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Abstract This paper describes a logic-based formalism for qualitative spatial reasoning
with cast shadows and presents results of a mobile robot qualitative self-localisation exper-
iment using this formalism. In practice, shadow detection was accomplished by mapping
the images from the robot’s monocular colour camera into a HSV colour space and then
thresholding on V. We present results of self-localisation using two methods for obtaining
the threshold automatically: in one method the images are segmented according to their
grey-scale histograms, in the other, the threshold is set according to a prediction about the
robot’s location, given a shadow-based map defined upon a qualitative spatial reasoning the-
ory. This map-related threshold search is the main contribution of the present work, and to
the best of our knowledge this is the first work that uses qualitative spatial representations
both to perform egolocation and to calibrate a robot’s interpretation of its perceptual input.

1 Introduction

Cast shadows as cues for depth perception have been used to enhance depictions of natu-
ral scenes since the Renaissance [11]. Recent research within psychology suggests that the
human perceptual system gives preferential treatment to information from shadows when
inferring motion in depth and perceiving 3D scene layout. These studies suggest that infor-
mation coming from shadows can override such basic notions as conservation of object size
[22,7,24]. Casati in [4] points out that cast shadows also contain information that is not used
during passive perception, for instance, information about the presence and location of the
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light source and the caster; the intensity of the source; the caster’s shape; the screen texture;
and the distance between the caster and the screen.

Whilst psychologists have demonstrated the centrality of shadows to our own percep-
tion of depth, size and motion, much work in computer vision and robotics starts from the
premise that shadows are sources of noise rather than information. The present work falls
within the small but growing area of research which aims to use shadows not as sources of
noise, but as sources of information. This requires not only a model of the kinds of infor-
mation that shadows can purvey, but also a robust and accurate shadow detection system.
Researchers within both computer vision and robotics have been working in this area – many
engaged in shadow suppression in videos from fixed cameras, but some engaged in the more
challenging task of shadow identification, localisation and use [14].

The contribution of this paper is the investigation of a qualitative self-localisation method
using information from cast shadows. We discuss the experimental evaluation of this method
using two techniques for automatically obtaining the threshold for segmenting each image
from a robot’s camera: in one method the images are segmented according to its grey-scale
histogram, in the other method the threshold is searched according to a prediction about the
robot’s location, given a shadow-based qualitative map.

This paper is organised as follows. Section 2 outlines related research from within both
computer vision and robotics. Section 3 describes the theory upon which this work is based:
the Perceptual Qualitative Relations about Shadows (PQRS), which formalises the problem
of reasoning about shadows within a qualitative spatial reasoning context. The adaptive
thresholding methods considered in this work are presented in Section 4, and results are
described in Section 5. Discussions are drawn on Section 6 and Section 7 concludes this
paper.

Throughout this paper, constants are written in upper-case letters and variables in lower
case, unless explicitly stated otherwise.

2 Related research

When considering the task of segmenting moving objects from a static background, shadows
are a frequent source of false positives [12,25] and therefore shadow suppression is a major
research area. In this context, shadow detection in computer vision almost always involves
some model of the colour of the screen (or, in computer vision terminology: background)
and detection is performed using a model of shadows characterising them as ’roughly the
same colour as the background, but darker’. Perhaps the simplest shadow detection method
proposed is that of [40], in which a grey-scale image is simply thresholded and the darker
pixels are labelled shadow; however this approach fails on complex images and in situations
where lighting changes due to either environmental effects or egomotion. Prati in [31] pro-
vides an overview and a taxonomy of early shadow-detection techniques, dividing them into
model-based and non-model-based, however this categorisation does not apply well to more
recent works, many of which can be thought of as ensemble methods [25,30].

Cucchiara et al. in [12] take as their starting point detected moving objects (and a back-
ground model). The pixel values of moving objects are converted to the HSV (Hue, Satura-
tion and Value) colour space, and then these objects are investigated to determine whether
they are real moving objects or merely shadow pixels. This is accomplished by considering
observed and background values of all three HSV components, considering the difference
between foreground and background values for H and S, and the ratio of the two V values.
This captures the intuitive observations that shadows are about the same hue as the same



part of the scene unshadowed, slightly more saturated, and darker. A similar approach based
upon the observation of colour changes in cast shadows is presented in [35]. Stauder et al. in
[38] use assumptions about the background (it will dominate the scene), the nature of shad-
ows and luminance (shadows are darker and tend to have uniform shading) and the presence
of moving and static edges. Other methods for shadow filtering use a model of the shadow’s
caster, either assuming it is rectangular (like a car) as in [42], or upright (from a moving
person for instance) as in [17,34]. These assumptions improve filtering considerably, but
break down when shadows from arbitrary objects are considered.

