

# MAT–2454 — Cálculo Diferencial e Integral II — EP–USP Segunda Prova— 14/10/2019

#### Identificação

| N  | ome: NUSP:                                                                                                                                                                                                                                                                                                                                           | NUSP:      |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
|    | Instruções                                                                                                                                                                                                                                                                                                                                           |            |  |  |  |
| 1. | Não é permitido portar celular (mesmo desligado) durante o exame. Sobre a carteira deixe apenas lápis, borracha, caneta e um documento de identificação com foto. Mochilas, blusas e de mais pertences devem permancer à frente da sala, juntamente com os celulares (não custa repetir) e demais aparelhos eletrônicos, que devem estar desligados. | <u>'</u> - |  |  |  |
| 2. | Preencha a tinta, e de maneira legível, todos os campos desta página.                                                                                                                                                                                                                                                                                |            |  |  |  |
| 3. | Esta prova tem duração máxima de 2 horas. A entrega da prova e saída da sala só é permi<br>tida após 10:40.                                                                                                                                                                                                                                          | -          |  |  |  |
| 4. | Utilize, se necessário, as folhas seguintes (exceto a última) para rascunho.                                                                                                                                                                                                                                                                         |            |  |  |  |
| 5. | Folha de respostas (última): Preencha, a tinta e completamente, os campos daquela folha<br>Deixe as <b>últimas colunas em branco</b> , caso seu número USP tenha menos de 8 dígitos. Isto<br>deve ser feito <b>antes</b> da assinatura da lista de presença. <b>Evite erros nesse momento</b> .                                                      |            |  |  |  |
| 5. | Assinale, <b>com atenção</b> , apenas uma alternativa por questão, <b>preenchendo completamento alvéolo</b> . Em caso de erro, o que deve ser evitado, assinale <b>também</b> a alternativa que julgar correta e indique expressamente qual delas deve ser considerada na própria folha de respostas.                                                | e          |  |  |  |
| 7. | Não haverá tempo adicional para transcrição das alternativas dos testes para a folha de respostas.                                                                                                                                                                                                                                                   | e          |  |  |  |
| 3. | Não destaque nenhuma folha de sua prova.                                                                                                                                                                                                                                                                                                             |            |  |  |  |
| (  |                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |
|    | Assinatura:                                                                                                                                                                                                                                                                                                                                          |            |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |

BOA PROVA!

The training of the second sec

Para os testes 1 e 2 considere a função

$$f(x,y) = \begin{cases} \frac{xy^2}{x^4 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

**Teste 1** [FuncA1] Seja  $\vec{u} = \left(\sqrt{2}/2, -\sqrt{2}/2\right)$ . Considere as seguintes afirmações:

- (I) f admite derivadas parciais em (0,0) e  $\nabla f(0,0) = (0,0)$ .
- (II) f não admite derivadas parciais em (0,0).

(III) 
$$\frac{\partial f}{\partial \vec{u}}(0,0) = \frac{\sqrt{2}}{2}$$
.

(IV) 
$$\frac{\partial f}{\partial \vec{u}}(0,0) = 0.$$

(V) 
$$\frac{\partial f}{\partial \vec{u}}(0,0) = -\frac{\sqrt{2}}{2}$$
.

São verdadeiras apenas as afirmações:

- (I) e (III).
- B (I) e (IV).
- (II) e (IV).
- D (I) e (V).
- E (II) e (III).

Solução: Pelas definições de derivadas parciais e derivada direcional, temos

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0,$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0,$$

$$\frac{\partial f}{\partial \vec{u}}(0,0) = \lim_{t \to 0} \frac{f\left(\frac{t\sqrt{2}}{2}, -\frac{t\sqrt{2}}{2}\right) - f(0,0)}{t} = \lim_{t \to 0} \frac{1}{t} \frac{t^3\sqrt{2}}{4} \frac{1}{\frac{t^4}{4} + \frac{t^2}{2}} = \lim_{t \to 0} \frac{t^2\sqrt{2}}{t^4 + 2t^2} = \frac{\sqrt{2}}{2}.$$

Logo, apenas as afirmações (I) e (III) são verdadeiras.

Teste 2 [FuncA2] É correto afirmar que:

- f é contínua em  $\mathbb{R}^2$ , mas não é diferenciável em  $\mathbb{R}^2$ .
- $\boxed{\mathrm{B}}$  f é diferenciável em  $\mathbb{R}^2$ , mas não é de classe  $\mathcal{C}^1$  em  $\mathbb{R}^2$ .
- $\boxed{\mathbb{C}}$  f é de classe  $\mathcal{C}^1$  em  $\mathbb{R}^2$ , mas não é de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$ .
- $\boxed{\mathbf{D}}$  f é de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$ .
- E *f* não é contínua em (0,0).

*Solução:* f é contínua em  $\mathbb{R}^2 \setminus \{(0,0)\}$ , como quociente de duas funções contínuas. Note que f também é contínua em (0,0), pois

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} x \underbrace{\frac{y^2}{x^4 + y^2}}_{\text{limitada}} = 0.$$

No entanto, f não é diferenciável em (0,0). Basta observar que

$$\frac{\partial f}{\partial \vec{u}}(0,0) \neq 0 = \langle \nabla f(0,0), \vec{u} \rangle,$$

onde  $\vec{u}$  é o vetor do teste anterior.

Para os testes 3 e 4 considere a função

$$f(x,y) = \begin{cases} \frac{xy^2}{x^4 + y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

**Teste 3** [FuncB1] Seja  $\vec{u} = \left(-\sqrt{2}/2, \sqrt{2}/2\right)$ . Considere as seguintes afirmações:

- (I) f admite derivadas parciais em (0,0) e  $\nabla f(0,0) = (0,0)$ .
- (II) f não admite derivadas parciais em (0,0).
- (III)  $\frac{\partial f}{\partial \vec{u}}(0,0) = \frac{\sqrt{2}}{2}$ .
- (IV)  $\frac{\partial f}{\partial \vec{u}}(0,0) = 0.$
- $(V) \ \frac{\partial f}{\partial \vec{u}}(0,0) = -\frac{\sqrt{2}}{2}.$

São verdadeiras apenas as afirmações:

- (I) e (V).
- B (I) e (III).
- [C] (I) e (IV).
- D (II) e (IV).
- [E] (II) e (V).

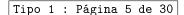
Solução: Pelas definições de derivadas parciais e derivada direcional, temos

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0,$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0,$$

$$\frac{\partial f}{\partial \vec{u}}(0,0) = \lim_{t \to 0} \frac{f\left(-\frac{t\sqrt{2}}{2}, \frac{t\sqrt{2}}{2}\right) - f(0,0)}{t} = \lim_{t \to 0} -\frac{1}{t} \frac{t^3\sqrt{2}}{4} \frac{1}{\frac{t^4}{4} + \frac{t^2}{2}} = \lim_{t \to 0} -\frac{t^2\sqrt{2}}{t^4 + 2t^2} = -\frac{\sqrt{2}}{2}.$$

Logo, apenas as afirmações (I) e (V) são verdadeiras.



