
Legolog

Maurice Pagnucco
School of Computer Sc. & Eng.
University of New South Wales

NSW 2052, AUSTRALIA

� �� � � �� �� � 	
 �� �� � 	 �
 	

� � � � � � � � � � �� �� � 	
 �� �� � 	 �
 	 ��� � �� � � �

University of São Paulo, Monday 16 February, 2004 LeGolog 1

Legolog

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 2

Overview

� Introduction

� LEGO R� MINDSTORMSTM RIS

� Legolog: The Basic Idea

� Prolog/RCX Communication

� RCX User messages

� Legolog Protocol

� NQC Code

� Delivery Task

� Using Alternatives to Golog

� Legolog Status

� Summary

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 3

Introduction

� Experimenting with cognitive robotics remains prohibitive due to the
cost and maintenance of hardware, low-level issues, etc.

� LEGO R� have introduced MINDSTORMSTM Robotics Invention
SystemTM (RIS) construction kit equipped with programmable
microprocessor that can accept input and control outputs

� Cost: approx $US 200

� Aim: provide a (Prolog-based) system for use in cognitive robotics
research/teaching with effectors, sensors, exogenous events, concur-
rency, interrupts, . . .

� Use of Golog was our primary motivation however Golog can be
easily substituted

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 4

Golog

� High-level programming language for intelligent agents

� Based on Situation Calculus

� Supports: sequence, conditionals, loops, non-deterministic choice;
concurrency, priorities, interrupts, exogenous actions, sensing

� Primitive statements—domain-dependent actions to be executed
by agent

� Conditions/tests—domain-dependent predicates (fluents) affected
by actions

� Action theory—precondition axioms, successor state axioms

� Find sequence of actions that constitutes legal execution of
high-level program

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 5

Golog—Programming Constructs

α primitive action

φ? condition (wait)

� δ1;δ2 � sequence

if φ then δ1 else δ2 endIf conditional

while φ do δ endWhile loop

proc β � x̄ � δ endProc procedure definition

β � t̄ � procedure call

� δ1 � δ2 � nondeterministic choice of actions

� π x̄ � � δ � nondeterministic choice of arguments

δ � nondeterministic iteration

� δ1 � δ2 � concurrent execution

� δ1 � � δ2 � prioritised concurrency

δ � concurrent iteration

	 x : φ
 δ � interrupt

search � δ � search
Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 6

LEGO R� MINDSTORMSTM RIS

RCX (Robotic Command Explorer)

� Hitachi H8/3297 microprocessor

� 3 inputs

� pushbutton, light, temperature, rotation

� 3 outputs

� motors, light

� Infrared communications port allowing communication with infrared
tower attached to serial port of personal computer

� Programming: LEGO R� , NQC, LegOs, plus many more

� Idea: write program on standalone computer and download to RCX

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 7

LEGO MINDSTORMS RIS

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 8

Legolog: The Basic Idea

� Written in Prolog and NQC

� Communicates actions via infrared tower

� Prolog initiates all communication

� Golog determines next action to execute and sends message to
RCX; RCX must acknowledge within 3.5 seconds with sensing
value

� Golog can also “query” RCX to determine whether exogenous
action has occurred (currently, only one exogenous action stored)

� Using Indigolog interpreter: concurrency, interrupts, exogenous
actions, search operator

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 9

Legolog

Prolog on PC

Communication

Indigolog

Golog Program

RCX

NQCInfrared
Link

LEGO Sensors LEGO Motors

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 10

RCX User Messages

� RCX has simple error-checking protocol for communicating via
infrared transmitter/receiver

� Messages are used to program RCX firmware, check battery level,
etc.

� One particular message type—user message (our terminology)—
allows numbers in the range 1 – 255 to be sent/received

� Legolog uses these for all communication

� User message packet format

85 255 0 247 8 MesgNo
MesgNo

255 -
Checksum

Checksum

255 -

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 11

Legolog Protocol

� Desideratum: send/receive arbitrarily large (positive) numbers

� Allow multiple RCXs

� Arbitrary sensing values

� How?

� Send numbers 1 � n � 7 bits at a time (least significant bits first)
� Make use of a “continuation bit” to signal that more information

is to follow

� Also, a handful of special messages (exogenous request, continue,
abort, request extra time, no exogenous action)

� Prolog initiates all communication (due to infrared tower “time-out”)

� Not a problem since RCX would need to wait for Golog anyway

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 12

Legolog Protocol

RCX
(Reply Sensing Value
132 = 4 + (0 x 8) + (2 x 8^2))

Prolog
(Send Action
65 = 1 + (4 x 16))

Continue

36 = 4 + 32 (base)

49 = 1 + 16 (cont) + 32 (base)

Continue

Continue

Actions: base = 32; 4 bits per message
Sensing values: base = 64; 3 bits per message

76 = 64 + 8 (cont) + 4

72 = 64 + 8 (cont) + 0

66 = 64 + 2

(Ack with start of sensing value)

(No ack required to last part)

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 13

NQC Code

� LEGO R� provides firmware—virtual machine that can be downloaded
to and run on RCX

� Not Quite C (NQC) is an independent C-like programming language
for programming firmware (Baum, 2000)

� For Legolog need to provide

� initialize: initialise RCX, start exogenous action monitors, etc.