There are a few systems within computer vision that use cast shadows as sources of
information rather than noise. The work reported in [3] uses known 3D locations and their
cast shadows to perform camera calibration and light location (using known casters and
screen to tell about the light source); whereas, Caspi and Werman in [5] use the moving
shadows cast by known vertical objects (e.g., flagpoles, or the side of buildings) to determine
the 3D shape of objects on the ground (using the shadow to tell about the shape of the
screen). Balan et al. [1] use shadows as a source of information for detailed human pose
recognition: they show that using a single shadow from a fixed light source can provide a
similar disambiguation effect as using additional cameras.

In robotics, the story is similar. Fitzpatrick and Torres-Jara in [15], inspired by work
suggesting that humans use the shadows of their own limbs when judging limb location [6],
track the position of a robotic arm and its shadow cast on a table to derive an estimate of
the time of contact between the arm and the table. Shadows are detected in this work using
a combination of two methods: in the first, a background model of the workspace is built
without the arm and then used to determine light changes when the arm is within the camera
view. The second method compares subsequent frames in order to detect moving regions
of light change. The authors motivate their work pointing out that depth from shadows and
stereopsis may work as complementary cues for robot perception, while the latter is limited
to surfaces rich in textures, the former works well in smooth (or even reflective) surfaces.
Cheah et al. [8] present a novel controller for a robot manipulator, providing a solution to the
problem of trajectory control in the presence of kinematic and dynamic uncertainty. In order
to evaluate their results, an industrial robot arm was controlled using the visual observation
of the trajectory of its own shadow. Lee and colleagues [20] use cast shadows inside pipes
to detect landmarks: by fitting bright lights to the front of their pipe inspection robot, they
can determine when a pipe bends by detecting cast shadows.

Information from shadows are also considered in unmanned autonomous planetary ex-
ploration. Tompkins et al. [39] describe an autonomous path planning system that takes into
account various conditions of the robot’s state, including particularities of the terrain and
lighting. In this context, the information about shadows cast by terrain irregularities allows
the rover to plan a trajectory that maximises the trade-off between the exposure of the so-
lar cells to sun light and the limited resources in planetary missions. Kunii and Gotoh [19]
propose a Shadow Range Finder system that uses the shadow cast by a robot arm on the sur-
face of a terrain in order to obtain depth information around target objects, thus providing
low-cost, energy-saving, sensors for the analysis of the terrain surrounding rock samples of
interest.

More recently, we developed an initial representation of cast shadows in terms of a
spatial formalism based on occlusion relations (presented in [36]). This representation,
called Perceptual Qualitative relations about Shadows (PQRS), is used in a qualitative self-
localisation procedure for a mobile robot in an office-like environment. The present paper
builds upon this idea and, therefore, a more complete and accurate description of the PQRS
formalism is presented in the next section.



The idea of qualitative self-localisation, however, first appeared in [21] whereby a tes-
sellation of a mobile robot’s environment is obtained from the set of lines connecting pairs
of pointwise landmarks. The space bounded by these lines define regions, which can then
be treated as vertices of a topological map. The spatial representation behind this idea was
further developed in [41,37,16]. In particular, [16] considers extended convex (instead of
pointwise) objects as landmarks and the decomposition of space is based on the notions of
occlusion and visibility, which (as we shall see) has much in common to the PQRS formal-
ism investigated in this paper. However, in contrast to [16], the present work shows empirical
results on applying these ideas.

3 Perceptual qualitative relations about shadows (PQRS)

Perceptual Qualitative Relations about Shadows (PQRS) [36] is a theory inspired by the
idea that shadows provide the observer with the viewpoint of the light source, as shadows
are projections of casters from the light source’s location. Equivalently, we can say that every
point in the shadow region is totally occluded by the caster from the viewpoint of the light
source. This idea is developed by representing relations of occlusion and shadows within
the scope of the Qualitative Spatial Reasoning (QSR) field of research, which is part of the
artificial intelligence sub-area known as Knowledge Representation and Reasoning [13].

