NOÇÕES DE GEOMETRIA PROJETIVA PLANA

RICARDO BIANCONI

Introdução

A Geometria Projetiva nasceu de um problema de arte e de arquitetura, de como representar de maneira realista o que é visto. Ela desenvolveu-se até se tornar uma disciplina importante da matemática, como ferramenta fundamental em Geometria Algébrica, Geometria Diferencial e até em Combinatória.

Apresentamos aqui uma pequena introdução à Geometria Projetiva Plana Real do ponto de vista axiomático, no espírito da axiomatização que Hilbert fez para a Geometria Euclideana. Seguimos de perto a axiomatização apresentada no livro de Coxeter, [1], com algumas modificções. Diversas construções foram tiradas do livro de Cremona, [2].

Na geometria projetiva, não faz sentido falar de congruências (comparação de medidas de segmentos e ângulos), pois essa noção não é preservada por projeções, que são as transformações geométricas dessa geometria. Assim, teremos apenas axiomas (ou postulados, se preferir) de incidência, de ordem e de continuidade.

Os axiomas da geometria projetiva plana têm uma simetria entre pontos e retas, de modo que se trocarmos nos enunciados as palavras ponto por reta, colineares por concorrentes, e vice-versa, obtemos enunciados equivalentes, no sentido que um será demonstrável se, e somente se, o outro o for. Esse é o chamado Princípio da Dualidade, cuja aplicação permite-nos demonstrar duas proposições com uma única demonstração.

Referenciamos os resultados com indicações precisas aos livros de Coxeter, [1], e de Cremona, [2]. Lá encontram-se referências aos autores originais, que podem ser de interesse para um estudo da história do assunto.

1. Incidência e Dualidade

A linguagem da Geometria Projetiva Plana refere-se a dois tipos de elementos, a saber, reta e ponto, com duas relações, a de incidência

Date: 29 de novembro de 2019.

(relaciona pontos e retas) e ordem (relaciona pontos). Comeamos com a relação de incidência.

Reservamos as letras romanas maiúsculas para nomear pontos e as minúsculas para retas.

Axioma 1. Existem um ponto P e uma reta r não incidente com P.

Axioma 2. Cada reta incide com pelo menos três pontos distintos.

Axioma 3. Par cada par de pontos distintos P e Q existe uma única reta, denotada PQ, incidente com esses pontos.

Exercício 1. Mostre que cada ponto incide com pelo menos três retas distintas.

Axioma 4. Para cada par de retas distintas r e s existe um único ponto, denotado $r \cdot s$, incidente com essas retas.

O próximo axioma afirma a configuração de Desargues. Surpreendentemente ele não pode ser deduzido dos outros axiomas.

Axioma 5. Se as retas PP', QQ' e RR' são distintas e incidentes com um mesmo ponto O, então os pontos $PQ \cdot P'Q'$, $PR \cdot P'R'$ e $QR \cdot Q'R'$ são incidentes com uma mesma reta o.

Neste caso dizemos que as retas PP', QQ' e RR' são concorrentes em O e que os pontos $PQ \cdot P'Q'$, $PR \cdot P'R'$ e $QR \cdot Q'R'$ são colineares.

A recíproca desse axioma é o seu dual.

Axioma 6. Se os pontos $p \cdot p'$, $q \cdot q'$ e $r \cdot r'$ são distintos e incidentes com uma reta o, então as retas $(p \cdot q)(p' \cdot q')$, $(q \cdot r)(q' \cdot r')$ e $(r \cdot p)(r' \cdot p')$ são incidentes com um ponto O.

Exercício 2 (Princípio da Dualidade). Mostre que qualquer teorema decorrente desses seis axiomas também torna-se um teorema se trocarmos as palavras ponto por reta (e as correspondentes colineares por concorrentes) e vice-versa. Para isso, considere que uma demonstração é uma sequência (finita) de frases de um dos seguintes tipos:

- (a) citar uma hipótese;
- (b) citar um axioma (ou proposição anteriormente demonstrada podese considerar que o dual dessa proposição também ja tenha sido demonstrada);
- (c) expressar uma frase que decorre de manipulação lógica de frases anteriores (isso não altera a validade da frase).

¹Coxeter enuncia esse axioma como proposição, mas sua demonstração usa mais do que os axiomas acima, veja [1, § 2.26, p. 14].

A relação de incidência permite-nos definir as transformações (colineações) do plano projetivo.

