MAT 2453 - Cálculo Diferencial e Integral I 1º semestre de 2025 Agenda 07

Prof. Jean Cerqueira Berni*

Apresentação

Nesta agenda apresentamos o **Teorema do Confronto**, um resultado que nos permite garantir a existência e calcular diversos limites. O teorema nos garante, *a grosso modo*, que se no entorno de um ponto x_0 , uma função $g:A\subseteq\mathbb{R}\to\mathbb{R}$ está limitada superiormente e inferiormente por funções f,h, respectivamente, que têm um mesmo limite em x_0 , então g tem o mesmo limite que estas funções.

O Teorema do Confronto é utilizado para calcularmos os limites fundamentais:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

e:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

justificando-os rigorosamente. Terminamos apresentando quatro resultados importantíssimos que nos descrevem o comportamento das funções contínuas: o **Teorema do Anulamento**, o **Teorema do Valor Intermediário**, o **Teorema da Limitação** e o **Teorema de Weierstraß**.

O **Teorema do Anulamento** nos garante que, conforme nossa intuição sugere, se uma função contínua está definida em um intervalo da forma [a,b] e assume sinais opostos nos extremos deste intervalo, então o gráfico da função intersecta o eixo Ox em algum ponto entre a e b. Este teorema é muito utilizado em Análise Numérica, para garantir a existência de zeros de funções contínuas.

^{*}jeancb@ime.usp.br

- O **Teorema do Valor Intermediário**, por sua vez, nos diz a grosso modo que funções contínuas aplicam intervalos em intervalos.
- O **Teorema da Limitação** nos garante que toda função contínua definida em um intervalo fechado e limitado, da forma [a,b], é limitada. Finalmente, o **Teorema de Weierstraß** nos garante que funções contínuas definidas em intervalos limitados fechados assumem, efetivamente, um valor máximo e um valor mínimo.

1 O Teorema do Confronto

Teorema 1 (Teorema do Confronto) *Sejam* $f,g,h:A\subseteq\mathbb{R}\to\mathbb{R}$ *três funções,* $x_0\in A'$ *e suponhamos que exista* r>0 *tal que:*

$$(x \in A) \& (0 < |x - x_0| < r) \Rightarrow (f(x) \le g(x) \le h(x)).$$

Se:

$$\lim_{x \to x_0} f(x) = L = \lim_{x \to x_0} h(x)$$

então:

$$\lim_{x \to x_0} g(x) = L.$$

Seja $\varepsilon > 0$ dado.

Por hipótese, temos:

• $\lim_{x\to x_0} f(x) = L$, de modo que para o $\varepsilon > 0$ dado acima existe $\delta_1 > 0$ tal que:

$$(x \in A)\&(0 < |x - x_0| < \delta_1) \Rightarrow (|f(x) - L| < \varepsilon),$$

ou seja,

$$(x \in A) \& (0 < |x - x_0| < \delta_1) \Rightarrow (L - \varepsilon < f(x) < L + \varepsilon)$$

• $\lim_{x \to x_0} h(x) = L$, de modo que para o $\varepsilon > 0$ dado acima existe $\delta_2 > 0$ tal que:

$$(x \in A)\&(0 < |x - x_0| < \delta_2) \Rightarrow (|h(x) - L| < \varepsilon),$$

ou seja,

$$(x \in A) \& (0 < |x - x_0| < \delta_2) \Rightarrow (L - \varepsilon < h(x) < L + \varepsilon)$$

Tomamos, portanto, $\delta = \min\{\delta_1, \delta_2, r\}$, ou seja, δ será o <u>menor</u> dos números δ_1, δ_2, r . Temse, assim que:

$$(x \in A) \& (0 < |x - x_0| < \delta) \Rightarrow (L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon)$$

e em particular:

$$(x \in A) \& (0 < |x - x_0| < \delta) \Rightarrow (L - \varepsilon < g(x) < L + \varepsilon)$$

Portanto,

$$\lim_{x\to x_0}g(x)=L.$$

Corolário 2 (Teorema do Confronto para Limites Laterais à Direita) Sejam f,g,h: $A \subseteq \mathbb{R} \to \mathbb{R}$ três funções, $x_0 \in A'$ e suponhamos que exista r > 0 tal que:

$$(x \in A)\&(x_0 < x < x_0 + r) \Rightarrow (f(x) \le g(x) \le h(x)).$$

Se:

$$\lim_{x \to x_{0+}} f(x) = L = \lim_{x \to x_{0+}} h(x)$$

então:

$$\lim_{x \to x_{0+}} g(x) = L.$$

Corolário 3 (Teorema do Confronto para Limites Laterais à esquerda) Sejam f,g,h: $A \subseteq \mathbb{R} \to \mathbb{R}$ três funções, $x_0 \in A'$ e suponhamos que exista r > 0 tal que:

$$(x \in A) \& (x_0 - r < x < x_0) \Rightarrow (f(x) \le g(x) \le h(x)).$$

Se:

$$\lim_{x \to x_{0-}} f(x) = L = \lim_{x \to x_{0-}} h(x)$$

então:

$$\lim_{x \to x_{0-}} g(x) = L.$$

Teorema 4 (Teorema do Confronto para Limites no Infinito) Sejam $A \subset \mathbb{R}$ um subconjunto ilimitado à direita, $f, g, h: A \subseteq \mathbb{R} \to \mathbb{R}$ três funções. Se existir M > 0 tal que:

$$(x \in A) \& (x > M) \Rightarrow (f(x) \le g(x) \le h(x)).$$

Se:

$$\lim_{x \to \infty} f(x) = L = \lim_{x \to \infty} h(x)$$

então:

$$\lim_{x \to \infty} g(x) = L.$$

Seja $\varepsilon > 0$ dado. Como $\lim_{x \to \infty} f(x) = L$, existe $M_1 > 0$ tal que se $x > M_1$ implica $L - \varepsilon < f(x) < L + \varepsilon$, e em particular, $L - \varepsilon < f(x)$. Também, como $\lim_{x \to \infty} h(x) = L$, existe $M_2 > 0$ tal que $x > M_2$ implica $L - \varepsilon < h(x) < L + \varepsilon$, e em particular, $h(x) < L + \varepsilon$. Finalmente, por hipótese, existe M > 0 tal que x > M implica $f(x) \le g(x) \le h(x)$. Ao tomarmos $N = \max\{M_1, M_2, M\} + 1$, ou seja, ao tomarmos N como o maior destes números mais 1, teremos:

$$x > N \Rightarrow L - \varepsilon \text{pois } x > M_1 \underbrace{f(x) \le g(x) \le h(x)}_{\text{pois } x > M} \text{pois } x > M_2 L + \varepsilon$$

de modo que $L - \varepsilon < g(x) < L + \varepsilon$, e portanto:

$$\lim_{x \to \infty} g(x) = L.$$

Definição 5 (função infinitésima em um ponto) Seja $f: A \subseteq \mathbb{R} \to \mathbb{R}$ uma função e $x_0 \in A'$. Dizemos que f **é infinitésima em** x_0 se, e somente se:

$$\lim_{x \to x_0} f(x) = 0.$$

Teorema 6 (limite do produto de uma função infinitésima por uma função limitada)

Sejam $f: A \subseteq \mathbb{R} \to \mathbb{R}$ e $g: B \subseteq \mathbb{R} \to \mathbb{R}$ e $x_0 \in (A \cap B)'$. Se f é uma função infinitésima em x_0 , ou seja, se:

$$\lim_{x \to x_0} f(x) = 0$$

e se g é uma função limitada em algum intervalo contendo x_0 , isto é, existem M>0 e r>0 tais que:

$$(\forall x \in (A \cap B)')(0 < |x - x_0| < r \Rightarrow |g(x)| \le M)$$

então:

$$\lim_{x \to x_0} f(x) \cdot g(x) = 0.$$

Notemos, primeiramente, que:

$$(\forall x \in A \cap B)((0 < |x - x_0| < r) \Rightarrow |f(x) \cdot g(x)| = |f(x)| \cdot |g(x)| \le |f(x)| \cdot M)$$

e portanto:

$$-M \cdot |f(x)| \le f(x) \cdot g(x) \le M \cdot |f(x)|$$

Pelo **Teorema do Confronto**, como $\lim_{x\to x_0} |f(x)| \cdot M = 0 \lim_{x\to x_0} -M \cdot |f(x)|$, segue que:

$$\lim_{x \to x_0} f(x) \cdot g(x) = 0.$$

Note que nada exigimos quanto à existência ou não de um limite para a função g no teorema acima. A única coisa que se exige é que exista uma vizinhança de x_0 restrita à qual a função seja limitada. Isto é ilustrado na sequência:

Exemplo 7 *Considere a função:*

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$
$$x \mapsto x^2 \cdot \sin\left(\frac{1}{x}\right)$$

Tem-se:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \cdot \sin\left(\frac{1}{x}\right) = 0,$$

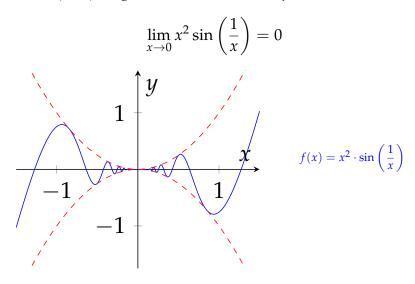
embora não exista o limite da função $\sin(1/x)$ conforme x tende a 0. De fato, note que a função $x \mapsto \sin(1/x)$ é limitada em todo o seu domínio (e, em particular, em qualquer vizinhança de x = 0):

$$(\forall x \in \mathbb{R} \setminus \{0\}) \left(\left| \sin \left(\frac{1}{x} \right) \right| \le 1 \right)$$

