Lista 04 de MAT 2453

Prof. Jean Cerqueira Berni*

"Eu ouço, eu esqueço. Eu vejo, eu lembro. Eu faço, eu aprendo."

- (1) Mostrar que dado $\varepsilon > 0$, existe um número natural $n_0(\varepsilon) \in \mathbb{N}$ tal que $n \ge n_0(\varepsilon) \Rightarrow \left| \frac{1}{n^2} 0 \right| < \varepsilon$. O que você conclui, em termos de limites, do que acabou de demonstrar?
- (2) Usando o fato de que $(\forall n \in \mathbb{N})(|\sin(n)| \le 1)$, argumentar que:

$$\lim_{n\to\infty}\frac{\sin(n)}{n}=0$$

- (3) Mostrar que se $a \in \mathbb{R}$ for tal que 0 < a < 1, então $a^n \to 0$. **Dica:** use que $0 < |a^n 0| = a^n$ e aplique o logaritmo na base a, que é uma função <u>decrescente</u>.
- (4) Argumentar, usando subsequências, que a sequência $((-1)^n)_{n\in\mathbb{N}}$ diverge.
- (5) Exibir três subsequências da sequência:

$$(1,2,3,1,2,3,1,2,3,1,2,3,\cdots)$$

(6) Com o auxílio de uma calculadora (ou algum software), determinar um valor de $n_0 \in \mathbb{N}$ tal que, para todo $n \ge n_0$ as desigualdades abaixo sejam válidas e calcular a diferença em n_0 :

(a)
$$\left| \sqrt[n]{\frac{1}{2}} - 1 \right| < 10^{-3}$$
;

(b)
$$|3^{\frac{1}{n}} - 1| < 10^{-6}$$

(c)
$$\left| \frac{1}{n!} - 0 \right| < 10^{-9}$$

(d)
$$\left| \frac{1}{2^n} - 0 \right| < 0.001.$$

^{*}jeancb@ime.usp.br