**Teste 4** [FuncB2] É correto afirmar que:

- f é contínua em  $\mathbb{R}^2$ , mas não é diferenciável em  $\mathbb{R}^2$ .
- $\boxed{\mathrm{B}}$  f é diferenciável em  $\mathbb{R}^2$ , mas não é de classe  $\mathcal{C}^1$  em  $\mathbb{R}^2$ .
- $\boxed{\mathbb{C}}$  f é de classe  $\mathcal{C}^1$  em  $\mathbb{R}^2$ , mas não é de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$ .
- $\boxed{\mathbf{D}}$  f é de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$ .
- E *f* não é contínua em (0,0).

*Solução:* f é contínua em  $\mathbb{R}^2 \setminus \{(0,0)\}$ , como quociente de duas funções contínuas. Note que f também é contínua em (0,0), pois

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} x \underbrace{\frac{y^2}{x^4 + y^2}}_{\text{limitada}} = 0.$$

No entanto, f não é diferenciável em (0,0). Basta observar que

$$\frac{\partial f}{\partial \vec{u}}(0,0) \neq 0 = \langle \nabla f(0,0), \vec{u} \rangle,$$

onde  $\vec{u}$  é o vetor do teste anterior.

**Teste 5** [pltg1] Seja  $f \colon \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável satisfazendo

$$f(t^2, 2t^3) = 1 + e^{t^2 - 1}$$
, para todo  $t \in \mathbb{R}$ .

Sabendo que  $\frac{\partial f}{\partial x}(1,2)=4$ , uma equação do plano tangente ao gráfico de f no ponto (1,2,f(1,2)) é:

$$4x - y - z = 0.$$

B 
$$4x + y - z - 4 = 0$$
.

$$C 4x - 2y - z + 2 = 0.$$

D 
$$4x + 2y - z - 6 = 0$$
.

$$|E| 4x - z - 2 = 0.$$

Solução: Derivando a igualdade dada em relação a t e usando a Regra da Cadeia, obtemos

$$t\frac{\partial f}{\partial x}(t^2,2t^3)+3t^2\frac{\partial f}{\partial y}(t^2,2t^3)=te^{t^2-1}, \forall t\in\mathbb{R}.$$

Fazendo t=1 e substituindo  $\frac{\partial f}{\partial x}(1,2)=4$ , deduzimos que

$$4+3\frac{\partial f}{\partial y}(1,2)=1 \implies \frac{\partial f}{\partial y}(1,2)=-1.$$

Como  $f(1,2) = 1 + e^{1-1} = 2$ , o plano procurado tem equação

$$z = 2 + 4(x - 1) - (y - 2) \iff 4x - y - z = 0.$$

**Teste 6** [pltg2] Seja  $f \colon \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável satisfazendo

$$f(t^2, 2t^3) = 1 + e^{t^2 - 1}$$
, para todo  $t \in \mathbb{R}$ .

Sabendo que  $\frac{\partial f}{\partial y}(1,2)=1$ , uma equação do plano tangente ao gráfico de f no ponto (1,2,f(1,2)) é:

$$2x - y + z - 2 = 0.$$

B 
$$2x + y - z - 2 = 0$$
.

$$C x - y + z - 1 = 0.$$

$$D x + y - z - 1 = 0.$$

$$\boxed{\mathbf{E}} \ y - z = 0.$$

Solução: Derivando a igualdade dada em relação a t e usando a Regra da Cadeia, obtemos

$$t\frac{\partial f}{\partial x}(t^2,2t^3)+3t^2\frac{\partial f}{\partial y}(t^2,2t^3)=te^{t^2-1}, \forall t\in\mathbb{R}.$$

Fazendo t=1 e substituindo  $\frac{\partial f}{\partial y}(1,2)=1$ , deduzimos que

$$\frac{\partial f}{\partial x}(1,2) + 3 = 1 \implies \frac{\partial f}{\partial x}(1,2) = -2.$$

Como  $f(1,2) = 1 + e^{1-1} = 2$ , o plano procurado tem equação

$$z = 2 - 2(x - 1) + (y - 2) \iff 2x - y + z - 2 = 0.$$

**Teste 7** [pltg3] Seja  $f \colon \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável satisfazendo

$$f(2t^3, t^2) = 1 + e^{t^2 - 1}$$
, para todo  $t \in \mathbb{R}$ .

Sabendo que  $\frac{\partial f}{\partial x}(2,1)=1$ , uma equação do plano tangente ao gráfico de f no ponto (2,1,f(2,1)) é:

$$x - 2y - z + 2 = 0.$$

B 
$$x + 2y - z - 2 = 0$$
.

$$C x - y - z + 1 = 0.$$

$$D x + y - z - 1 = 0.$$

$$E x - z = 0.$$

Solução: Derivando a igualdade dada em relação a t e usando a Regra da Cadeia, obtemos

$$3t^2\frac{\partial f}{\partial x}(2t^3,t^2)+t\frac{\partial f}{\partial y}(2t^3,t^2)=te^{t^2-1}, \forall t\in\mathbb{R}.$$

Fazendo t=1 e substituindo  $\frac{\partial f}{\partial x}(2,1)=1$ , deduzimos que

$$3 + \frac{\partial f}{\partial y}(2,1) = 1 \implies \frac{\partial f}{\partial y}(1,2) = -2.$$

Como  $f(2,1) = 1 + e^{1-1} = 2$ , o plano procurado tem equação

$$z = 2 + (x - 2) - 2(y - 1) \iff x - 2y - z + 2 = 0.$$

**Teste 8** [pltg4] Seja  $f \colon \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável satisfazendo

$$f(2t^3, t^2) = 1 + e^{t^2 - 1}$$
, para todo  $t \in \mathbb{R}$ .

Sabendo que  $\frac{\partial f}{\partial y}(2,1)=4$ , uma equação do plano tangente ao gráfico de f no ponto (2,1,f(2,1)) é:

$$x - 4y + z = 0.$$

B 
$$x + 4y - z - 4 = 0$$
.

$$C 2x - 4y + z - 2 = 0.$$

D 
$$2x + 4y - z - 6 = 0$$
.

$$\boxed{\mathrm{E}} 4y - z = 0.$$

Solução: Derivando a igualdade dada em relação a t e usando a Regra da Cadeia, obtemos

$$3t^2\frac{\partial f}{\partial x}(2t^3,t^2)+t\frac{\partial f}{\partial y}(2t^3,t^2)=te^{t^2-1}, \forall t\in\mathbb{R}.$$

Fazendo t=1 e substituindo  $\frac{\partial f}{\partial y}(2,1)=4$ , deduzimos que

$$3\frac{\partial f}{\partial x}(1,2) + 4 = 1 \implies \frac{\partial f}{\partial x}(1,2) = -1.$$

Como  $f(2,1) = 1 + e^{1-1} = 2$ , o plano procurado tem equação

$$z = 2 - (x - 2) + 4(y - 1) \iff x - 4y + z = 0.$$

**Teste 9** [nivnab1] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função de classe  $\mathcal{C}^1$  tal que  $\nabla f(1,1) = (1,1)$ . Sabendo que exatamente uma das curvas abaixo tem imagem contida na curva de nível de f que contém (1,1), assinale a alternativa que contém tal curva.

