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Abstract. Tests for symmetry in contingency tables constitute a broad and important subarea in
Statistics, and several methods have been devised for this problem. In this paper we propose the Full
Bayesian Significance Test (FBST) for problems of symmetry and point-symmetry in contingency
tables. FBST is an intuitive Bayesian approach which avoids to assign positive probabilities to zero
measure sets when testing sharp hypotheses. Numerical experiments comparing FBST performance
to power-divergence statistics suggest that FBST is a good alternative for problems concerning tests
for symmetry in contingency tables.
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INTRODUCTION

The problem of symmetry hypothesis is fundamental in statistics analysis, where the
researcher must assess the existence of a certain symmetry condition, see [1,2]. In
several applications, the state of compliance, normality or health is characterized by the
existence of symmetries − for example, the cylindrical symmetry of an equipment part
or a cornea of a human eye, or the specular symmetry of a pendulous movement or the
human walk. In these situations, the lack of symmetry is an indicator of non-compliance,
abnormality or illness. Early detection of the lack of symmetry can frequently allow the
repair, maintenance or simplified treatment, thus avoiding much more expensive and
complex late procedures, or preventing more severe consequences − e.g. the breaking
of an important part in a machine during its operation.

In Statistics, the most common symmetry studied in contingency tables is reflection
along the main diagonal. Radial symmetry accross the table center is also an important
case, called point-symmetry in [2, 3].

Several methods have been devised for symmetry in contingency tables, e.g. classical
Chi-square test [4], power-divergence statistic [1,5] and entropy methods [2].

In this paper we propose the FBST, Full Bayesian Significance Test [6], for problems
of symmetry and point-symmetry in contingency tables. FBST is an intuitive Bayesian
approach which avoids to assign positive probabilities to zero measure sets when testing
sharp hypotheses.

In the next sections we introduce the Full Bayesian Significance Test and the problems
of symmetry. Then we discuss some numerical results comparing FBST performance to
power-divergence statistics.
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FULL BAYESIAN SIGNIFICANCE TEST

The Full Bayesian Significance Test (FBST) is presented by Pereira and Stern [6] as
a coherent Bayesian significance test. FBST is suitable for cases where the parameter
space, Θ, is a subset of Rn, and the hypothesis is defined as a restricted subset defined
by vector valued inequality and equality constraints: H : θ ∈ ΘH , where ΘH = {θ ∈
Θ |g(θ) ≤ 0∧ h(θ) = 0}. For simplicity, we often use H for ΘH . We are interested in
precise hypotheses, with dim(H) < dim(Θ) . In this work, fx(θ) denotes the posterior
probability density function.

The evidence measure computation on the FBST is performed in two steps:

• The optimization step consists of finding the maximum (supremum) of the posterior
under the null hypothesis, θ ∗ = argsupH fx(θ), f ∗ = fx(θ

∗).
• The integration step consists of integrating the posterior density over the Tangential

Set, T , where the posterior is higher than anywhere in the hypothesis, i.e.,

T = {θ ∈Θ : fx(θ)> f ∗}

Ev(H) = Pr(θ ∈ T |x) =
∫

T
fx(θ)dθ

Ev(H) is the evidence against H, and Ev(H) = 1−Ev(H) is the evidence supporting
(or in favor of) H. Intuitively, if the hypothesis set is in a region of “high” posterior
density, then T is a “small” set, and therefore Ev(H) is “small”, meaning “weak”
evidence against H. On the other hand, if the hypothesis set is in a region of “low”
posterior density, then T is “heavy” and therefore Ev(H) is “large”, meaning “strong”
evidence against H.

Several FBST applications and examples, efficient computational implementation,
interpretations, and comparisons with other techniques for testing sharp hypotheses, can
be found in the authors’ papers in the reference list. For a detailed FBST review see [7].

TESTS FOR SYMMETRY

In this section we present the formulation of test for diagonal and point symmetry in
contingency tables, and the FBST and power-divergence strategies for these problems.

For simplicity, we introduce the formulation considering two-dimensional contin-
gency tables, observing that extension for the multi-dimensional case is straightforward.
A two-dimensional contingency table represents the observed frequencies of cross-
classified cases, according to two variables A and B. The contingency table will have
r rows representing categories A1,A2, ...,Ar of variable A, and c columns representing
categories B1,B2, ...,Bc of variable B. We consider a sample of n individuals, each one
classified in unique categories in A and B. The contingency table is represented by an
array X = (xi, j), i = 1...r, j = 1...c, where xi, j is the number of sample cases belonging
to categories Ai,B j.