� startBehaviour: determine which behaviour to perform on input

� panicAction: what to do when Prolog not responding to RCX

� Plus code for behaviours, exogenous event monitoring, functions,
etc.

� Actions possibly taking long time to execute can be dealt with in two
ways

� Transform into clipping actions: a start action and an exogenous
action signalling completion

� Request additional 3.5 seconds

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 14

NQC main loop
initialize();
while � true ��

if � status � � ABORT ��

stopAllBehaviours();
status � OK; �

if � status � � PANIC ��

panicAction(); //Move around, wiggle, beep,whatever

SendMessage(PANIC MESG);
ReceiveMessage(result); � //Hope for an abort command

if � status � � OK ��

ReceiveMessage(result);
if � validActionMesg(result) ��

startBehaviour(result);
SendMessage(sensingValue); � //Return sensor value

else if � exogRequestMesg(result) ��

SendMessage(exogAction);
exogAction � NO EXOG ACT ION; � � �

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 15

Delivery Task

� Golog program

� motion = Lost � (recover); start to next station � � �

� motion = Moving � wait � � �

� StopRequested(location) � signal arrival; wait � � �

� n: NextLocationToServe(n) �

if location � n then Head to next station(1)
else Head to next station(� 1) � � �

� location � 1 � Head to next station(� 1) � � �

� true � wait �

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 16

Delivery Robot

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 17

Using Alternatives to Golog

� Prolog

� Retain low-level Prolog implementation dependent code and RCX
communication primitives

� Supply new planner

� initializeRcx/0: initialise serial port

� actionNum/2: action/number mapping

� sendRcxActionNumber/2: execute action and obtain sensing
result

� receiveRcxActionNumber/3: exogenous actions

� finalizeRcx/0: tidy up

� RCX

� If new planner cannot deal with exogenous actions, alter
behaviours to request additional time

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 18

Legolog Status

� Implementation

� Linux

� SWI-Prolog

� ECLiPSe Prolog (version 4.2 onwards)

� Windows/MS-DOS

� LPA DOS-Prolog (version 3.83) on HP200LX

� Availability

� � � � � � � � � � �� � � � � � �
 � � �� � 	 ��� � � � � �� � �� � � �� � � �

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 19

Summary

� Facilitation of quick and easy experimentation with cognitive robotics
ideas such as sensing, exogenous actions, concurrency, etc.

� Allows for multiple robots—additional Golog constructs to make task
easier

� Possible constructions—vast!
� Substitute Golog planner easily

� Port to another Prolog/operating system relatively easy (provided
accessible serial port)

� Problems

� Packet corruption in LEGO R� protocol

� Checking of exogenous actions dependent on planner

� Available from:

� � � � � � � � � � �� � � � � � �
 � � �� � 	 ��� � � � � �� � �� � � �� � � �

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 20

Sony ERS-2100

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 21

Sony ERS-2100

� CPU — 64-bit MIPS RISC

� Sensors

� CMOS camera in head

� head, chin, back, leg pressure sensors

� temperature, infrared, acceleration, vibration sensors

� microphone

� Actuators

� legs, head, tail, ears

� 20 degrees of freedom

� speaker, LEDs

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 22

Desiderata

� High-level language for describing player strategy

� Still allow access to low-level data elements and actions

� Clearly separate strategy from lower level code

� Ability to rewrite strategy quickly and easily

� Deliberation for better action selection and “longer-term” planning

� However, require real-time interaction

� Inter-agent communication

� Interface should allow for other languages to be used to describe
high-level strategy (i.e., not dependent on one approach)

� Currently looking at implementing ball collection challenge in Golog;
have implementation in Prolog

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 23

UNSW Aperios Code Structure

Sensing

Strategy

Actuators

Shared memory
segment

Prolog, IndiGolog +

program

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 24

Problems/Issues with IndiGolog

� Doesn’t explicitly cater for real-time interaction

� Actions with duration

� Uninterruptable search

� Exogenous actions invalidate search

� Noisy sensors; unpredictable actuators

� Concurrent actions

� Low-level variables being updated every 1/25th second, how do we
incorporate these changes into Golog