The goal of QSR is to provide appropriate formalisms for representing and reasoning
about spatial entities, such as part-whole relations, connectivity, orientation, line segments,
size and distance, and so on [10,9]. In practice, QSR formalisms are based on a number of
constraints that reflect the structure of space, which are represented as a set of qualitative
(i.e., non numerical) relations. With these relations, QSR methods also facilitate the rep-
resentation of high-level domain knowledge, adding a more abstract (conceptual) level to
the systems in which they are applied, including robotics and vision systems. Therefore,
research on qualitative spatial reasoning for robotics does not preclude the use of more tra-
ditional quantitative methods, but complements them.

The Perceptual Qualitative Relations about Shadows (PQRS) theory shares the same
goals of QSR theories, making explicit some of the information content in cast shadows.
PQRS assumes the existence of a major, static, light source denoted by L, situated above
the observer (in agreement to recent research on the psychophysics of perception [23]). It is
also assumed that the scenes are observed from a viewpoint v, and that shadows are cast on
a single screen Scr, that is assumed to be much larger than the shadow and is not necessarily
planar.

The foundation of PQRS is the QSR theory named the Region Occlusion Calculus
(ROC) [33], which is itself built upon one of the best known QSR approaches: the Region
Connection Calculus (RCC) [32]. RCC is a first-order axiomatisation of spatial relations
based on a reflexive, symmetric and non-transitive dyadic primitive relation of connectivity
(C/2) between two regions. Informally, assuming two regions x and y, the relation C(x, y),
read as “x is connected with y”, is true if and only if the closures of x and y have at least
one point in common.

Assuming the C/2 relation, and two spatial regions x and y, some mereotopological
relations between two spatial regions can be defined, such as:

– disconnected from (DC): DC(x, y) ≡ ¬C(x, y),
– part of (P ): P (x, y) ≡ ∀z(C(z, x)→ C(z, y)) ;
– equal to (EQ): EQ(x, y) ≡ P (x, y) ∧ P (y, x),



– overlaps (O): O(x, y) ≡ ∃z(P (z, x) ∧ P (z, y));
– partially overlaps (PO): PO(x, y) ≡ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x);
– proper part of (PP ): PP (x, y) ≡ P (x, y) ∧ ¬P (y, x);
– externally connected (EC): EC(x, y) ≡ C(x, y) ∧ ¬O(x, y);
– tangential proper part (TPP ): TPP ≡ PP (x, y) ∧ ∃z(EC(z, x) ∧ EC(z, y));
– non-tangential proper part (NTPP ):NTPP ≡ PP (x, y)∧¬∃z(EC(z, x)∧EC(z, y)).

RCC also includes the inverse relations of P , PP , TPP and NTPP , which are repre-
sented by a capital ’I’ in front of the relative relation: PI, PPI, TPPI and NTPPI.
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Fig. 1 The 20 ROC relations.

Using RCC relations, along with the primitive relation TotallyOccludes(x, y, v) (which
stands for “x totally occludes y with respect to the viewpoint v”), the Region Occlusion
Calculus (ROC) represents the various possibilities of interposition relations between two
arbitrarily-shaped objects. In particular, with RCC and the primitive TotallyOccludes/3,
it is possible to define occlusion relations for non occlusion (NonOccludes/3), partial oc-
clusion (PartiallyOccludes/3) and mutual occlusion (MutuallyOccludes/3). In fact, [33]
defines 20 such relations (shown in Figure 1).

The Region Occlusion Calculus makes a distinction between the occupancy regions of
bodies and their images (or projections) from the viewpoint of an observer. This distinction
is made by assuming two functions: the function region(x), which maps a body x to its
occupancy region, and the function image(x, v) that maps a body x (and the viewpoint v) to
the body’s 2D image, as seen from viewpoint v. It is worth pointing out that the viewpoint
in ROC is modelled as a pinhole camera whose parameters, however, are not important for
the qualitative theory.



Using these definitions, ROC is constrained by a number of axioms, of which we only
cite two (A1 and A2), since these are relevant for proving the PQRS theorems proposed
below.

Formula (A1) is the ROC axiom that states that “if x totally occludes y from a viewpoint
v, x totally occludes any part of y”:

(A1) ∀x y z v [[TotallyOccludes(x, y, v) ∧ P (region(z), region(y))]→
TotallyOccludes(x, z, v)].

