APLICAÇÕES DO AXIOMA DO SUPREMO PARA FUNÇÕES CONTÍNUAS

ALEXANDRE LYMBEROPOULOS

1. Introdução

Nestas poucas linhas vamos enunciar e demonstrar algumas consequências importantes do Axioma do Supremo para as funções contínuas. Vamos começar recordando a definição de supremo de um conjunto.

Definição 1.1. Seja $A \subseteq \mathbb{R}$ um conjunto. O *supremo de A*, se existir, é o número real

$$\sup A = \min_{y \in \mathbb{R}} \{ y : x \le y, \text{ para todo } x \in A \}.$$

Em outras palavras sup A, é a menor cota superior do conjunto A.

Existem conjuntos que não admitem supremo como, por exemplo, $A=\emptyset$ ou $A=\mathbb{R}$ (por que?). A validade do Axioma do Supremo (1.1) é um fato que, de certa maneira, distingue o conjunto dos números racionais dos reais. Lembramos que um conjunto $A\subseteq\mathbb{R}$ é *limitado superiormente* se existe M>0 tal que $|x|\leq M$ para todo $x\in A$. Vamos ao enunciado desta importante propriedade:

Axioma 1.1 ((do Supremo). *Todo conjunto não vazio e limitado superiormente de números reais admite supremo.*

A distinção entre racionais e reais mencionada anteriormente pode ser ilustrada no

Exemplo 1.1. Seja $A = \{x \in \mathbb{Q} : x^2 < 2\}$, que é claramente um conjunto não vazio $(0 \in A)$ e limitado superiormente (por 3/2, por exemplo). Não existe um número racional que seja a menor cota superior de A, já que se r_1 é uma cota superior racional qualquer de A então $r_1 > 0$ e $r_1^2 > 2$, já que não existe racional cujo quadrado seja 2. Existe um racional r_2 tal que $2 < r_2^2 < r_1^2$ e portanto $r_2 < r_1$ é uma cota superior racional de A.

Considerando $A \subset \mathbb{R}$ podemos mostrar que sup $A = \sqrt{2}$. De fato:

- se $y > \sqrt{2}$ então $y^2 > 2$ e, tomando $\tilde{y} = (y + \sqrt{2})/2$, temos $(\tilde{y})^2 > 2$ com $\tilde{y} < y$, pois $\tilde{y} y = (\sqrt{2} y)/2 < 0$. Logo y não é a menor cota superior de A, não podendo ser sup A.
- se $y < \sqrt{2}$ então $y^2 < 2$ e, tomando $\tilde{y} = (y + \sqrt{2})/2$, teremos $y < \tilde{y}$ e $(\tilde{y})^2 < 2 \implies y \in A$, donde y não é uma cota superior para A, não podendo ser sup A.

Como A é um conjunto de números reais não vazio e limitado superiormente, deve existir sup A. Em vista das considerações acima devemos ter sup $A = \sqrt{2}$.

2. FUNÇÕES CONTÍNUAS E O AXIOMA DO SUPREMO

Neste ponto já podemos enunciar os resultados sobre funções contínuas que decorrem do Axioma do Supremo.

Teorema 2.1 (do Valor Intermediário). *Sejam* $f : \mathbb{R} \to \mathbb{R}$ *contínua, a* $< b \in \mathbb{R}$ *e* $y \in \mathbb{R}$ *tais que* $f(a) \le y \le f(b)$. *Então existe* $x \in [a,b]$ *tal que* y = f(x).

Antes de passar à demonstração desse teorema vejamos algumas aplicações. Podemos utilizar o teorema 2.1 para localizar raízes de equações em uma variável que envolvam funções contínuas.

Exemplo 2.1. Sabemos, da teoria algébrica dos polinômios, que a equação

$$(2.1) x^3 - 3x^2 + 2x = 7$$

admite pelo menos uma raiz real. Porém esta teoria não nos permite estimar seu valor. Para tanto consideramos a função $f(x) = x^3 - 3x^2 + 2x$, que é contínua, e observamos que

$$f(0) = 0 < 7 < 24 = f(4).$$

O Teorema do Valor Intermediário garante então que existe $0 < x_0 < 4$ tal que $f(x_0) = 7$, ou seja, uma solução para a equação. Ainda da teoria algébrica de polinômios sabemos que os candidatos racionais a solução de (2.1) são ± 1 e ± 7 que não são de fato soluções, logo x_0 é irracional.