Ademais, a função $x \mapsto x^2$ é infinitésima em 0, uma vez que:

$$\lim_{x \to 0} x^2 = 0.$$

Assim, como f é produto de uma função infinitésima em 0 ($x \mapsto x^2$) por uma função limitada em um entorno de 0 ($x \mapsto \sin(1/x)$), segue do teorema anterior que:



Exemplo 8 Considerea função:

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1, se \ x \in \mathbb{Q} \\ -1, se \ x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Afirmamos que $\lim_{x\to 0} x \cdot g(x) = 0$.

De fato, basta notarmos que a função g é limitada e que a função $x \mapsto x$ é infinitésima em 0.

2 Limites Fundamentais

Vamos calcular, com o que vimos até agora, o seguinte limite:

$$\lim_{x\to 0}\frac{\sin(x)}{x}$$

Recorde que, pelo item (5) do **Teorema 1** das Notas da Aula 02, de 26 de agosto de 2020, que existe r > 0 tal que, para qualquer $x \in \mathbb{R}$ tal que 0 < x < r vale:

$$0 < \sin(x) < x < \frac{\sin(x)}{\cos(x)} = \tan(x)$$

Dividimos os membros da inequação acima por $\sin(x)$, que é positivo sempre que 0 < x < r para obter:

$$0 < 1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

donde decorre que:

$$\cos(x) < \frac{\sin(x)}{x} < 1$$

Por outro lado, usando a paridade das funções seno e cosseno, tem-se que:

$$-r < x < 0 \Rightarrow 0 < -x < r \Rightarrow \cos(-x) < \frac{\sin(-x)}{-x} < 1$$

implica:

$$-r < x < 0 \Rightarrow 0 < -x < r \Rightarrow \cos(x) < \frac{\sin(x)}{r} < 1$$

Concluímos, portanto, que dado qualquer $x \in [-r, r]$ vale:

$$\cos(x) < \frac{\sin(x)}{x} < 1$$

Aplicamos, agora, o **Teorema do Confronto** para calcular o limite em pauta conforme x tende a 0, usando que:

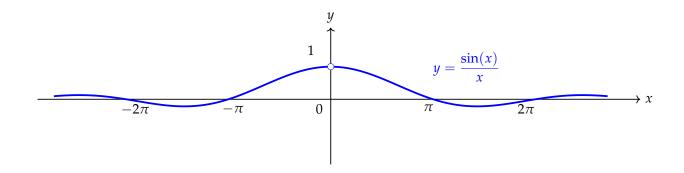
$$\lim_{x\to 0}\cos(x)=\cos(0)=1$$
 (continuidade da função cosseno)

Obtemos:

$$1 = \lim_{x \to 0} \cos(x) \le \lim_{x \to 0} \frac{\sin(x)}{x} \le \lim_{x \to 0} 1$$

e portanto:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$



2.1 Aplicações

Exemplo 9 Calcular:

$$\lim_{x\to 0}\frac{1-\cos(x)}{x^2}$$

Solução: Multiplicamos o numerador e o denominador da fração acima por $1 + \cos(x)$, e obtemos, para qualquer $x \neq (2k+1) \cdot \pi$, $k \in \mathbb{Z}$:

$$\frac{1 - \cos(x)}{x^2} = \frac{1 - \cos(x)}{x^2} \cdot \frac{1 + \cos(x)}{1 + \cos(x)} = \frac{1 - \cos^2(x)}{x^2} \cdot \frac{1}{1 + \cos(x)}$$

Tem-se, portanto, que a função $f(x) = \frac{1-\cos(x)}{x^2}$ coincide com a função $g(x) = \frac{1-\cos^2(x)}{x^2} \cdot \frac{1}{1+\cos(x)}$ em $]-\pi,\pi[\setminus\{0\}]$. Pel"O" teorema, segue que:

$$\lim \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos^2(x)}{x^2} \cdot \frac{1}{1 + \cos(x)}$$

Calculamos:

$$\lim_{x \to 0} 1 + \cos(x) = 1 + \cos(0) = 1 + 1 = 2 \neq 0,$$

de modo que:

$$\lim_{x \to 0} \frac{1}{1 + \cos(x)} = \frac{1}{\lim_{x \to 0} (1 + \cos(x))} = \frac{1}{2}$$

Finalmente, note que $1 - \cos^2(x) = \sin^2(x)$, e portanto:

$$\lim_{x \to 0} \frac{1 - \cos^2(x)}{x^2} = \lim_{x \to 0} \frac{\sin^2(x)}{x^2} = \lim_{x \to 0} \left(\frac{\sin(x)}{x}\right)^2 = 1$$