Formula (A2) below states that “if x totally occludes y from v, no part of y totally
occludes any part of x”:

(A2) ∀x y z v [TotallyOccludes(x, y, v)→
∀z u[[P (region(z), region(x)) ∧ P (region(u), region(y))]→
¬TotallyOccludes(u, z, v)]]

In order to simplify notation we use the following abbreviation [33]:

Occludes(x, y, v) ≡ (1)

∃z ∃u P (region(z), region(x))∧
P (region(u), region(y))∧
TotallyOccludes(z, u, v)

Considering the ROC relations between a caster o and its shadow s, from a viewpoint v
(and the fact that a shadow never occludes its caster, as proved in theorem (T1) below) only
the following ROC relations have models in PQRS:

– NonOccludesDC(o, s, v), meaning that o and s do not occlude each other from the
viewpoint v, and DC(image(o, v), image(s, v)) (the other relations below have analo-
gous descriptions);

– NonOccludesEC(o, s, v),
– PartiallyOccludesPO(o, s, v),
– PartiallyOccludesTPP (o, s, v),
– PartiallyOccludesNTPP (o, s, v),
– TotallyOccludesTPPI(o, s, v),
– TotallyOccludesEQ(o, s, v), and
– TotallyOccludesNTPPI(o, s, v).

Figure 2 represents these relations, where the dashed object is the caster and the blank
is its shadow.

Apart from the ROC relations inherited by PQRS, this theory also assumes the primitive
Shadow(s, o, Scr, L) that represents that a shadow s is cast by a caster o, from the light
source L, on the screen Scr. The axiom constraining the Shadow/4 relation is represented
by Formula (A3) below.

(A3) Shadow(s, o, Scr, L)↔¬∃o′(o 6= o′)

∧Occludes(o′, o, L) ∧ PO(region(s), region(Scr))∧
TotallyOccludes(o, s, L).
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Fig. 2 The ROC relations that are part of PQRS, where the dark object is the caster and the white its cast
shadow.

Axiom(A3) states that the shadow of a caster o is the region in a screen Scr that is totally
occluded by o from the light source viewpoint L (if there is no other object o′ occluding o
from L).

With this formalism it is possible to prove a number of theorems about commonsense
facts. For instance, it follows directly from Axioms (A2) and (A3) that no shadow occludes
its own caster1, as denoted by Theorem (T1) below.

(T1) Shadow(s, o, Scr, L)→ ¬TotallyOccludes(s, o, L).

It is also a consequence of Axiom (A3) and the ROC axioms that no shadow casts a
shadow itself (cf. Theorem (T2)):

(T2) Shadow(s, o, Scr, L)→ ¬∃s′Shadow(s′, s, Scr, L).

Proof: Let’s assume, reasoning by contraposition, that both (a) Shadow(s, o, Scr, L)
and (b) Shadow(s′, s, Scr, L) are true, for an object o and shadows s′ and s. From
(b) and axiom (A3) we have that TotallyOccludes(s, s′, L), similarly from (a) and
(A3), we have that TotallyOccludes(o, s, L). From the transitivity of TotallyOc-
cludes/3, we have: TotallyOccludes(o, s′, L). Therefore, from (A3) we conclude
that Shadow(s′, s, Scr, L) is false, since the condition

¬∃o′(o 6= o′) ∧Occludes(o′, o, L)

does not hold.
�

We can also prove that if two shadows of distinct objects partially overlap, then the
objects will be in a relation of occlusion with respect to the light source, as expressed in
Theorem (T3).

(T3) Shadow(s, o, Scr, L)∧Shadow(s′, o′, Scr, L)∧

∧O(region(s′), region(s))

→ Occludes(o, o′, L) ∨Occludes(o′, o, L).

1 Note that we are only dealing with cast, and not self attached, shadows.
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Fig. 3 Distinct regions implied by the observation of a shadow and its caster. It is worth noting that, in this
figure, regions 2 and 4 have zero-width boundaries.

Proof:
From Shadow(s, o, Scr, L) and axiom (A3) we have (a) TotallyOccludes(o, s, L),
and similarly from Shadow(s′, o′, Scr, L) we have (b) TotallyOccludes(o′, s′, L).
From O(region(s′), region(s)) and the definition of O/2 we have (c) ∃zP (z, s) ∧
P (z, s′).
From (A1), (a) and (b) it is true that o totally occludes any part of s (and analo-
gously to o′ and s′), thus from (c) it is true that:
∃zP (z, s) ∧ P (z, s′) ∧ TotallyOccludes(o, z, L) ∧ TotallyOccludes(o′, z, L).
By construction, o and o′ are disconnected, therefore the previous formula implies
that either occludes(o, o′, L) or occludes(o′, o, L).