The parameter of interest is the joint distribution of probability for the categories in
A and B. This distribution is denoted by the array θ = (θi, j), i = 1...r, j = 1...c, where
θi, j is the probability that an individual drawn at random from the population belongs to
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categories Ai and B j. Hence, the parameter space, Θ, is a simplex

Θ = {θ ≥ 0 |θ ′1 = 1},

where 0 and 1 denote vectors of zeros and ones with same size of θ , and θ ′ is the
transpose of θ .

Using this notation, diagonal symmetry and point symmetry hypotheses are defined
as constrained subspaces of Θ:

• Diagonal Symmetry: H = {θ ∈Θ |θi, j = θ j,i, i = 1...r, j = 1...c}; r = c.
• Point Symmetry: H = {θ ∈Θ |θi, j = θr−i+1,c− j+1, i = 1...r, j = 1...c}.

FBST formulation on tests for symmetry

We assume that the frequencies X follow a Multinomial distribution, and consider that
θ follows, a priori, a Dirichlet distribution with parameters (in matrix form)
Ẋ = (ẋi, j), i = 1...r, j = 1...c:

M(X |n,θ) = n! ∏i, j
θi, j

xi, j

xi, j!
, D(θ |Ẋ) = Γ

(
∑i, jẋi, j

)
∏i, j

θi, j
ẋi, j−1

Γ(ẋi, j)

Thus, the posterior distribution of θ is a Dirichlet with parameters (ẍi, j), where
ẍi, j = xi, j + ẋi, j, i = 1...r, j = 1...c:

fx(θ) = Γ

(
∑i, jẍi, j

)
∏i, j

θi, j
ẍi, j−1

Γ(ẍi, j)

In order to perform fair numerical comparisons with frequentist methods, in this paper
we set ẋ = 1. This assignment engendres a uniform prior for θ in the parameter space.
We keep the notation for the general case, in order to allow the reader to readily use
other priors if convenient.

Within this framework, the maximum a posteriori (MAP) estimates θ ∗ under diagonal
and point symmetry hypotheses are:

• Diagonal Symmetry: θ ∗i, j =
1
2(ẍi, j + ẍ j,i−2)/(S̈− rc), S̈ = ∑i, j ẍi, j

• Point Symmetry: θ ∗i, j =
1
2(ẍi, j + ẍr−i+1,c− j+1−2)/(S̈− rc)

Observe that, with the uniform prior, the MAP estimate θ ∗ is equal to the maximum
likelihood (ML) estimate for θ under the assumption that the hypothesis is true. For this
reason, in this paper we consider θ ∗ indistinctly as a MAP or a ML estimate.

The integration step of FBST may be performed by generating a set of M points
{θ (1),θ (2), . . . ,θ (M)} with Dirichlet distribution of parameter vector (ẍ), and computing
the percentage of points with posterior density greater than fx(θ

∗):

θ
(k) ∼ D(ẍ), k = 1,2, . . . ,M

Ev(H) = ∑
M
k=1 I

(
fx(θ

(k))> fx(θ
∗)
)/

M
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where I denotes the indicator function: I(s) = 1 if s is true and 0 otherwise. A more
efficient Monte Carlo method for the integration step, with control of precision, is
presented in [8].

The Power-Divergence statistic

We use the power-divergence statistic as a benchmark to evaluate FBST performance.
We briefly introduce this approach, in the context of contingency tables. We denote θ ∗

as the ML estimate for θ under the assumption that hypothesis is true, and n = ∑i, jxi, j.
Cressie and Read [5] introduced the power-divergence family of goodness-of-fit statis-

tics,

2nIλ (x/n : θ
∗) =

2
λ (λ +1)∑

i, j
xi, j

( xi, j

nθ ∗i, j

)λ

−1

 ; −∞ < λ < ∞ (1)

where λ is the family parameter. The term power divergence describes the fact that
statistic 2nIλ (x/n : θ ∗) measures the divergence of x/n from θ ∗ through a (weighted)
sum of powers of terms xi, j

/
nθ ∗i, j for i = 1 . . .r, j = 1 . . .c. Although the equation (1) is

not defined for λ =−1 or λ = 0, the power-divergence statistic for these cases is defined
by the continuous limits of Equation (1) as λ → −1 and λ → 0. Under hypothesis
H, power divergence statistics are asymptotically distributed as Pearson’s χ2. Cases of
particular interest are the following statistics:

λ = 1 χ2 = ∑i, j(xi, j−nθ ∗i, j)
2/(nθ ∗i, j) chi-square

λ = 0 G2 = 2∑i, j xi, jlog(xi, j
/

nθ ∗i, j) max. log-likelihood ratio

λ =−1/2 F2 = 4∑i, j(
√xi, j−

√
nθ ∗i, j)

2 Freeman-Tukey

λ =−1 GM2 = 2∑i, jnθ ∗i, jlog(nθ ∗i, j/xi, j) modified log-likelihood ratio

λ =−2 NM2 = ∑i, j(xi, j−nθ ∗i, j)
2/xi, j Neyman-modified chi-square

Besides these standard values of λ , numerical experiments described in next section
include also λ = 2/3 (denoted by L2/3 in the figures), which is recommended as a good
alternative, see [1, p.40-41].

NUMERICAL EXPERIMENTS AND DISCUSSION

In order to evaluate the performance of alternative tests, we present in this section some
numerical experiments. We use two examples for diagonal symmetry and two more for
point symmetry. The two examples of diagonal symmetry are standard benchmarks in
the statistical literature, first presented in [9, p.36]; they are also presented in [2]. The two
examples of point symmetry are adapted from mechanical vibration experiments at the
engineering school of University of Sao Paulo. Tables 1 and 2 present these examples.

Table 1: Examples used for diagonal symmetry experiments
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(a)
Speckled wood

Ringlet Absent Occasional Common
Absent 10 4 5

Occasional 7 11 16
Common 3 8 43

(b)
Speckled wood

Ringlet Absent Occasional Common
Absent 105 18 6

Occasional 27 5 5
Common 9 5 5

Table 2: Examples used for point symmetry experiments
(a) (b)

A B C D E
1 15 11 15 7 13
2 17 8 35 5 11
3 9 4 23 17 10

A B C D
1 87 33 32 63
2 104 18 118 39
3 47 124 32 112
4 82 27 49 77
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Figure 1: Type II errors of the alternative tests for diagonal symmetry experiments;
original samples from Table 1a (top) and 1b (bottom).

In this work, we established an empirical Type I error (rejection rate for a true hypoth-
esis) of 5%, thus calibrating the threshold for acceptance/rejection of the hypothesis for
each alternative test. So, our interest is to compare the Type II errors (acceptance rate
for a false hypothesis) for increasing sample sizes. In order to estimate type I and type
II errors, for each sample size n we simulated two collections of 1000 samples.

The first collection consists of samples drawn under the hypothesis, i.e., each sample
is drawn with a multinomial distribution with parameters (n,θ ∗).

203

Downloaded 24 Oct 2012 to 201.95.59.183. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



Figure 2: Type II errors of the alternative tests for point symmetry experiments;
original samples from Table 2a (top) and 2b (bottom).

The second collection consists of samples drawn with a multinomial distribution with
parameters (n,θ (h)), where θ (h) is drawn from the posterior distribution, that is, each
sampling iteration for the second collection is performed in two steps:
(a) draw θ (h) ∼ D(ẍ); (b) draw x(h) ∼M(n,θ (h)).

Numerical results for the experiments with diagonal symmetry and point symmetry
are presented in Figures 1 and 2, respectively. The sample sizes have been adjusted in
log-linear scales. For the diagonal symmetry problems (Figure 1), the tests FBST, X2
and L2/3 are the best performers, in special for small sample sizes (n = 100). For the
point symmetry problems (Figure 2), the relative performance of tests based on power-
divergence are less stable: for small sample sizes (n = 100,200), the best performers for
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examples 2a and 2b are, respectively: FBST and X2 (top); and FBST and G2 (bottom);
for moderate sample sizes (n = 300,400), the best performers are: FBST, G2 (top); and
F2, GM2 (bottom). It is important to notice that, despite their slightly better performance
in this case, F2 and GM2 perform much worse in other cases.

In the four examples presented in detail in our numerical experiments, and in many
more we used as benchmarks, the FBST emerges as a very stable and strong performer
for problems concerning tests of symmetry in contingency tables. The FBST seems to
have a very stable behavior performing, at most benchmarks, better than many tests
in the power divergence family, and as well as or very close to the best test in the
power divergence family for the example at hand, that is, the optimal λ for that specific
example. Since it is in general very hard to guess in advance the optimal parameter λ ∗

for a specific example or application, these conclusions suggest that the FBST is a very
good alternative for this class of problems.
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