É possível melhorar estimativas, diminuindo o tamanho do intervalo onde se encontra x_0 : como 0 = f(2) < 7 < f(4) = 24 concluímos que uma solução da equação encontrase em [2,4]. Note que, em princípio, isso não impede a existência de outra solução no intervalo $[0,2]^1$. Repetindo o método temos f(3) = 6 < 7 < f(4) e portanto há uma solução no intervalo [3,4]. Iterando essa ideia podemos obter intervalos arbitrariamente pequenos contendo uma solução desta equação.

Observação 2.1. A quantidade de soluções num dado intervalo pode ser abordada estudando o crescimento da função que define a equação usando, quando possível, a primeira derivada.

Exemplo 2.2. Mostremos que existe $x_0 \in]0,1[$ tal que $x_0e^{-x_0}=1/3.$ De fato, considerando $f(x)=xe^{-x}$, que é contínua, temos f(0)=0<1/3<1/e=f(1), já que e<3.

Vamos então demonstrar o Teorema do Valor Intermediário:

Demonstração: Considere o conjunto

$$S = \{x \in [a,b] : f(x) \le y\}.$$

Como $a \in S$ temos $S \neq \emptyset$; $x \leq b$ para todo $x \in S$ garante que S é limitado superiormente. Pelo Axioma 1.1, seja $u = \sup S$. Analisemos as possibilidades:

- Suponha f(u) > y. Como f é contínua, existe um intervalo aberto $I, u \in I$, tal que f(x) > y para todo $x \in I$. Se $t \in I$ e t < u temos que para todo $x \in [t, u]$ vale f(x) > y, donde $x \notin S$ e portanto u não é a menor cota superior de S, não podendo ser sup S. Uma contradição, logo $f(u) \leq y$.
- Suponha f(u) < y. Novamente da continuidade de f, existe intervalo aberto J, $u \in J$, tal que f(x) < y, para todo $x \in J$. Todo x > u em $J \cap [a, b]$ satisfaz f(x) < y, donde $x \in s$ e portanto u não é cota superior de S. Outra contradição, portanto $f(u) \ge y$.

Então a única possibilidade é f(u) = y.

Observação 2.2. A recíproca do Teorema 2.1 é falsa, ou seja, não é verdade que se uma função atinge todos os valores num intervalo do contra-domínio ela é contínua então é ela é contínua. Como contra-exemplo considere

$$f(x) = \begin{cases} \sin(\frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases} ,$$

¹Represente graficamente tal situação.

que assume todos os valores no intervalo [-1,1], mas não é contínua em $x_0 = 0$.

Corolário 2.2 (Teorema do Anulamento). *Se* $f : \mathbb{R} \to \mathbb{R}$ *é contínua e* $f(a)f(b) \leq 0$, *existe* $c \in [a,b]$ *tal que* $f(x_0) = 0$.

Demonstração: Exercício.

Exemplo 2.3. Dada qualquer função contínua definida num círculo existem dois pontos antípodas² nos quais a função assume o mesmo valor.

De fato, cada ponto P do círculo (que vamos supor centrado na origem) é determinado pelo ângulo³ entre o eixo Ox e o raio que passa pelo ponto P. Deste modo a função definida no círculo pode ser vista como uma função definida no intervalo $[0,2\pi[$. Sejam A e B os pontos de interseção do cículo com o eixo Ox. Defina então $d:[0,2\pi[\to \mathbb{R}]$ por

$$d(\theta) = f(x) - f(y),$$

onde x é o ponto do círculo que faz ângulo θ com o eixo Ox e y o antípoda de x. Assim,

$$d(0) = f(A) - f(B)$$
 e $d(\pi) = f(B) - f(A) = -d(0)$.