�

Theorem (T3) is an example of an inference that presupposes a relational theory, i.e., it
is a result that cannot be achieved with the traditional numerical methods in robotics.

In contrast with our earlier work (presented in [36]), axiom A3 above has a clearer
definition, as it is constrained to situations where no interference of shadows from other
objects occurs. Additionally, this paper is the first to present complete proofs of the theorems
which make up PQRS.

3.1 Relative location

The formalism given above can be used to reason about shadows from arbitrary viewpoints:
relating shadows with occlusion suggests the distinction of five regions defined from the
lines of sight between the light source, the caster and its shadow as represented in Figure
3. This idea can also be applied to the usual case of a shadow connected to the caster (e.g.
Figures 5(b) and 5(c)), in this case, we only use the portion of the shadow farthest from
the caster (which we shall call top-half for convenience) to build the diagram. In order to
formally state this distinction between whole shadows and their top-half parts, we introduce
a function top h(s) that maps a shadow (s) to its top half part2 (this is analogous to the
region and image functions used in ROC, as mentioned above).

2 This distinction was missing in [36].



Therefore, considering the diagram in Figure 3, any viewpoint v located on Region 1
will observe the (top half of) shadow s and the object o asNonOccludesDC(o, top h(s), v);
similarly, if v observes o and top h(s) from Region 3 it should see that PartiallyOccludes-
PO(o, top h(s), v) and from Region 5 that TotallyOccludesNTPPI(o, top h(s), v). Re-
gion 4 is the surface defined by the lines of sight from l tangential to o and top h(s), from
where v would observe TotallyOccludesTPPI(o, top h(s), v). In Region 2, v perceives
object and shadow as NonOccludesEC(o, top h(s), v). These facts are included in PQRS
by the axioms (A4) to (A8) below, where the predicate located(o, r, v, s) represents that
object o is located at region r according to the viewpoint v and shadow s.

(A4) located(o,Region 1, v, s)←∃scr∃l Shadow(s, o, scr, l)∧
NonOccludesDC(o, s, v) ∧ v 6= o;

(A5) located(o,Region 2, v, s)←∃scr∃l Shadow(s, o, scr, l)∧
NonOccludesEC(o, s, v) ∧ v 6= o;

(A6) located(o,Region 3, v, s)←∃scr∃l Shadow(s, o, scr, l)∧
PartiallyOccludesPO(o, s, v) ∧ v 6= o;

(A7) located(o,Region 4, v, s)←∃scr∃l Shadow(s, o, scr, l)∧
TotallyOccludesTPPI(o, s, v) ∧ v 6= o;

(A8) located(o,Region 5, v, s)←∃scr∃l Shadow(s, o, scr, l)∧
TotallyOccludesNTPPI(o, s, v) ∧ v 6= o.

Regions 2 and 4 in Figure 3 are in fact boundaries separating regions 1 and 3, and
between 3 and 5 respectively. Therefore, it is virtually impossible for a robot to locate itself
on them. In the real robot environment, however, regions 2 and 4 are extended assuming an
interval of uncertainty around these boundaries. Figure 4 represents the diagram obtained
assuming the extended versions of regions 2 and 4.

*
L

o
2

3

4

5

4

3

2

11
S

Fig. 4 Regions implied by the observation of a shadow and its caster, where L is the light source, O is the
object (caster) and S is its shadow. .



(a) robot environment (b) Two shadows (c) Example segmented image

Fig. 5 Images depicting environment, sample input (with ambiguous shadow-base relations) and segmented
object/shadow.

Using ROC it is also possible to relate shadows with the relative distance of objects from
a viewpoint. The region occlusion calculus relates occlusion with relative distance using the
relation nearness (N(x, y, z)), read as “x is nearer to y than x is to z”, that was first defined
in [2]. Nearness is incorporated into ROC by the following axiom [33]:

∀x y v [PartiallyOccludes(x, y, v)→ N(v, x, y)]

representing that “if a body x partially occludes a body y with respect to some viewpoint v
then x is nearer to v than y is to v”.

Within PQRS this implies the commonsense fact thatN(L, o, s) (for a light source L, an
object o and its shadow s) and consequently thatN(L, o, Scr): “the light source is nearer the
caster than it is to its shadow”. This fact, allied with the qualitative egolocation (according
to the diagram 4), facilitates inferences about relative depth from monocular views in some
cases.