Definição 1. Uma colineação do plano projetivo é uma função bijetora T do conjunto dos pontos do plano que preservam incidência, ou seja, se A for incidente com a reta BC, então T(A) será incidente com reta T(B)T(C). Dizemos que T mapeia a reta r na reta s se todo ponto incidente com r for mapeado num ponto incidente com s.

Uma perspectiva (ou também chamada de perspectividade) de centro O e eixo d é uma colineação T do plano tal que se P for incidente com d or P = O, então T(P) = P e, caso contrário, T(P) é incidente com a reta OP. Se ABC... for uma sequência de pontos e A'B'C'... for a sequência de suas respectivas imagens por T, denotamos tal fato por $ABC \cdots \overline{\wedge} A'B'C'$..., ou simplesmente $ABC \cdots \overline{\wedge} A'B'C'$..., quando o centro for subentendido. Se T mapear a sequência de retas abc... respectivamente na sequência de retas a'b'c'..., denotamo-lo $abc \cdots \overline{\wedge} a'b'c'$..., ou simplesmente $abc \cdots \overline{\wedge} a'b'c'$..., quando o centro for subentendido. Podemos também escrever $abc \cdots \overline{\wedge} a'b'c'$... ao nos referir à perspectiva de eixo d.

Uma projetividade T é uma composição de perspectivas. Se $ABC\ldots$ for uma sequência de pontos e $A'B'C'\ldots$ for a sequência de suas respectivas imagens por T, denotamos tal fato por $ABC\cdots \overline{\land} A'B'C'\ldots$ Se T mapear a sequência de retas $abc\ldots$ respectivamente na sequência de retas $a'b'c'\ldots$, denotamo-lo $abc\cdots \overline{\land} a'b'c'\ldots$, quando o centro for subentendido.

Dois tipos de configurações (e suas duais) são importantes no que segue.

Definição 2 (Triângulos e Triláteros). Um triângulo é uma sequência de três pontos PQR não colineares. Um trilátero é uma sequência de três retas pqr não concorrentes no mesmo ponto.

Definição 3 (Quadrângulos e Quadriláteros). Um quadrângulo é uma sequência de pontos PQRS (nessa ordem) três a três não colineares. As retas p = PQ, q = QR, r = RS e s = SP são seus lados, e as retas t = PR e u = QS suas diagonais. Os pontos $A = p \cdot r$, $B = q \cdot s$ e $C = t \cdot u$ são seus pontos diagonais. Veja a Figura 1.

Um quadrilátero é uma sequência de retas pqrs (nessa ordem) três a três não concorrentes. Os pontos $P=s\cdot p,\ Q=p\cdot q,\ R=q\cdot r$ e $S=r\cdot s$ são seus vértices, e as retas a=PR e b=QS e c=AB são suas diagonais, onde $A=p\cdot r$ e $B=q\cdot s$. Veja a Figura 1.

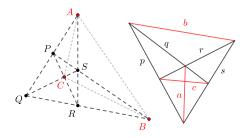


FIGURA 1. Quadrângulo PQRS, com seus pontos diagonais $A, B \in C$, e quadrilátero pqrs com suas diagonais $a, b \in c$.

Observação 1. Com os axiomas de incidência apenas é impossível demonstrar que os pontos diagonais de um quadrângulo não são colineares. Os contr-exemplos são os planos projetivos construídos a partir de corpos de característica 2 (o plano projetivo de 7 pontos forma um quadrângulo em que os pontos diagonais são colineares). Isso extrapola o âmbito do presente texto. Mais adiante, ao introduzirmos os axiomas de ordem, mostraremos que tais pontos não são colineares (Exercício 29, 14).

Exercício 3. Dado o quadrângulo PQRS e seus pontos diagonais ABC, mostre que PQR $\stackrel{S}{\overline{\wedge}}$ BCA, PQS $\stackrel{R}{\overline{\wedge}}$ CBA, PRS $\stackrel{Q}{\overline{\wedge}}$ ABC e QRS $\stackrel{P}{\overline{\wedge}}$ ACB. Acompanhe com a Figura 1.

Exercício 4. Dado o quadrilátero pqrs e suas retas diagonais a, b e c, mostre que $pqr \stackrel{s}{\overline{\wedge}} acb, pqs \stackrel{r}{\overline{\wedge}} cab, prs \stackrel{q}{\overline{\wedge}} bac$ e $qrs \stackrel{p}{\overline{\wedge}} bca$. Observe que representamos as perspectivas com os eixos indicados. Acompanhe com a Figura 1.

2. Perspectividades e Projetividades entre Fileiras e entre Feixes

Introduzimos um par de definições úteis, uma a dual da outra.