$$\gamma(t) = (t, 1/t), t \in ]0, +\infty[.$$

B 
$$\gamma(t) = (\sec t, \tan t + 1), t \in ]-\frac{\pi}{2}, \frac{\pi}{2}[.$$

$$\boxed{\mathbb{C}} \ \gamma(t) = (\cos t + 1, \sin t), t \in \mathbb{R}.$$

$$\boxed{\mathsf{D}} \ \gamma(t) = (t, \ln t + 1), t \in ]0, +\infty[.$$

$$\boxed{\mathbb{E}} \ \gamma(t) = (t^3, t), t \in \mathbb{R}.$$

*Solução:* Sabemos que o gradiente de f no ponto P=(1,1) deve ser normal à curva de nível de f que contém P. Neste caso, a curva procurada deve satisfazer

$$\langle \gamma'(t_0), (1,1) \rangle = 0,$$

onde  $t_0$  é tal que  $\gamma(t_0)=P$ . A única curva fornecida nas alternativas que satisfaz esta propriedade é

$$\gamma(t) = (t, 1/t), t \in ]0, +\infty[.$$

Com efeito,  $\gamma(1) = P$  e  $\gamma'(1) = (1, -1) \perp (1, 1)$ , como desejado.

**Teste 10** [ni vnab2] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função de classe  $\mathcal{C}^1$  tal que  $\nabla f(1,1) = (1,0)$ . Sabendo que exatamente uma das curvas abaixo tem imagem contida na curva de nível de f que contém (1,1), assinale a alternativa que contém tal curva.

$$\gamma(t) = (\sec t, \tan t + 1), t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

B 
$$\gamma(t) = (t, 1/t), t \in ]0, +\infty[.$$

$$\boxed{\mathsf{D}} \ \gamma(t) = (t, \ln t + 1), t \in ]0, +\infty[.$$

$$\mathbb{E} \ \gamma(t) = (t^3, t), t \in \mathbb{R}.$$

*Solução:* Sabemos que o gradiente de f no ponto P=(1,1) deve ser normal à curva de nível de f que contém P. Neste caso, a curva procurada deve satisfazer

$$\langle \gamma'(t_0), (1,0) \rangle = 0,$$

onde  $t_0$  é tal que  $\gamma(t_0)=P$ . A única curva fornecida nas alternativas que satisfaz esta propriedade é

$$\gamma(t) = (\sec t, \tan t + 1), t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

Com efeito,  $\gamma(0) = P \operatorname{e} \gamma'(0) = (\sec 0 \cdot \tan 0, \sec^2 0) = (0, 1) \perp (1, 0)$ , como desejado.

**Teste 11** [nivnab3] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função de classe  $\mathcal{C}^1$  tal que  $\nabla f(1,1) = (0,1)$ . Sabendo que exatamente uma das curvas abaixo tem imagem contida na curva de nível de f que contém (1,1), assinale a alternativa que contém tal curva.

$$\gamma(t) = (\cos t + 1, \sin t), t \in \mathbb{R}.$$

B 
$$\gamma(t) = (\sec t, \tan t + 1), t \in ]-\frac{\pi}{2}, \frac{\pi}{2}[.$$

$$\boxed{C}$$
  $\gamma(t) = (t, 1/t), t \in ]0, +\infty[.$ 

$$\boxed{\mathbb{E}} \ \gamma(t) = (t^3, t), t \in \mathbb{R}.$$

*Solução:* Sabemos que o gradiente de f no ponto P=(1,1) deve ser normal à curva de nível de f que contém P. Neste caso, a curva procurada deve satisfazer

$$\langle \gamma'(t_0), (0,1) \rangle = 0,$$

onde  $t_0$  é tal que  $\gamma(t_0)=P$ . A única curva fornecida nas alternativas que satisfaz esta propriedade é

$$\gamma(t) = (\cos t + 1, \sin t), t \in \mathbb{R}.$$

Com efeito,  $\gamma(\pi/2) = P \, e \, \gamma'(\pi/2) = (-\sin \pi/2, \cos \pi/2) = (-1, 0) \perp (0, 1)$ , como desejado.

**Teste 12** [nivnab4] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função de classe  $\mathcal{C}^1$  tal que  $\nabla f(1,1) = (1,-1)$ . Sabendo que exatamente uma das curvas abaixo tem imagem contida na curva de nível de f que contém (1,1), assinale a alternativa que contém tal curva.

$$\gamma(t) = (t, \ln t + 1), t \in ]0, +\infty[.$$

$$C$$
  $\gamma(t) = (\sec t, \tan t + 1), t \in ]-\frac{\pi}{2}, \frac{\pi}{2}[.$ 

$$\mathbb{E} \ \gamma(t) = (t^3, t), t \in \mathbb{R}.$$

*Solução:* Sabemos que o gradiente de f no ponto P=(1,1) deve ser normal à curva de nível de f que contém P. Neste caso, a curva procurada deve satisfazer

$$\langle \gamma'(t_0), (1, -1) \rangle = 0,$$

onde  $t_0$  é tal que  $\gamma(t_0)=P$ . A única curva fornecida nas alternativas que satisfaz esta propriedade é

$$\gamma(t) = (t, \ln t + 1), t \in ]0, +\infty[.$$

Com efeito,  $\gamma(1) = P$  e  $\gamma'(1) = (1,1) \perp (1,-1)$ , como desejado.

**Teste 13** [part1] Um ponto P se desloca, a partir do ponto (-1,3), no plano xy. A trajetória de P é parametrizada pela curva

$$\gamma(t) = (ae^t + be^{-t}, ce^t + de^{-t}), t \in [0, +\infty[,$$

onde a,b,c,d são constantes reais. Suponha que a direção e o sentido do vetor tangente à trajetória de P no instante t=0 sejam aqueles de maior crescimento da função f(x,y)=xy no ponto (-1,3). Sabendo que  $\|\gamma'(0)\|=\sqrt{10}$ , em qual ponto P cruza o eixo Oy?

- $(0,2\sqrt{2}).$
- B  $(0,2\sqrt{6})$ .
- $C (0, -2\sqrt{2}).$
- $D (0, -2\sqrt{6}).$
- [E] (0,0).

*Solução:* A direção e o sentido de maior crescimento de f em (-1,3) são os mesmos do vetor  $\nabla f(-1,3)=(3,-1)$ . A hipótese sobre  $\gamma$  implica que existe um número real  $\lambda \geq 0$  tal que  $\gamma'(0)=\lambda(3,-1)$  e, portanto,

$$\sqrt{10} = \|\gamma'(0)\| = \lambda \|(3, -1)\| = \lambda \sqrt{10}.$$

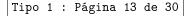
Isto significa que  $\lambda = 1$  e  $\gamma'(0) = (3, -1)$ . Por outro lado, sabemos que

$$\gamma(0) = (a+b,c+d) = (-1,3),$$
  
$$\gamma'(0) = (a-b,c-d) = (3,-1).$$

Resolvendo o sistema, obtemos a = c = 1, b = -2 e d = 2, ou seja,

$$\gamma(t) = (e^t - 2e^{-t}, e^t + 2e^{-t}).$$

A primeira coordenada se anula apenas em  $t_0 = \ln \sqrt{2}$ . A segunda coordenada, calculada em  $t_0$ , vale  $2\sqrt{2}$ .