4 Robot environment and methods

The idea for qualitative robot self-localisation using cast shadows, presented in the previous
section, was implemented on our Pioneer PeopleBot mobile robot using its monocular colour
camera to obtain snapshots of objects and their shadows in an office-like environment, con-
taining a major (but not necessarily single) light source, as shown in Figure 5(a). Shadow
detection was accomplished by first mapping the images captured by the camera into a HSV
colour space. These images were then segmented by thresholding on V, whereby high values
(light objects) are filtered out and low values (dark objects) are casters. Shadows are located
within a value range in between light and dark objects. Morphological operators and the sat-
uration value were used to filter noise (such as reflections of the light source on the object or
background shadows). The robot was set to navigate through the room, stopping after a cer-
tain time interval to analyse its position with respect to object-shadow locations according
to the diagram shown in Figure 4. An example of the snapshots used in this work is shown
in Figure 5(c). Shadow correspondence, which is the problem of matching each shadow to
its caster [22,24], is solved in this work by assuming a simple heuristic: the shadow that is
connected to an object’s base is the shadow of this object. When there are various shadows
connected to the object’s base, the caster is associated with the shadow that is further away
from the light source (Fig. 5(b) shows an example of such situation).

Given a threshold Th, a Scene and a viewpoint v, Algorithm 1 summarises the method
for self-localisation described in this section.



Algorithm 1 PERCEPTION ACTION(Th, Scene, v)
1: segment Scene using the threshold Th to obtain a caster O and the top half of its shadow top h(S)
2: if NonOccludesDC(O, top h(S), v) then
3: robot is on region 1
4: else if NonOccludesEC(O, top h(S), v) then
5: robot is on region 2
6: else if PartiallyOccludesPO(O, top h(S), v) then
7: robot is on region 3
8: else if TotallyOccludesTPPI(O, top h(S), v) then
9: robot is on region 4

10: else if TotallyOccludesNTPPI(O, top h(S), v) then
11: robot is on region 5
12: else
13: FAIL
14: end if

In Algorithm 1 the ROC relations between a caster O and its shadow S are evaluated
according to a threshold on the distance between the (top part of) the shadow’s bounding
box when Non Occlusion holds. If the shadow is in some degree occluded by its caster, from
the observer’s viewpoint, the ROC relation is evaluated according to a percentage of the
shadow’s bounding box that can be observed from behind the caster: PartiallyOccludes-
PO(O, top h(S), v) is interpreted when more than (or equal to) 10% of the bounding box
is observed, but not all of it; TotallyOccludesTPPI(O, top h(S), v) is assumed when less
than 10% is still observed; and, when no part of the shadow is seen from behind the caster,
TotallyOccludesNTPPI(O, top h(S), v) is concluded.

4.1 Adaptive thresholds for foreground/background segmentation

In this work we investigate the use of two distinct methods for automatically finding the best
threshold for each given image: the traditional Otsu’s method [29] and a threshold search
related to the robot’s prediction. The latter is the main contribution of the present paper.

Otsu’s method [29] works by finding the threshold (t) that maximises the inter-class
variance σ between two groups of pixels. Formula 2 expresses σ in terms of the threshold-
dependent class probabilities (ω1(t) and ω2(t)) and class means (µ1(t) and µ2(t)) of groups
1 and 2.

σ2(t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]
2 (2)

The second method for finding the best threshold uses the knowledge about the robot’s
previous location in order to make a prediction about its current location. This procedure
works as follows. The robot has to start in a known region. From this position the robot
moves to another region (according to the diagram in Figure 4) in a moving action that is
currently preprogrammed. In this new position the robot captures a snapshot of the target
object and uses it to decide on its location. If the location interpreted matches the prediction
of its current position, then the robot moves on. If not, the robot varies the threshold until it
finds a match between its predicted and interpreted positions, or fails otherwise. This method
is summarised in Algorithm 2 below.

In the pseudocode THRESHOLD AND POSITION (Algorithm 2), the function MOV-
ING ACTION(s0, v, dir, I) gives the prediction of the robot’s position si after its motion
from the position s0, with speed v, direction dir and for a time interval I; the function



PERCEPTION ACTION(th, Scene, v) outputs the perceived robot’s position according to
the observed PQRS relation, for a threshold th, a Scene and a viewpoint v (as represented
in Algorithm 1), thaux is an auxiliary variable for threshold and s0, si and sj are variables
for the robot’s position. The constant Step is used to update the threshold from its minimum
(Thmin) to its maximum (Thmax) values (in this work these constants were set at Step =
5, Thmin = 40 and Thmax = 230).