Logo,

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos^2(x)}{x^2} \cdot \lim_{x \to 0} \frac{1}{1 + \cos(x)} = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

Exemplo 10 Calcular:

$$\lim_{x \to 0} \frac{\sin(5x)}{x}$$

Solução: Tem-se, para qualquer $x \neq 0$:

$$\frac{\sin(5x)}{x} = \frac{\sin(5x)}{x} \cdot \frac{5}{5} = 5 \cdot \frac{\sin(5x)}{5x}$$

Assim,

$$\lim_{x \to 0} \frac{\sin(5x)}{x} = \lim_{x \to 0} 5 \cdot \frac{\sin(5x)}{5x} = 5 \cdot \lim_{x \to 0} \frac{\sin(5x)}{5x}$$

Aqui, a função $x \mapsto \sin(5x)/5x$ pode ser vista como composição $g \circ f$::

$$\mathbb{R}\{0\} \stackrel{f}{\to} \mathbb{R}\{0\} \stackrel{g}{\to} \mathbb{R}$$

$$x \mapsto 5x \mapsto \frac{\sin(5x)}{5x}$$

onde
$$f(x) = 5x e g(y) = \frac{\sin(y)}{y}$$
.

Assim, como:

$$\lim_{x \to 0} y = \lim_{x \to 0} f(x) = \lim_{x \to 0} 5x = 0$$

segue que:

$$\lim_{x \to 0} \frac{\sin(5x)}{5x} = \lim_{y \to 0} \frac{\sin(y)}{y} = 1,$$

e portanto:

$$\lim_{x \to 0} \frac{\sin(5x)}{x} = 5 \cdot \lim_{x \to 0} \frac{\sin(5x)}{5x} = 5 \cdot \lim_{y \to 0} \frac{\sin(y)}{y} = 5 \cdot 1 = 5$$

3 O número *e*

Consideremos a sequência:

$$a: \mathbb{N} \to \mathbb{R}$$
 $n \mapsto \left(1 + \frac{1}{n}\right)^n$

Afirmamos que esta sequência tem por limite um certo número que é maior do que 2 e menor do que 3.

Teorema 11 A sequência $\left(1+\frac{1}{n}\right)^n$ converge para um número entre 2 e 3.

Pelo Teorema Binomial, tem-se:

$$\left(1+\frac{1}{n}\right)^{n} = 1+\frac{n}{1}\cdot\frac{1}{n}+\frac{n\cdot(n-1)}{1\cdot2}\cdot\left(\frac{1}{n}\right)^{2}+\frac{n\cdot(n-1)\cdot(n-2)}{1\cdot2\cdot3}\cdot\left(\frac{1}{n}\right)^{3}+\cdots$$

$$\cdots+\frac{n\cdot(n-1)\cdot(n-2)\cdots[n-(n-1)]}{1\cdot2\cdot3\cdots n}\cdot\left(\frac{1}{n}\right)^{n}$$

que pode ser escrito, alternativamente, como:

$$\left(1+\frac{1}{n}\right)^n = 1+1+\frac{1}{1\cdot 2}\left(1-\frac{1}{n}\right)+\frac{1}{1\cdot 2\cdot 3}\cdot \left(1-\frac{1}{n}\right)\cdot \left(1-\frac{2}{n}\right)+\cdots$$

$$\cdots + \frac{1}{1\cdot 2\cdot 3\cdots n}\left(1-\frac{1}{n}\right)\cdot \left(1-\frac{2}{n}\right)\cdots \left(1-\frac{n-1}{n}\right)$$

Vamos mostrar agora que sempre que n < m teremos:

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{m}\right)^m$$

De fato, passando de n para n+1, tem-se $1-\frac{1}{n}<1-\frac{1}{n+1}$, e cada parcela da soma acima cresce:

$$\frac{1}{1\cdot 2}\left(1-\frac{1}{n}\right) < \frac{1}{1\cdot 2}\left(1-\frac{1}{n+1}\right)$$

$$\frac{1}{1\cdot 2\cdot 3}\left(1-\frac{1}{n}\right)\cdot \left(1-\frac{2}{n}\right) < \frac{1}{1\cdot 2\cdot 3}\left(1-\frac{1}{n+1}\right)\cdot \left(1-\frac{2}{n+1}\right)$$

$$\frac{1}{1 \cdot 2 \cdot 3 \cdots n} \left(1 - \frac{1}{n} \right) \cdot \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{n-1}{n} \right) < < \frac{1}{1 \cdot 2 \cdot 3 \cdots n} \left(1 - \frac{1}{n+1} \right) \cdot \left(1 - \frac{2}{n+1} \right) \cdots \left(1 - \frac{n-1}{n+1} \right)$$