**Teste 14** [part2] Um ponto P se desloca, a partir do ponto (-1,5), no plano xy. A trajetória de P é parametrizada pela curva

$$\gamma(t) = (ae^t + be^{-t}, ce^t + de^{-t}), t \in [0, +\infty[,$$

onde a,b,c,d são constantes reais. Suponha que a direção e o sentido do vetor tangente à trajetória de P no instante t=0 sejam aqueles de maior crescimento da função f(x,y)=xy no ponto (-1,5). Sabendo que  $\|\gamma'(0)\|=\sqrt{26}$ , em qual ponto P cruza o eixo Oy?

- $(0,2\sqrt{6}).$
- $\boxed{B} (0, 2\sqrt{2}).$
- $C (0, -2\sqrt{2}).$
- $D (0, -2\sqrt{6}).$
- [E] (0,0).

*Solução:* A direção e o sentido de maior crescimento de f em (-1,5) são os mesmos do vetor  $\nabla f(-1,5)=(5,-1)$ . A hipótese sobre  $\gamma$  implica que existe um número real  $\lambda \geq 0$  tal que  $\gamma'(0)=\lambda(5,-1)$  e, portanto,

$$\sqrt{26} = \|\gamma'(0)\| = \lambda \|(5, -1)\| = \lambda \sqrt{26}.$$

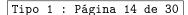
Isto significa que  $\lambda = 1$  e  $\gamma'(0) = (5, -1)$ . Por outro lado, sabemos que

$$\gamma(0) = (a+b,c+d) = (-1,5),$$
  
$$\gamma'(0) = (a-b,c-d) = (5,-1).$$

Resolvendo o sistema, obtemos a = c = 2, b = -3 e d = 3, ou seja,

$$\gamma(t) = (2e^t - 3e^{-t}, 2e^t + 3e^{-t}).$$

A primeira coordenada se anula apenas em  $t_0 = \ln \frac{\sqrt{3}}{\sqrt{2}}$ . A segunda coordenada, calculada em  $t_0$ , vale  $2\sqrt{6}$ .



**Teste 15** [part3] Um ponto P se desloca, a partir do ponto (1, -3), no plano xy. A trajetória de P é parametrizada pela curva

$$\gamma(t) = (ae^t + be^{-t}, ce^t + de^{-t}), t \in [0, +\infty[,$$

onde a,b,c,d são constantes reais. Suponha que a direção e o sentido do vetor tangente à trajetória de P no instante t=0 sejam aqueles de maior crescimento da função f(x,y)=xy no ponto (1,-3). Sabendo que  $\|\gamma'(0)\|=\sqrt{10}$ , em qual ponto P cruza o eixo Oy?

- $(0, -2\sqrt{2}).$
- $\boxed{B} (0,2\sqrt{6}).$
- $C (0, 2\sqrt{2}).$
- $D (0, -2\sqrt{6}).$
- [E] (0,0).

*Solução*: A direção e o sentido de maior crescimento de f em (1,-3) são os mesmos do vetor  $\nabla f(1,-3)=(-3,1)$ . A hipótese sobre  $\gamma$  implica que existe um número real  $\lambda \geq 0$  tal que  $\gamma'(0)=\lambda(-3,1)$  e, portanto,

$$\sqrt{10} = \|\gamma'(0)\| = \lambda \|(-3, 1)\| = \lambda \sqrt{10}.$$

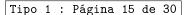
Isto significa que  $\lambda = 1$  e  $\gamma'(0) = (-3,1)$ . Por outro lado, sabemos que

$$\gamma(0) = (a+b,c+d) = (1,-3),$$
  
$$\gamma'(0) = (a-b,c-d) = (-3,1).$$

Resolvendo o sistema, obtemos a = c = -1, b = 2 e d = -2, ou seja,

$$\gamma(t) = (-e^t + 2e^{-t}, -e^t - 2e^{-t}).$$

A primeira coordenada se anula apenas em  $t_0 = \ln \sqrt{2}$ . A segunda coordenada, calculada em  $t_0$ , vale  $-2\sqrt{2}$ .



**Teste 16** [part4] Um ponto P se desloca, a partir do ponto (1, -5), no plano xy. A trajetória de P é parametrizada pela curva

$$\gamma(t) = (ae^t + be^{-t}, ce^t + de^{-t}), t \in [0, +\infty[$$

onde a, b, c, d são constantes reais. Suponha que a direção e o sentido do vetor tangente à trajetória de P no instante t=0 sejam aqueles de maior crescimento da função f(x,y)=xy no ponto (1,-5). Sabendo que  $\|\gamma'(0)\|=\sqrt{26}$ , em qual ponto P cruza o eixo Oy?

- $(0,-2\sqrt{6}).$
- B  $(0, -2\sqrt{2})$ .
- C (0,2 $\sqrt{6}$ ).
- $D (0,2\sqrt{2}).$
- [E] (0,0).

*Solução:* A direção e o sentido de maior crescimento de f em (1,-5) são os mesmos do vetor  $\nabla f(1,-5)=(-5,1)$ . A hipótese sobre  $\gamma$  implica que existe um número real  $\lambda \geq 0$  tal que  $\gamma'(0)=\lambda(-5,1)$  e, portanto,

$$\sqrt{26} = \|\gamma'(0)\| = \lambda \|(-5, 1)\| = \lambda \sqrt{26}.$$

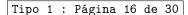
Isto significa que  $\lambda = 1$  e  $\gamma'(0) = (-5,1)$ . Por outro lado, sabemos que

$$\gamma(0) = (a+b,c+d) = (1,-5),$$
  
$$\gamma'(0) = (a-b,c-d) = (-5,1).$$

Resolvendo o sistema, obtemos a = c = -2, b = 3 e d = -3, ou seja,

$$\gamma(t) = (-2e^t + 3e^{-t}, -2e^t - 3e^{-t}).$$

A primeira coordenada se anula apenas em  $t_0 = \ln \frac{\sqrt{3}}{\sqrt{2}}$ . A segunda coordenada, calculada em  $t_0$ , vale  $-2\sqrt{6}$ .