Algorithm 2 THRESHOLD AND POSITION(th0, t0, scene)

1: si = MOVING ACTION(s0, v, dir, I)
2: sj = PERCEPTION ACTION(th0, Scene, v)
3: if (si == sj) then
4: return (th0, si)
5: else
6: thaux = Thmin

7: while ((si 6= sj) and (thaux < Thmax)) do
8: thaux = thaux + Step
9: sj =PERCEPTION ACTION(thaux, Scene, v)

10: end while
11: if (thaux >= Thmax) then
12: return FAIL
13: else
14: return (thaux, sj )
15: end if
16: end if

To the best of our knowledge this is the first paper where the segmentation threshold is
obtained as a result of the robot’s prediction of its location according to a qualitative map.
In this way, we use the PQRS theory not only for robot self-localisation based upon shadow
perception, but also for the refinement of the shadow perception itself. The next section
presents an empirical evaluation of this technique.

5 Experiments

This section describes the results of the experiments on robot localisation with respect to
the map in Figure 4. In these experiments, the robot collected 1361 snapshots around the
target object, which provides the frame of reference (e.g. the black bucket in Figure 5(c)).
This target was always within camera view, but not necessarily at its centre. We allowed up
to three objects within the robot’s field of view. Due to the narrow view of the robot, and the
use of a single dominant light source, localisation estimates with respect to each object do
not contradict one another.

The baseline experiment uses fixed thresholds for image analysis chosen by experimen-
tation within one of the camera views.

The results of the baseline experiment are represented on the third column of Table
1, which shows a poor global performance of the system (47%) on localising the robot
in every region. A high accuracy was obtained in the specific region used to calibrate the
threshold (above 70% with respect to region 1), but within other regions the results where
lower than or equal to 50%. The poor performance outside of region 1 is because the fore-
ground/background segmentation is not optimal for images obtained under other light con-
ditions (i.e., the distinct position configurations between robot, caster and light produced



by the agent’s motion). In fact, by tweaking the thresholds, the system improved its perfor-
mance in locating the robot on other regions, however this improvement came at the expense
of losing accuracy on region 1.

Table 1 Percentage of correct answers from using fixed thresholds, Otsu’s method and the knowledge-based
adaptive thresholding, where “# images” is the number of snapshots taken at each region.

Region # images Fixed threshold (%) Otsu (%) Knowledge based (%)
1 320 73 59 93
2 436 27 45 88
3 438 50 36 94
4 111 40 24 92
5 56 38 25 86
Global 1361 47 43 91

The obvious approach for improving the poor results obtained by fixed-thresholding is
to adjust the thresholds for each snapshot taken. The technique we have used to perform this
adjustment is the Otsu method [29] (cf. Section 4.1). This should be able to automatically
find the threshold for segmenting objects of interest (i.e. casters and their shadows) from
background. The results obtained are represented on the fourth column of Table 1.

The results obtained with a variable threshold method (Otsu’s method), surprisingly,
were slightly worse than those obtained with a fixed threshold. For global localisation, the
method answered correctly on 43% of the total 1361 snapshots. The localisation at region 1
was correct in 59% of the trials (decreasing from the 70% obtained with a fixed threshold),
and the localisation accuracy on the other regions was below 50%. Investigation of the pixel
value distributions indicated that the problem is that these distributions are not in general
bi-modal, which increases the difficulty of searching for an appropriate threshold from the
image histogram.

In our third set of results, the robot was set to vary the threshold until the interpretation of
the target object and its shadow matches a robot’s prediction of its location (using Algorithm
2, as explained in Section 4.1). The results obtained are represented in the fifth column of
Table 1 (“knowledge based”), which shows that the system achieved an accuracy of around
90% in all regions. Thus the incorporation of knowledge about shadow appearance, and
reasoning based upon past location, can greatly assist in the refinement of a simple shadow-
detection algorithm, outperforming also a traditional algorithm for adaptive thresholding.

6 Discussion and open issues

In this work we investigated robot self-localisation using qualitatively distinct regions de-
fined from a visual observation of cast shadows. These regions were defined on a formal
framework within a qualitative spatial reasoning standpoint, which provides a principled
approach to reasoning about space.