� not all changes may be significant

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 25

Prolog in Strategy/Deliberative Object

� Due to memory available require (very) small Prolog implementing
core functionality

� Must run on robot

� wireless link is unpredictable

� in any case want self-contained robot

� Use iProlog

� � � � � � � � � � �� �� � 	
 �� �� � 	 �
 	 � � � �
 	 � � � � � ��
 � � � � � � � � � � � � � � �

� ISO Prolog

� IndiGolog interpreter runs in Prolog

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 26

Information at our Disposal

� x

�

y

�

θ + variance for:

� robot (self)

� ball

� teammate(s)

� opponent(s)

� own goal

� opponent goal

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 27

Information at our Disposal

� x

�

y

�

θrel �

dist + variance for:

� vision ball

� vision own goal

� vision opponent goal
� Other variables:

� previous attack mode

� robot state

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 28

Actions

� dog stand

� dog head find ball

� dog track ball

� dog semi circle find ball

� dog full circle find ball

� dog go to position heading(x, y, theta)

� dog go hold ball

� dog kick(type, power, direction)

� dog find opponent goal

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 29

Communication between Layers

� Vision layer and Strategy layer

� Vision variables copied to shared memory

� Message sent to deliberative layer informing of update

� Strategy layer and Actuator layer

� Strategy layer copies action to perform or position of joints to
shared memory

� Actuator layer continuously checks for changes in variables and
takes necessary action

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 30

Golog Fluents

� As above plus

� state =

�

goal located, have ball, found ball, lost ball

�

� Own area(x, y)

� Close enough own goal(x, y)

� Close enough opponent goal(x, y)

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 31

Primitive Actions

� As above, e.g.,

� dog full circle find ball

� dog go hold ball

� dog kick(type, power, direction)
� Also possible to define actions by giving position of actuators (this is

also true of Prolog)

� Note that it is possible to perform actions concurrently on ERS-2100.

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 32

Ball Collection Challenge

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 33

Sample High-Level Program
proc Control

dog full circle find ball;
while (� n) Ball(n) do

dog go hold ball;
Find goal;
Shoot ball;
dog full circle find ball

endwhile
endProc

proc Find goal
dog find own goal

�

dog find opponent goal
endProc

proc Shoot ball

if (Close enough own goal(my x pos, my y pos))

then dog kick(CHEST PUSH, MAX POWER, STRAIGHT)

else dog kick(GOALIE KICK, MAX POWER, STRAIGHT)

endProc

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 34

Sample Golog Program

proc Control
while (true) do

if(state = lost ball)
then dog full circle find ball;
else if (state = found ball)

then dog go hold ball;
else if(state = have ball)

then Find goal(my x pos, my y pos)
else Select kick(my x pos, my y pos)

endWhile
endProc

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 35

Sample High-Level Program

proc Control

	 state=goal located
 Select kick � my x pos � my y pos � � � �

	 state=have ball
 Find goal � my x pos � my y pos � � � �

	 state=found ball
 dog go hold ball � � �

	 true
 dog full circle find ball �

endProc
proc Find goal(x, y)

else if (Own area(my x pos, my y pos))
then dog find own goal
else dog find opponent goal

endProc

proc Select kick(x, y)
if (Close enough own goal(x, y) or Close enough opponent goal(x, y))

then dog kick(CHEST PUSH, MAX POWER, STRAIGHT)
else dog kick(GOALIE KICK, MAX POWER, STRAIGHT)

endProc

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 36

Other Work

� Aachen University of Technology

� deliberative/reactive architecture for robot soccer

� focusses on middle-size and simulator league

� University of Melbourne – RoboMutts

� Smalltalk to implement high-level strategy

� University of Freiburg — extended behaviour networks

� University of Koblenz-Landau — RoboLog

� Prolog interface to RoboCup simulator

� Sabeena Chelat, Macquarie University — implementation of simple
passing strategies in Golog for RoboCup simulator

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 37

Other Work — Aachen

Sensors

Reactive Component

Effectors

Deliberative Component

Team−level Tactics

Group−level Tactics

Sit. Classification

Basic World Model

Action Selection

Abilities

Generated: 17 February 2004

University of São Paulo, Monday 16 February, 2004 LeGolog 38

Conclusions

� Work is in its infancy. To date have spent much time porting a small
Prolog interpreter, cleaning up code and implementing interface
between layers

� Can execute primitive actions using Golog

� Re-written ball collection challenge in Golog

� Experimenting with different modes of interaction with lower level

� No real deliberation to speak of as yet

� Variants of Golog (e.g., DTGolog), execution monitoring

� Much more work to be done!

Generated: 17 February 2004