**Teste 17** [cadeia1] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$ , f = f(x,y) uma função de classe  $\mathcal{C}^2$ . Considere  $g: \mathbb{R}^2 \to \mathbb{R}$  dada por

$$g(u,v) = uf(u^2 + v^2, uv).$$

Sabendo que  $\frac{\partial f}{\partial x}(2,-1)=2$ ,  $\frac{\partial f}{\partial y}(2,-1)=-2$ ,  $\frac{\partial^2 f}{\partial x^2}(2,-1)=1$ ,  $\frac{\partial^2 f}{\partial y^2}(2,-1)=4$  e  $\frac{\partial^2 f}{\partial y \partial x}(2,-1)=0$ , o valor de  $\frac{\partial^2 g}{\partial v \partial u}(-1,1)$  é:

Solução: Derivando g em relação a u usando a Regra da Cadeia, obtemos

$$\frac{\partial g}{\partial u}(u,v) = f(u^2 + v^2, uv) + u \left[ 2u \frac{\partial f}{\partial x}(u^2 + v^2, uv) + v \frac{\partial f}{\partial y}(u^2 + v^2, uv) \right].$$

Usando novamente a Regra da Cadeia e lembrando que, pelo Teorema de Schwarz, as derivadas parciais mistas de *f* coincidem, concluímos que

$$\begin{split} \frac{\partial^2 g}{\partial v \partial u}(u,v) &= 2v \frac{\partial f}{\partial x}(u^2 + v^2, uv) + 2u \frac{\partial f}{\partial y}(u^2 + v^2, uv) \\ &+ 4u^2 v \frac{\partial^2 f}{\partial x^2}(u^2 + v^2, uv) + u^2 v \frac{\partial^2 f}{\partial y^2}(u^2 + v^2, uv) \\ &+ 2u(u^2 + v^2) \frac{\partial^2 f}{\partial y \partial x}(u^2 + v^2, uv). \end{split}$$

Fazendo (u,v)=(-1,1) e substituindo os valores fornecidos no enunciado, resulta  $\frac{\partial^2 g}{\partial v \partial u}(-1,1)=16$ .

**Teste 18** [cadeia2] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$ , f = f(x,y) uma função de classe  $\mathcal{C}^2$ . Considere  $g: \mathbb{R}^2 \to \mathbb{R}$  dada por

$$g(u,v) = uf(u^2 + v^2, uv).$$

Sabendo que  $\frac{\partial f}{\partial x}(2,-1)=2$ ,  $\frac{\partial f}{\partial y}(2,-1)=-2$ ,  $\frac{\partial^2 f}{\partial x^2}(2,-1)=1$ ,  $\frac{\partial^2 f}{\partial y^2}(2,-1)=4$  e  $\frac{\partial^2 f}{\partial y \partial x}(2,-1)=0$ , o valor de  $\frac{\partial^2 g}{\partial x^2}(1,-1)$  é:

$$-16.$$
  $\boxed{B}$   $16.$   $\boxed{C}$   $8.$   $\boxed{D}$   $-8.$   $\boxed{E}$   $0.$ 

Solução: Derivando g em relação a u usando a Regra da Cadeia, obtemos

$$\frac{\partial g}{\partial u}(u,v) = f(u^2 + v^2, uv) + u \left[ 2u \frac{\partial f}{\partial x}(u^2 + v^2, uv) + v \frac{\partial f}{\partial y}(u^2 + v^2, uv) \right].$$

Usando novamente a Regra da Cadeia e lembrando que, pelo Teorema de Schwarz, as derivadas parciais mistas de *f* coincidem, concluímos que

$$\begin{split} \frac{\partial^2 g}{\partial v \partial u}(u,v) &= 2v \frac{\partial f}{\partial x}(u^2 + v^2, uv) + 2u \frac{\partial f}{\partial y}(u^2 + v^2, uv) \\ &+ 4u^2 v \frac{\partial^2 f}{\partial x^2}(u^2 + v^2, uv) + u^2 v \frac{\partial^2 f}{\partial y^2}(u^2 + v^2, uv) \\ &+ 2u(u^2 + v^2) \frac{\partial^2 f}{\partial y \partial x}(u^2 + v^2, uv). \end{split}$$

Fazendo (u,v)=(1,-1) e substituindo os valores fornecidos no enunciado, resulta  $\frac{\partial^2 g}{\partial v \partial u}(-1,1)=-16$ .

**Teste 19** [dircres1] Suponha que a função  $T: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$  dada por

$$T(x,y) = \frac{1}{x^2 + y^2}$$

represente uma distribuição de temperatura em  $\mathbb{R}^2 \setminus \{(0,0)\}$ . Considere uma partícula sobre o ponto P = (1,2). A direção e o sentido de maior crescimento da temperatura desta partícula são os mesmos do vetor:

$$\blacksquare$$
 (-1,-2).  $\blacksquare$  (1,2).  $\square$  (1,-2).  $\blacksquare$  (1,1).

*Solução:* O gradiente de T em um ponto  $(x,y) \neq (0,0)$  é

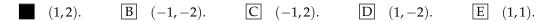
$$\nabla T(x,y) = -\frac{2}{(x^2 + y^2)^2}(x,y),$$

que tem a mesma direção de (x,y) e sentido oposto ao de (x,y). Logo, a direção e o sentido de maior crescimento de T em (1,2) são os mesmos do vetor (-1,-2).

**Teste 20** [dircres2] Suponha que a função  $T: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$  dada por

$$T(x,y) = \frac{1}{x^2 + y^2}$$

represente uma distribuição de temperatura em  $\mathbb{R}^2 \setminus \{(0,0)\}$ . Considere uma partícula sobre o ponto P = (-1,-2). A direção e o sentido de maior crescimento da temperatura desta partícula são os mesmos do vetor:



*Solução:* O gradiente de T em um ponto  $(x,y) \neq (0,0)$  é

$$\nabla T(x,y) = -\frac{2}{(x^2 + y^2)^2}(x,y),$$

que tem a mesma direção de (x,y) e sentido oposto ao de (x,y). Logo, a direção e o sentido de maior crescimento de T em (-1,-2) são os mesmos do vetor (1,2).

**Teste 21** [dircres3] Suponha que a função  $T: \mathbb{R}^2 \setminus \{(0,0)\} \rightarrow \mathbb{R}$  dada por

$$T(x,y) = \frac{1}{x^2 + y^2}$$

represente uma distribuição de temperatura em  $\mathbb{R}^2 \setminus \{(0,0)\}$ . Considere uma partícula sobre o ponto P=(1,-2). A direção e o sentido de maior crescimento da temperatura desta partícula são os mesmos do vetor:

$$\blacksquare$$
 (-1,2).  $\blacksquare$  (1,2).  $\blacksquare$  (1,1).

*Solução:* O gradiente de T em um ponto  $(x,y) \neq (0,0)$  é

$$\nabla T(x,y) = -\frac{2}{(x^2 + y^2)^2}(x,y),$$

que tem a mesma direção de (x,y) e sentido oposto ao de (x,y). Logo, a direção e o sentido de maior crescimento de T em (1,-2) são os mesmos do vetor (-1,2).

**Teste 22** [dircres4] Suponha que a função  $T: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$  dada por

$$T(x,y) = \frac{1}{x^2 + y^2}$$

represente uma distribuição de temperatura em  $\mathbb{R}^2 \setminus \{(0,0)\}$ . Considere uma partícula sobre o ponto P=(-1,2). A direção e o sentido de maior crescimento da temperatura desta partícula são os mesmos do vetor:

$$\blacksquare$$
 (1,-2).  $\blacksquare$  (-1,2).  $\blacksquare$  (1,1).