Note, ainda, que mais uma parcela positiva é somada para obtermos $\left(1+\frac{1}{n+1}\right)^n$, a saber $\frac{1}{1\cdot 2\cdot 3\cdots (n+1)}\left(1-\frac{1}{n+1}\right)\cdot \left(1-\frac{2}{n+1}\right)\cdots \left(1-\frac{n-1}{n+1}\right)\cdot \left(1-\frac{n}{n+1}\right)$. Segue, portanto, que:

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1}$$

de modo que se n < m, existe $k \in \mathbb{N}$ tal que n + k = m, e portanto:

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n+1}\right)^{n+1} < \dots < \left(1+\frac{1}{n+k}\right)^{n+k} = \left(1+\frac{1}{m}\right)^m$$

Assim, concluímos que há pelo menos um elemento de X para cada número natural, sendo X um conjunto infinito.

Se mostrarmos que *X* é um conjunto limitado, a existência do ponto de acumulação seguirá do **Teorema de Bolzano-Weierstra**ß.

Mostremos, agora, a limitação de X: tem-se, para qualquer $n \in \mathbb{N}$:

$$\left(1 - \frac{1}{n}\right) < 1$$

$$\left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) < 1$$

 $\left(1-\frac{1}{n}\right)\cdot\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{n-1}{n}\right)<1$

e portanto:

$$\left(1+\frac{1}{n}\right)^n < 1+1+\frac{1}{1\cdot 2}+\frac{1}{1\cdot 2\cdot 3}+\cdots+\frac{1}{1\cdot 2\cdot 3\cdots n}$$

Note também que:

$$\frac{1}{1\cdot 2\cdot 3} < \frac{1}{2^2}, \ \frac{1}{1\cdot 2\cdot 3\cdot 4} < \frac{1}{2^3}, \ \frac{1}{1\cdot 2\cdot 3\cdots n} < \frac{1}{2^{n-1}}$$

donde segue que, para qualquer $n \in \mathbb{N}$ tem-se:

$$\left(1 + \frac{1}{n}\right)^n < 1 + \underbrace{1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}}_{\text{soma da P.G. de razão }\frac{1}{2}}$$

Logo:

$$\left(1+\frac{1}{n}\right)^n < 1+\left[1+\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^{n-1}}\right] = \\ = 1+\frac{1-\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}} = 1+\left[2-\left(\frac{1}{2}\right)^{n-1}\right] < 3$$

Como já sabemos que para qualquer $n \in \mathbb{N}$ tem-se $2 \le \left(1 + \frac{1}{n}\right)^n$, segue que dado qualquer elemento x de X tem-se $2 \le x < 3$. Logo $X \subset [2,3[$, e X é limitado. A existência do ponto de acumulação decorre do **Teorema de Bolzano Weierstraß.**

Definição 12 Seja e o único número real (cuja existência é garantida pelo teorema acima) tal que:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$

Pode-se demonstrar que *e* é um número irracional, e seu valor com dez algarismos significativos é:

$$e = 2.7182818284 \cdots$$

Teorema 13 *A função:*

$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$
$$x \mapsto \left(1 + \frac{1}{x}\right)^x$$

é tal que:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

e:

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Vamos mostrar este resultado utilizando o fato conhecido de que:

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$

e o Teorema do Confronto para Limites no Infinito.

Dado $x \ge 1$, existe $n \in \mathbb{N}$ tal que:

$$n < x < n + 1$$

de modo que:

$$\frac{1}{n+1} < \frac{1}{x} \le \frac{1}{n}$$

$$1 + \frac{1}{n+1} < 1 + \frac{1}{x} \le 1 + \frac{1}{n}$$

e como $n \le x < n + 1$, tem-se:

$$\left(1 + \frac{1}{n+1}\right)^n < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{n}\right)^{n+1}$$

Observe que:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \cdot \left(1+\frac{1}{n}\right) = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \cdot \lim_{n\to\infty} \left(1+\frac{1}{n}\right) = e \cdot 1 = e$$

e que:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+1} \right)^{n+1}}{\left(1 + \frac{1}{n+1} \right)} = \frac{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1}}{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)} = \frac{e}{1} = e$$

Pelo Teorema do Confronto para Limites no Infinito (Teorema 4), segue que:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Para demonstrar que:

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e,$$

efetuamos uma mudança de variável t=-(x+1), de modo que x=-(t+1). Note que:

$$\lim_{t\to\infty}x(t)=\lim_{t\to\infty}-(t+1)=-\infty,$$

de modo que podemos escrever:

$$\begin{split} \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x &= \lim_{t \to \infty} \left(1 - \frac{1}{t+1}\right)^{-t-1} = \lim_{t \to \infty} \left(\frac{t}{t+1}\right)^{-t-1} = \lim_{t \to \infty} \left(\frac{t+1}{t}\right)^{t+1} = \\ &= \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^{t+1} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t \cdot \left(1 + \frac{1}{t}\right) = e \cdot 1 = e. \end{split}$$

Uma simples mudança de variável nos permite concluir o seguinte:

Corolário 14 Tem-se:

$$\lim_{u\to 0} (1+u)^{\frac{1}{u}} = e.$$

Exercício.