Central to the problem of qualitative self-localisation using shadows is the segmentation
of casters and shadows from the background, which was accomplished here by thresholding
on value (V) on the HSV colour space. In the present paper we proposed a new strategy for
calibrating this threshold, where the prediction about the robot’s location is used to search for
a match between the interpreted position (as given from visual observation) and its predicted
location. In order to evaluate this method, we have presented three sets of experiments in



which different ways of defining the threshold were tried. In the first set of experiments
a hand-coded fixed threshold was used, in the second set of experiments we used Otsu’s
method [29] in order to find the threshold values from the image histogram. Finally, the
third set of experiments presents the results of applying our proposed method for matching
the prediction with the observation.

The intuition behind the experiments with fixed thresholds was to provide a lower-bound
for the evaluation of our idea, since (as we hypothesised) nothing could perform worse than
a hand-coded threshold. Experiments with Otsu’s method were then to set the standard, as
this is one of the most traditional methods for adaptive thresholding. However, it turned out
that Otsu’s performance was in fact approximately as accurate as that of using the fixed
threshold. This is due to the fact that it was chosen for the first set of experiments the best
threshold that could be found, after a number of trials where the value was changed by hand.
Otsu’s method, however, had to deal with arbitrary images, where it had to maximise a value
that is dependent on an a priori hypothesis of bi-modal pixel distribution. This was not the
case in some of the snapshots taken by the robot: a great number of them suffered from
the effect of reflections of the light source on the caster. Moreover, from some angles, there
was a negative gradient of luminosity just behind the object. These problems caused Otsu’s
method to perform worse than using a fixed threshold.

In contrast, the method for calibrating the threshold using the prediction about the
robot’s location performed as well as could be expected, obtaining an accuracy of around
90% with respect to our dataset containing 1361 snapshots of the robot’s environment. How-
ever, this method is totally dependent on the capability of the robot’s actuators on generating
accurate predictions for the robot’s future location, given a moving action. In this paper, the
robot’s motion was completely pre-programmed in order to minimise actuator noise, this
gave us the guarantee that we were only evaluating the localisation procedures. We leave
for a future work applying this framework on a system that has a path planning module,
so that we can determine how the qualitative localisation procedure proposed in this paper
is affected by errors in the planning-acting-sensing cycle. Small errors in the path planning
procedure could then be solved by allowing a search for thresholds agreeing with the neigh-
bouring regions from the predicted location. Evaluating the ideas put forward in this paper
on a more complex scenario is also a future goal.

Apart from the investigation of qualitative robot localisation from cast shadows, con-
trasting methods for adaptive thresholding, this paper also presented in Section 3 an im-
proved version of the theory first proposed in [36]. The main improvements are: the inclu-
sion of theorems’ proofs, the explicit representation of a shadow’s top-half as a function and
the introduction of a stronger version of axiom (A3). The improved version of axiom (A3)
includes a constraint ruling out the interference of shadows from other objects on the target
shadow. Without this, however, the theory presented in [36] leads to inconsistent answers
with respect to the intended inferences.

Subject of our long term investigation is the complete exploration of the knowledge
content of shadows, as described in [4], in order to create a robotic system that is capable
of perceiving (and interpreting) shadows in a similar fashion to humans. The reason for
pursuing this goal resides in our hypothesis that the human perceptual system, by preferring
shadow information over other depth cues (even when these cues contradict each other [24]),
is in fact saving processing time. Investigating how this could be accomplished in robotic
systems is a major motivation of this work.

Although this work explores only a qualitative theory about space, this choice does not
preclude the use of quantitative or statistical methods. Rather, we believe that qualitative
methods in robotics should complement the traditional numerical algorithms, providing an



additional processing level in situations where it is possible to extract qualitative information
from such methods.

7 Conclusion

This paper has demonstrated how the incorporation of qualitative spatial representation and
a priori knowledge about shadow regions can be combined to enhance a simple shadow-
detection algorithm based upon thresholding. Future work will consider the incorporation of
more sophisticated shadow detection algorithms, the extension of the current snapshot-based
system to one which incorporates continuous video, and the inclusion of shadow reasoning
within the perception-planning-action loop.

A number of questions have been raised by this work, and we consider these questions
in themselves to be a useful contribution. For example, how can shadows improve object
localisation when contrasted to object-based methods? Under what conditions can shadows
be effectively exploited? How can we combine predictive shadow-based localisation with
predictive localisation based upon object’s pose? These are all questions which we hope to
consider in more depth in future work.
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