*Solução:* O gradiente de T em um ponto  $(x,y) \neq (0,0)$  é

$$\nabla T(x,y) = -\frac{2}{(x^2 + y^2)^2}(x,y),$$

que tem a mesma direção de (x,y) e sentido oposto ao de (x,y). Logo, a direção e o sentido de maior crescimento de T em (-1,2) são os mesmos do vetor (1,-2).

**Teste 23** [grad1] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável. Sabe-se que o gráfico de f contém as imagens das curvas  $\alpha(t) = \left(t^2, t, -\frac{t^2}{2} + \frac{1}{2}\right), t \in \mathbb{R}$ , e  $\beta(u) = \left(u, \frac{1}{u}, u^4 - 1\right), u > 0$ . Nestas condições, o gradiente de f em (1,1) é paralelo ao vetor:

$$\blacksquare$$
 (2,-6).  $\blacksquare$  (2,4).  $\blacksquare$  (2,-8).  $\blacksquare$  (2,6).  $\blacksquare$  (2,-4).

Solução: Derivando

$$f(t^{2},t) = -\frac{t^{2}}{2} + \frac{1}{2},$$
  
$$f(u,1/u) = u^{4} - 1$$

em t = 1 e u = 1, respectivamente, obtemos

$$2\frac{\partial f}{\partial x}(1,1) + \frac{\partial f}{\partial y}(1,1) = -1,$$
  
$$\frac{\partial f}{\partial x}(1,1) - \frac{\partial f}{\partial y}(1,1) = 4.$$

Isto implica que  $\nabla f(1,1) = (1,-3)$ , que é paralelo ao vetor (2,-6).

**Teste 24** [grad2] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável. Sabe-se que o gráfico de f contém as imagens das curvas  $\alpha(t) = (t^2, t, t^4 - 1)$ ,  $t \in \mathbb{R}$ , e  $\beta(u) = \left(u, \frac{1}{u}, -\frac{u^2}{2} + \frac{1}{2}\right)$ , u > 0. Nestas condições, o gradiente de f em (1,1) é paralelo ao vetor:

(2,4). B (2,-6).

C (2, -8).

D (2,6).

[E] (2, -4).

Solução: Derivando

$$f(t^2, t) = t^4 - 1,$$
  
 $f(u, 1/u) = -\frac{u^2}{2} + \frac{u}{2}$ 

em t = 1 e u = 1, respectivamente, obtemos

$$\begin{aligned} 2\frac{\partial f}{\partial x}(1,1) &+ \frac{\partial f}{\partial y}(1,1) = 4, \\ \frac{\partial f}{\partial x}(1,1) &- \frac{\partial f}{\partial y}(1,1) = -1. \end{aligned}$$

Isto implica que  $\nabla f(1,1) = (1,2)$ , que é paralelo ao vetor (2,4).

**Teste 25** [grad3] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável. Sabe-se que o gráfico de f contém as imagens das curvas  $\alpha(t) = (t^2, t, -t^2 + 1)$ ,  $t \in \mathbb{R}$ , e  $\beta(u) = (u, \frac{1}{u}, u^5 - 1)$ , u > 0. Nestas condições, o gradiente de f em (1,1) é paralelo ao vetor:

(2, -8).

B (2,4).

C (2, -6).

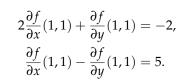
D (2,6).

[E] (2, -4).

Solução: Derivando

$$f(t^2, t) = -t^2 + 1,$$
  
 $f(u, 1/u) = u^5 - 1$ 

em t = 1 e u = 1, respectivamente, obtemos



Isto implica que  $\nabla f(1,1) = (1,-4)$ , que é paralelo ao vetor (2,-8).

**Teste 26** [grad4] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função diferenciável. Sabe-se que o gráfico de f contém as imagens das curvas  $\alpha(t) = (t^2, t, t^5 - 1)$ ,  $t \in \mathbb{R}$ , e  $\beta(u) = (u, \frac{1}{u}, -u^2 + 1)$ , u > 0. Nestas condições, o gradiente de f em (1,1) é paralelo ao vetor:

 $\blacksquare$  (2,6).  $\blacksquare$  (2,-8).  $\blacksquare$  (2,4).  $\blacksquare$  (2,-6).  $\blacksquare$  (2,-4).

Solução: Derivando

$$f(t^2, t) = t^5 - 1,$$
  
 $f(u, 1/u) = -u^2 + 1$ 

em t = 1 e u = 1, respectivamente, obtemos

$$2\frac{\partial f}{\partial x}(1,1) + \frac{\partial f}{\partial y}(1,1) = 5,$$
  
$$\frac{\partial f}{\partial x}(1,1) - \frac{\partial f}{\partial y}(1,1) = -2.$$

Isto implica que  $\nabla f(1,1) = (1,3)$ , que é paralelo ao vetor (2,6).

**Teste 27** [elet1] A intensidade de um campo elétrico no plano xy é dada por uma função diferenciável  $E: \mathbb{R}^2 \to \mathbb{R}$ . Uma partícula de prova passeia ao longo da curva  $\gamma(t) = (t^2 + 1, 3t), t \in [0, +\infty[$ . Sabendo que  $\frac{\partial E}{\partial x}(2,3) = 6$  e  $\frac{\partial E}{\partial y}(2,3) = -2$ , a taxa de variação da intensidade do campo que a partícula experimenta no instante t = 1 de seu movimento é de:

**B** 10. 
$$C$$
 -6.  $D$  -10.  $E$  0.

*Solução:* Considere a função  $h: [0, +\infty[ \to \mathbb{R} \text{ dada por }$ 

$$h(t) = E(\gamma(t)) = E(t^2 + 1, 3t).$$

Pela Regra da Cadeia,

$$h'(t) = 2t\frac{\partial E}{\partial x}(t^2 + 1, 3t) + 3\frac{\partial E}{\partial y}(t^2 + 1, 3t),$$

para todo t > 0. Fazendo t = 1 e substituindo os dados do enunciado, obtemos h'(1) = 6.

**Teste 28** [elet2] A intensidade de um campo elétrico no plano xy é dada por uma função diferenciável  $E\colon \mathbb{R}^2 \to \mathbb{R}$ . Uma partícula de prova passeia ao longo da curva  $\gamma(t)=(t^2+1,3t), t\in [0,+\infty[$ . Sabendo que  $\frac{\partial E}{\partial x}(5,6)=4$  e  $\frac{\partial E}{\partial y}(5,6)=-2$ , a taxa de variação da intensidade do campo que a partícula experimenta no instante t=2 de seu movimento é de:

$$\blacksquare$$
 10.  $\blacksquare$  6.  $\square$  -6.  $\square$  -10.  $\blacksquare$  0.

*Solução:* Considere a função  $h: [0, +\infty[ \to \mathbb{R} \text{ dada por }$ 

$$h(t) = E(\gamma(t)) = E(t^2 + 1, 3t).$$

Pela Regra da Cadeia,

$$h'(t) = 2t\frac{\partial E}{\partial x}(t^2 + 1, 3t) + 3\frac{\partial E}{\partial y}(t^2 + 1, 3t),$$

para todo t > 0. Fazendo t = 2 e substituindo os dados do enunciado, obtemos h'(2) = 10.

