int_{6} \partial_{6}$ for subspace representation of \mathcal{S} which corresponds to matrix representations \mathcal{A} and B (as in Exercise 2). Describe all subspaces representations V of \mathcal{S}, such that $\int_{6} \partial_{6} \mathrm{~V}$ is not isomorphic to V .