Exemplo 15 Calcular:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+5}$$

Solução:

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+5} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \cdot \left(1+\frac{1}{n}\right)^5 = e \cdot 1^5 = e.$$

Exemplo 16 Calcular:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{3x}$$

Solução: Tem-se:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{3x} = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \cdot \left(1 + \frac{1}{x} \right)^{x} \cdot \left(1 + \frac{1}{x} \right)^{x} =$$

$$= \left[\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \right] \cdot \left[\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \right] \cdot \left[\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{x} \right] = e \cdot e \cdot e = e^{3}$$

Exemplo 17 Calcular:

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x$$

Solução: Fazemos uma mudança de variável, $y=\frac{x}{2}$, observamos que $\lim_{x\to\infty}y=\infty$, e temos:

$$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x = \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{2y} = \left[\lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^y \right]^2 = e^2$$

Exemplo 18 Calcular:

$$\lim_{x \to \infty} \left(\frac{x+3}{x-1} \right)^{x+3}$$

Solução:

$$\lim_{x \to \infty} \left(\frac{x+3}{x-1} \right)^{x+3} = \lim_{x \to \infty} \left(\frac{x-1+4}{x-1} \right)^{x+3} = \lim_{x \to \infty} \left(1 + \frac{4}{x-1} \right)^{x+3} = \lim_{x \to \infty} \left(1 + \frac{4}{x-1} \right)^{x-1+4}$$

Neste ponto, fazemos a mudança de variável $y=\frac{x-1}{4}$, observamos que $\lim_{x\to\infty}y=\lim_{x\to\infty}\frac{x-1}{4}=\infty$, e obtemos:

$$\lim_{x \to \infty} \left(1 + \frac{4}{x - 1}\right)^{x - 1 + 4} = \lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^{4y + 4} = \left[\lim_{y \to \infty} \left(1 + \frac{1}{y}\right)^y\right]^4 \cdot \left[\lim_{y \to \infty} \left(1 + \frac{1}{y}\right)\right]^4 = e^4$$

4 Propriedades das Funções Contínuas

Nesta seção apresentaremos algumas propriedades das funções contínuas. Alguns fatos que serão provados nesta seção são:

- Toda função contínua f, definida em um intervalo fechado da forma [a, b], que muda de sinal entre a e b, se anula em algum ponto entre a e b;
- ullet Toda função contínua definida em um intervalo fechado e limitado, [a,b], é uma função limitada;
 - Toda função $f : [a, b] \to \mathbb{R}$ contínua assume um máximo e um mínimo em [a, b].

Teorema 19 (Teorema do Anulamento) Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Se $f(a) \cdot f(b) < 0$ (ou seja, se f(a) e f(b) têm sinais opostos), existe pelo menos um $c \in [a,b]$ tal que f(c) = 0.

Para fixarmos as ideias, suponhamos f(a) < 0 e f(b) > 0. Façamos $a = a_0$ e $b = b_0$; seja c_0 o ponto médio do segmento $[a_0, b_0]$. Tem-se:

$$f(c_0) < 0$$
 ou $f(c_0) \ge 0$.

Suponhamos $f(c_0) < 0$, e façamos $c_0 = a_1$ e $b_0 = b_1$. Temos $f(a_1) < 0$ e $f(b_1) > 0$. Seja c_1 o ponto médio do segmento $[a_1, b_1]$. Temos:

$$f(c_1) < 0$$
 ou $f(c_1) \ge 0$.

Suponhamos $f(c_1) \ge 0$ e façamos $a_1 = a_2$ e $c_1 = b_2$. Assim, $f(a_2) < 0$ e $f(b_2) \ge 0$. Prosseguindo com esse raciocínio, construiremos uma sequência de intervalos encaixados:

$$[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_n,b_n]\supset\cdots$$

com $b_n - a_n = \frac{b-a}{2^n}$, de modo que $\lim_{n\to\infty} b_n - a_n = 0$ e tal que para todo $n\in\mathbb{N}$:

$$f(a_n) < 0 \text{ e } f(b_n) \ge 0 \tag{1}$$

Pelo **Teorema dos Intervalos Encaixados**, existirá um único $c \in \mathbb{R}$ tal que para todo $n \in \mathbb{N}$ tem-se:

$$a_n \leq c \leq b_n$$
.