**Teste 29** [elet3] A intensidade de um campo elétrico no plano xy é dada por uma função diferenciável  $E \colon \mathbb{R}^2 \to \mathbb{R}$ . Uma partícula de prova passeia ao longo da curva  $\gamma(t) = (t^2 + 1, 3t), t \in [0, +\infty[$ . Sabendo que  $\frac{\partial E}{\partial x}(10,9) = 3$  e  $\frac{\partial E}{\partial y}(10,9) = -8$ , a taxa de variação da intensidade do campo que a partícula experimenta no instante t=3 de seu movimento é de:

$$\blacksquare$$
 -6.  $\blacksquare$  10.  $\blacksquare$  6.  $\blacksquare$  -10.  $\blacksquare$  0.

*Solução:* Considere a função  $h: [0, +\infty[ \to \mathbb{R}$  dada por

$$h(t) = E(\gamma(t)) = E(t^2 + 1, 3t).$$

Pela Regra da Cadeia,

$$h'(t) = 2t\frac{\partial E}{\partial x}(t^2 + 1, 3t) + 3\frac{\partial E}{\partial y}(t^2 + 1, 3t),$$

para todo t > 0. Fazendo t = 3 e substituindo os dados do enunciado, obtemos h'(3) = -6.

**Teste 30** [elet4] A intensidade de um campo elétrico no plano xy é dada por uma função diferenciável  $E\colon \mathbb{R}^2 \to \mathbb{R}$ . Uma partícula de prova passeia ao longo da curva  $\gamma(t)=(t^2+1,3t), t\in [0,+\infty[$ . Sabendo que  $\frac{\partial E}{\partial x}(17,12)=-2$  e  $\frac{\partial E}{\partial y}(17,12)=2$ , a taxa de variação da intensidade do campo que a partícula experimenta no instante t=4 de seu movimento é de:

$$\blacksquare$$
 -10.  $\boxed{\text{B}}$  -6.  $\boxed{\text{C}}$  10.  $\boxed{\text{D}}$  6.  $\boxed{\text{E}}$  0.

*Solução:* Considere a função  $h \colon [0, +\infty[ \to \mathbb{R} \text{ dada por }$ 

$$h(t) = E(\gamma(t)) = E(t^2 + 1, 3t).$$

Pela Regra da Cadeia,

$$h'(t) = 2t\frac{\partial E}{\partial x}(t^2 + 1, 3t) + 3\frac{\partial E}{\partial y}(t^2 + 1, 3t),$$

para todo t > 0. Fazendo t = 4 e substituindo os dados do enunciado, obtemos h'(4) = -10.

**Teste 31** [teor1] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função qualquer. Assinale a única afirmação que é **falsa**.

- **Se**  $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$  existe, então  $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$  também existe.
- B Se  $\frac{\partial f}{\partial x}$  e  $\frac{\partial f}{\partial y}$  existem e são funções de classe  $\mathcal{C}^1$  em  $\mathbb{R}^2$ , então para todo  $(x,y) \in \mathbb{R}^2$  tem-se  $\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$ .
- $\boxed{\mathbb{C}}$  Se f é uma função de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$ , então as funções  $\frac{\partial f}{\partial x}$  e  $\frac{\partial f}{\partial y}$  são diferenciáveis em  $\mathbb{R}^2$ .
- $\boxed{\mathbb{D}}$  Se  $\frac{\partial f}{\partial \vec{u}}(x_0,y_0)=0$  para todo vetor unitário  $\vec{u}\in\mathbb{R}^2$ , então  $\nabla f(x_0,y_0)=(0,0)$ .
- $\boxed{\mathbb{E}}$  Se  $|f(x,y)| \le x^2 + y^2$  para todo  $(x,y) \in \mathbb{R}^2$ , então f é diferenciável em (0,0).

*Solução:* A primeira afirmação é *falsa*. Definindo f(x,y) = |x|, temos

$$\frac{\partial f}{\partial y}(x,y) = 0, \forall (x,y) \in \mathbb{R}^2 \implies \frac{\partial^2 f}{\partial x \partial y}(x,y) = 0, \forall (x,y) \in \mathbb{R}^2.$$

No entanto, como o limite

$$\lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{|t|}{t}$$

não existe, concluímos que  $\frac{\partial f}{\partial x}(0,0)$  não existe e, portanto,  $\frac{\partial^2 f}{\partial y \partial x}(0,0)$  também não.

A segunda afirmação é *verdadeira*. Se  $\frac{\partial f}{\partial x}$  e  $\frac{\partial f}{\partial y}$  existem e são funções de classe  $\mathcal{C}^1$  em  $\mathbb{R}^2$ , então f é de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$  e, pelo Teorema de Schwarz, suas derivadas parciais mistas (de segunda ordem) coincidem em  $\mathbb{R}^2$ .

A terceira afirmação é *verdadeira*. Se f é de classe  $C^2$  em  $\mathbb{R}^2$ , então suas derivadas parciais de segunda ordem são contínuas em  $\mathbb{R}^2$ . Isto significa que as funções  $\frac{\partial f}{\partial x}$  e  $\frac{\partial f}{\partial y}$  são de classe  $C^1$  (e, portanto, diferenciáveis) em  $\mathbb{R}^2$ .

A querta afirmação é *verdadeira*. Basta lembrar que  $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial e_1}(x_0, y_0)$  e  $\frac{\partial f}{\partial y}(x_0, y_0) = \frac{\partial f}{\partial e_2}(x_0, y_0)$ , onde  $\{e_1, e_2\}$  denota a base canônica de  $\mathbb{R}^2$ .

A quinta afirmação E é *verdadeira*. Observe primeiramente que, por hipótese, f(0,0) = 0. Logo,

$$\lim_{t \to 0} \frac{|f(t,0) - f(0,0)|}{|t|} = \lim_{t \to 0} \frac{|f(t,0)|}{|t|} \le \lim_{t \to 0} \frac{t^2}{|t|} = \lim_{t \to 0} |t| = 0.$$

Isto implica que

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0.$$

Analogamente, concluímos que  $\frac{\partial f}{\partial u}(0,0) = 0$ . Finalmente,

$$\lim_{(h,k)\to(0,0)} \frac{|f(h,k)-f(0,0)-\frac{\partial f}{\partial x}(0,0)h-\frac{\partial f}{\partial y}(0,0)k|}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{|f(h,k)|}{\sqrt{h^2+k^2}}$$

$$\leq \lim_{(h,k)\to(0,0)} \frac{h^2+k^2}{\sqrt{h^2+k^2}}$$

$$= \lim_{(h,k)\to(0,0)} \sqrt{h^2+k^2} = 0.$$

Isto prova que f é diferenciável em (0,0).

**Teste 32** [teor2] Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função qualquer. Assinale a única afirmação que é **verdadeira**.

se  $|f(x,y)| \le x^2 + y^2$  para todo  $(x,y) \in \mathbb{R}^2$ , então f é diferenciável em (0,0).

 $\boxed{\mathbf{B}}$  se  $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$  existe, então  $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$  também existe.