Pelo Corolário 2.2, existe $\theta_0 \in [0, \pi]$ tal que $d(\theta_0) = 0$, ou seja, f(x) = f(y).

Vamos considerar o problema da existência de máximos e mínimos para funções contínuas num intervalo fechado. Mas antes disso precisamos de alguma nomenclatura e resultados preliminares.

Definição 2.1. Uma função $f: A \subseteq \mathbb{R} \to \mathbb{R}$ é *limitada* se existe M > 0 tal que |f(x)| < M, para todo $x \in A$.

Lema 2.3. Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e a < b números reais. Então

$$f([a,b]) = \{f(x) : x \in [a,b]\}$$

é limitado.

Em outras palavras, toda função contínua num intervalo fechado é limitada.

Demonstração: Seja $S = \{x \in [a,b] : f([a,x]) \text{ \'e limitado}\}$. O conjunto S \'e não vazio, pois $a \in S$, e limitador superiormente por b. Existe então $u = \sup S$. Como f \'e contínua, tomando e = 1 temos que existe um intervalo aberto e in e

Suponha agora que u < b e escolha $v \in I$ com u < v < b. Então f([u,v]) é limitado e portanto $v \in S$ e $v > \sup S$, uma contradição. Logo u = b (por que não pode ser maior que b?) e portanto f([a,b]) é limitado.

Definição 2.2. Seja $f: A \subseteq \mathbb{R} \to \mathbb{R}$ uma função. Dizemos que x_0 é *ponto de máximo local* (respec. mínimo local) de f se existe intervalo I, com $x_0 \in I$, tal que $f(x_0) \ge f(x)$ (respec. $f(x_0) \le f(x)$), para todo $x \in I \cap A$.

Dizemos ainda que x_0 é *ponto de máximo* (respec. de mínimo) f se $f(x_0) \ge f(x)$ (respec. $f(x_0) \le f(x)$), para todo $x \in A$.

Observação 2.3. Para enfatizar um ponto de máximo ou mínimo podemos dizer ponto de máximo ou mínimo *global*.

²Ou seja, pontos diametralmente opostos.

³no sentido anti-horário, para fixar

Teorema 2.4 (de Weierstrass). Seja $f: A \subseteq \mathbb{R} \to \mathbb{R}$ uma função contínua e $[a,b] \subseteq A$ um intervalo fechado. Então f admite ponto de máximo e de minimo (globais) em [a,b].

Demonstração: Do Lema 2.3, temos que f([a,b]) é um conjunto limitado e claramente não vazio, pois contém f(a). Seja então $M = \sup f([a,b])$. Defina também o conjunto

$$S = \{x \in [a, b] : \sup f([x, b]) = M\}$$
 e $u = \sup S$.

Suponha que f(u) < M. Da continuidade de f com $\epsilon = \frac{M - f(u)}{2}$, existe um intervalo aberto $I, u \in I$ tal que

$$|f(x) - f(u)| < \frac{M - f(u)}{2} \implies f(x) < \frac{M + f(u)}{2},$$

e portanto

$$\sup f(I) < M.$$

Sejam $t \in I$, t < u e $x \in I$, com t < x < u. Então $x \in S$ e portanto sup f([x, b]) = M. De (2.2) temos que sup f([x, u]) < M. Se $v \in I$ é tal que u < v < b, então sup f([x, v]) < M, donde sup f([v, b]) = M, ou seja, $v \in S$, uma contradição. Logo f(u) = M.

Finalmente, se f é contínua então -f também o é, portanto admite um ponto de máximo x_0 em qualquer intervalo fechado [a,b]. É fácil ver que x_0 , sendo ponto de máximo de -f, será um ponto de mínimo de f.

Observação 2.4. O teorema acima garante a existência do máximo (e mínimo) para toda função contínua em qualquer intervalo fechado. Infelizmente a demonstração acima não apresenta um algoritmo para determiná- lo^4 . Com a hipótese adicional de derivabilidade de f no interior do intervalo [a,b] é possível determinar condições que os candidatos a máximo ou mínimo devem satisfazer, mas isso é assunto para as próximas aulas... Acompanhe!

⁴Na verdade não é conhecido um tal algoritmo.