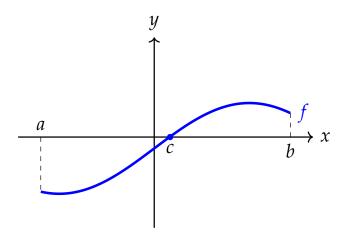
As sequências de termos gerais $(a_n)_{n\in\mathbb{N}}$ e $(b_n)_{n\in\mathbb{N}}$ convergem, por construção, para c. Segue, da continuidade de f que:

$$\lim_{n \to \infty} f(a_n) = f(c) \text{ e } \lim_{n \to \infty} f(b_n) = f(c)$$
 (2)

Segue de (1) e de (2) que:

$$f(c) \le 0$$
 e $f(c) \ge 0$

e portanto f(c) = 0.



Teorema 20 (Teorema do Valor Intermediário) Se $f : [a,b] \to \mathbb{R}$ é contínua, dado qualquer γ entre f(a) e f(b), existe pelo menos um $c \in [a,b]$ tal que $f(c) = \gamma$.

Para fixarmos as ideias, suponhamos que $f(a) < \gamma < f(b)$. Consideremos a função:

$$g: [a,b] \rightarrow \mathbb{R}$$

 $x \mapsto f(x) - \gamma$

Como f é contínua em [a,b], segue que g também é contínua em [a,b] (por quê?). Temos, ainda:

$$g(a) = f(a) - \gamma < 0$$
 e $g(b) = f(b) - \gamma > 0$.

Pelo **Teorema do Anulamento** segue que existe um $c \in [a,b]$ tal que $g(c) = f(c) - \gamma = 0$, ou seja, tal que:

$$f(c) = \gamma$$
.

Lema 21 Sejam $f: I \subset \mathbb{R} \to \mathbb{R}$ uma função contínua, $x_0 \in I' \cap I$ e

$$x: \mathbb{N} \to I \subset \mathbb{F}$$
 $n \mapsto x_n$

uma sequência tal que $\lim_{n\to\infty} x_n = x_0$. Então:

$$\lim_{n\to\infty} f(x_n) = f\left(\lim_{n\to\infty} x_n\right) = f(x_0)$$

Precisamos demonstrar que, dado $\varepsilon > 0$, é possível encontrarmos $n_0 \in \mathbb{N}$ tal que:

$$n \ge n_0 \Rightarrow |f(x_n) - f(x_0)| < \varepsilon$$
.

Seja, então, $\varepsilon>0$ um número tão pequeno quanto quisermos. Como f é contínua em x_0 , existe $\delta>0$ tal que:

$$(x \in I)\&(|x - x_0| < \delta) \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Como, por hipótese, $\lim_{n\to\infty} x_n = x_0$, para este $\delta > 0$ - oriundo da continuidade de f em x_0 - existe $n_0 \in \mathbb{N}$ tal que, se $n > n_0$ então $|x_n - x_0| < \delta$. Desta forma, basta tomarmos este n_0 , e teremos:

$$n > n_0 \Rightarrow |x_n - x_0| < \delta \Rightarrow |f(x_n) - f(x_0)| < \varepsilon$$

ou seja,

$$\lim_{n\to\infty}f(x_n)=f(x_0).$$

Teorema 22 (Teorema da Limitação) Se $f:[a,b] \to \mathbb{R}$ é contínua, então existe M>0 tal que:

$$(\forall x \in [a,b])(|f(x)| \le M).$$

Suponhamos, por absurdo, que f $n\~ao$ seja limitada em [a,b]. Façamos $a=a_1$ e $b=b_1$; Como f é ilimitada, dado M=1>0, existe $x_1\in [a_1,b_1]$ tal que $|f(x_1)|>1$. Seja c_1 o ponto médio do intervalo $[a_1,b_1]$ de modo que f não é limitada em $[a_1,c_1]$ ou não é limitada em $[c_1,b_1]$. Suponhamos, sem perda de generalidade, que f não seja limitada em $[c_1,b_1]$, e façamos $a_2=c_1$ e $b_2=b_1$. Como f não é limitada em $[a_2,b_2]$, dado M=2>0, existe $x_2\in [a_2,b_2]$ tal que $|f(x_2)|>2$. Prosseguindo com este raciocínio, construiremos uma sequência de intervalos encaixados:

$$[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset\cdots\supset [a_n,b_n]\supset\cdots$$

satisfazendo as condições da **Propriedade dos Intervalos Encaixados** tal que, para cada número natural M = n > 0 existe $x_n \in [a_n, b_n]$ tal que:

$$|f(x_n)| > n$$

Ora, segue, portanto, que para qualquer M > 0 existe $n_0 \in \mathbb{N}$ tal que $M < n_0$, e para todo $n \ge n_0$ tem-se $|f(x_n)| > M$. Concluímos, disto, que:

$$\lim_{n\to\infty}|f(x_n)|=\infty$$

Seja $c \in \mathbb{R}$ o único elemento tal que, para todo $n \in \mathbb{N}$ tem-se:

$$c \in [a_n, b_n].$$

Uma vez que a sequência $(x_n)_{n\in\mathbb{N}}$ converge para c e a função f é contínua em c, segue que $x\mapsto |f(x)|$ é contínua em c pelo **Lema 21** que:

$$\lim_{n\to\infty} |f(x_n)| = |f(c)|.$$

No entanto, temos $\lim_{n\to\infty} |f(x_n)| = \infty$, o que é um absurdo. Como assumir que f é contínua e ilimitada em [a,b] nos leva a um absurdo, concluímos que se f é contínua em [a,b], então f é $\underline{\lim}$ tada em [a,b].

Definição 23 Uma função $f: A \subseteq \mathbb{R} \to B \subseteq \mathbb{R}$ assume um <u>máximo</u> em A se existir um $x_M \in A$ tal que $f(x_M) = \sup\{f(x) \in B \mid x \in A\}$. Outrossim, uma função $f: A \subseteq \mathbb{R} \to B \subseteq \mathbb{R}$ assume um <u>mínimo</u> em A se existir um $x_m \in A$ tal que $f(x_m) = \inf\{f(x) \in B \mid x \in A\}$

Exemplo 24 Tem-se que a função:

$$sin: \mathbb{R} \to \mathbb{R} \\
x \mapsto sin(x)$$

assume um máximo e um mínimo em \mathbb{R} . De fato, basta considerarmos $x_M = \frac{\pi}{2}$ e $x_m = \frac{3\pi}{2}$, e teremos:

 $^{^1}$ pelo **Lema 5** das Notas da Aula 07 e pelo **Teorema 21** das Notas da Aula 09

$$(\forall x \in \mathbb{R}) \left(-1 = \sin\left(\frac{3\pi}{2}\right) \le \sin(x) \le \sin\left(\frac{\pi}{2}\right) = 1 \right)$$

Exemplo 25 A função:

$$h:]0, \infty[\rightarrow \mathbb{R}$$
$$x \mapsto \frac{1}{x}$$

não assume nem um máximo nem um mínimo em $]0,\infty[$. De fato, o conjunto imagem de $h,h[]0,\infty[]=]0,\infty[$ não é limitado superiormente, de modo que <u>não</u> admite supremo e, a fortiori, um máximo em $]0,\infty[$. Também, temos $\inf\left\{\frac{1}{x}\mid x\in]0,\infty[\right\}=0$, mas não existe nenhum número real positivo x_m tal que:

$$\frac{1}{x_m} = 0.$$

Assim, a função não assume nem máximo nem mínimo em seu domínio.

Teorema 26 (Teorema de Weierstrass) Se $f : [a,b] \to \mathbb{R}$ é uma função contínua, então existem $x_m, x_M \in [a,b]$ tais que:

$$(\forall x \in [a,b])(f(x_m) \le f(x) \le f(x_M))$$

Suponhamos, por absurdo, que f não assuma o valor $L = \sup\{f(x)|x \in [a,b]\}$, de modo que para todo $x \in [a,b]$ temos:

$$f(x) < L$$
.

Podemos, então, definir a função:

$$g: [a,b] \subseteq \mathbb{R}^n \to \mathbb{R}$$

 $x \mapsto L - f(x)$

que é tal que para todo $x \in [a, b], g(x) > 0$.

Como g é contínua (pois f é contínua) e não se anula em [a,b], a função recíproca de g:

$$\frac{1}{g}: K \subseteq \mathbb{R}^n \to \mathbb{R}$$

$$x \mapsto \frac{1}{L - f(x)}$$

é contínua em [a, b], e portanto, pelo **Teorema da Limitação**, é limitada.

Assim sendo, existe H > 0 tal que:

$$(\forall x \in [a, b] \left(\frac{1}{L - f(x)} < H \right)$$

Desta forma,

$$\frac{1}{H} < L - f(x)$$

e

$$(\forall x \in [a,b]) \left(f(x) < L - \frac{1}{H} \right)$$

o que implica que L $n\~ao$ 'e $\sup\{f(x)|x\in [a,b]\}$ - pois $n\~ao$ 'e a menor das cotas superiores, uma vez que $L-\frac{1}{H}$ 'e cota superior para $\{f(x)|x\in [a,b]\}$, o que 'e um absurdo.

Logo, se f é contínua em [a,b], então f assume um máximo em [a,b].

Faça como exercício a demonstração para o extremo inferior.

References

[1] GUIDORIZZI, H. L., **Um Curso de Cálculo**, Volume I, 5^a edição. Editora LTC. Rio de Janeiro, 2015.