 $\boxed{\mathbb{C}}$  se as funções  $\frac{\partial f}{\partial x}$  e  $\frac{\partial f}{\partial y}$  são diferenciáveis em  $\mathbb{R}^2$ , então f é uma função de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$ .

 $\boxed{\mathbb{D}}$  se  $\nabla f(x_0,y_0)=(0,0)$ , então  $rac{\partial f}{\partial \vec{u}}(x_0,y_0)=0$  para todo vetor unitário  $\vec{u}\in\mathbb{R}^2$ .

 $\boxed{\mathbb{E}}$  se  $\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$  para todo  $(x,y) \in \mathbb{R}^2$ , então as funções  $\frac{\partial f}{\partial x}$  e  $\frac{\partial f}{\partial y}$  são de classe  $\mathcal{C}^1$  em  $\mathbb{R}^2$ .

*Solução*: A primeira afirmação é *verdadeira*. Observe primeiramente que, por hipótese, f(0,0) = 0. Logo,

$$\lim_{t \to 0} \frac{|f(t,0) - f(0,0)|}{|t|} = \lim_{t \to 0} \frac{|f(t,0)|}{|t|} \le \lim_{t \to 0} \frac{t^2}{|t|} = \lim_{t \to 0} |t| = 0.$$

Isto implica que

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0.$$

Analogamente, concluímos que  $\frac{\partial f}{\partial y}(0,0)=0$ . Finalmente,

$$\lim_{(h,k)\to(0,0)} \frac{|f(h,k)-f(0,0)-\frac{\partial f}{\partial x}(0,0)h-\frac{\partial f}{\partial y}(0,0)k|}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{|f(h,k)|}{\sqrt{h^2+k^2}}$$

$$\leq \lim_{(h,k)\to(0,0)} \frac{h^2+k^2}{\sqrt{h^2+k^2}}$$

$$= \lim_{(h,k)\to(0,0)} \sqrt{h^2+k^2} = 0.$$

Isto prova que f é diferenciável em (0,0).

A segunda afirmação é *falsa*. Definindo f(x,y) = |x|, temos

$$\frac{\partial f}{\partial y}(x,y) = 0, \forall (x,y) \in \mathbb{R}^2 \implies \frac{\partial^2 f}{\partial x \partial y}(x,y) = 0, \forall (x,y) \in \mathbb{R}^2.$$

No entanto, como o limite

$$\lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{|t|}{t}$$

não existe, concluímos que  $\frac{\partial f}{\partial x}(0,0)$  não existe e, portanto,  $\frac{\partial^2 f}{\partial y \partial x}(0,0)$  também não. A terceira afirmação é *falsa*. Considere a função

$$f(x,y) = \begin{cases} (x^2 + y^2)^{5/2} \sin\left(\frac{1}{x^2 + y^2}\right), & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

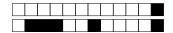
Não é difícil (mas é trabalhoso) mostrar que as derivadas parciais de primeira ordem de f são funções diferenciáveis em  $\mathbb{R}^2$ , mas f não é de classe  $\mathcal{C}^2$  em  $\mathbb{R}^2$ .

A quarta afirmação é falsa. Basta tomar a função f usada nos testes 1 e 2 ou dos testes 3 e 4. A quinta afirmação é falsa. Considere a função

$$f(x,y) = \begin{cases} (x^2 + y^2)^{5/2} \sin\left(\frac{1}{x^2 + y^2}\right), & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$

As derivadas parciais mistas (de segunda ordem) de f existem e coincidem em todos os pontos, mas f não é de classe  $C^2$  em  $\mathbb{R}^2$ .

CORNELLOSP



## 14/10/2019— MAT-2454 — Segunda Prova— Folha de Respostas

Respostas ilegíveis ou não indicadas nesta folha serão desconsideradas.

#### Identificação:

| Nome: |   |        | N    | IUSP: |  |
|-------|---|--------|------|-------|--|
|       |   |        |      |       |  |
|       | - | Assina | tura |       |  |

Por favor coloque seu número USP nos campos abaixo, deixando as **primeiras colunas** em branco caso ele tenha menos de 8 dígitos.

- 0
   0
   0
   0
   0
   0
   0
   0

   1
   1
   1
   1
   1
   1
   1
   1
   1

   2
   2
   2
   2
   2
   2
   2
   2
   2

   3
   3
   3
   3
   3
   3
   3
   3
   3

   4
   4
   4
   4
   4
   4
   4
   4
   4

   5
   5
   5
   5
   5
   5
   5
   5
   5

   6
   6
   6
   6
   6
   6
   6
   6
   6

   7
   7
   7
   7
   7
   7
   7
   7
   7
- 8
   8
   8
   8
   8
   8
   8

   9
   9
   9
   9
   9
   9
   9

### Respostas:

| Teste 1: B C D E   | Teste 10: B C D E          |
|--------------------|----------------------------|
| Teste 2: B C D E   | <b>Teste 11:</b> ■ B C D E |
| Teste 3: B C D E   | <b>Teste 12:</b> ■ B C D E |
| Teste 4: B C D E   | <b>Teste 13:</b> ■ B C D E |
| Teste 5: B C D E   | Teste 14: B C D E          |
| Teste 6: B C D E   | Teste 15: B C D E          |
| Teste 7: ■ B C D E | Teste 16: B C D E          |
| Teste 8: B C D E   | <b>Teste 17:</b> ■ B C D E |
| Teste 9: B C D E   | Teste 18: B C D E          |



| Teste 19: | В | C | D | E |
|-----------|---|---|---|---|
|           |   |   |   |   |

**Teste 20: B C D E** 

**Teste 21: B** C D E

**Teste 22: B** C D E

**Teste 23: B** C D E

**Teste 24: B C D E** 

**Teste 25: B** C D E

**Teste 26: B** C D E

**Teste 27: B** C D E

**Teste 28: B** C D E

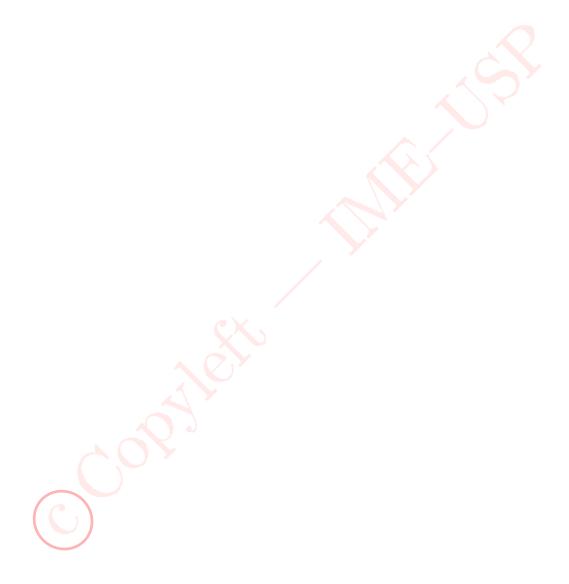
**Teste 29: B** C D E

**Teste 30: B** C D E

**Teste 31: B C D E** 

**Teste 32: B C D E** 





Tipo 1 : Página 30 de 30