Definição 4 (Fileira de Pontos e Feixes de Retas). Uma *fileira* de pontos é um conjunto (finito ou infinito) de pontos incidentes com uma mesma reta (são colineares). Um feixe de retas é um conjunto (finito ou infinito) de retas incidentes com um mesmo ponto (são concorrentes).

E agora, o par de conceitos principais dessa seção, que são as retrições a fileiras e feixes de perspectivas e projetividades do plano projetivo.

Definição 5 (Perspectividade e Projetividade entre Fileiras e entre Feixes). Dadas duas retas r e s e um ponto O não incidente com elas, uma perspectividade de r em s de centro O é uma aplicação que leva cada ponto P incidente com r ao ponto P' incidente com s e com a reta OP. Se ABC... for uma fileira em r e A'B'C'... suas imagens pela perspectividade, denotamos isso por $ABC \cdots \overline{\wedge} A'B'C'$..., ou simplesmente por $ABC \cdots \overline{\wedge} AB'C'$... se o centro estiver subentendido. Uma projetividade entre retas é uma composição de perspectividades. Denotamos uma projetividade da fileira ABC... sobre a fileira A'B'C'... por $ABC \cdots \overline{\wedge} A'B'C'$...

Dados dois pontos R e S e uma reta o não incidente com eles, uma perspectividade de R em S de eixo o é uma aplicação que leva cada reta p incidente com R em uma reta incidente com S e com o ponto $o \cdot p$. Se $abc \dots$ for um feixe de retas incidentes com R e $a'b'c' \dots$ a imagem pela perspectividade, denotamos isso por $abc \cdots \stackrel{o}{\overline{\wedge}} a'b'c' \dots$, ou simplesmente $abc \cdots \stackrel{o}{\overline{\wedge}} a'b'c' \dots$ se o eixo estiver subentendido. Uma projetividade entre pontos é a composição de perspectividades. Denotamos uma projetividade do feixe $abc \dots$ sobre o feixe $a'b'c' \dots$ por $abc \dots \overline{\wedge} a'b'c' \dots$

Proposição 1. Dadas duas fileiras $ABC \in A'B'C'$ existe projetividade $ABC \times A'B'C'$.

Demonstração. A demonstração é simples, mas requer a divisão em vários casos.

Caso 1. As fileiras não são colineares, mas têm um ponto comum, digamos A = A'. Seja $O = BB' \cdot CC'$. Então $ABC \stackrel{O}{\overline{\wedge}} A'B'C'$.

 $Caso\ 2$. As fileiras não são colineares e não têm ponto comum. Seja r uma reta incidente com A e distinta de AB e de AA'. Seja O um ponto incidente com AA' e distinto de A e de A'. A perspectiva de centro O de A'B' em r mapeia A' em A, B'emB'' e C' em C'', com B'' e C'' incidentes com r. Assim recaímos no Caso 1.

Caso 3. As fileiras são colineares. Projetamos A', B' e C' em outra reta e caímos no caso 2.

Exercício 5. Enuncie e demonstre o resultado dual dessa proposição (para feixes de retas).

Exercício 6. Dada a fileira ABCD, mostre que existem projetividades $ABCD \ \overline{\wedge}\ BADC$, $ABCD \ \overline{\wedge}\ DCBA$ e $ABCD \ \overline{\wedge}\ CDAB$. [Por exemplo, $ABCD \ \overline{\overline{\wedge}}\ EFGD$, com M e G não incidentes com AB e depois $EFGD \ \overline{\overline{\wedge}}\ MNGC$ e, finalmente, $EFGC \ \overline{\overline{\wedge}}\ BADC$, etc.]

3. Fileiras e Feixes Harmônicos

Definição 6 (Veja a Figura 2). Uma fileira de quatro pontos (colineares) ABCD (nessa ordem) é uma fileira harmônica se existir um quadrângulo PQRS, tal que dois lados opostos PQ e RS incidem com A, os outros dois lados opostos PS e QR incidem com B, o quinto lado (diagonal) PR incide com C e o sexto lado QS incide com D. A expressão H(AB,CD) significa que ABCD é uma fileira harmônica.

Um feixe de quatro retas (concorrentes) abcd (nessa ordem) é um $feixe\ harmônico$ se existir um quadrilátero pqrs tal que os vértices $p\cdot q$ e $r\cdot s$ incidem com a, os outros vértices $p\cdot s$ e $q\cdot r$ incidem com b, o vértice $p\cdot r$ incide com c e o vértice $q\cdot s$ incide com d. A expressão H(ab,cd) significa que abcd é um feixe harmônico.

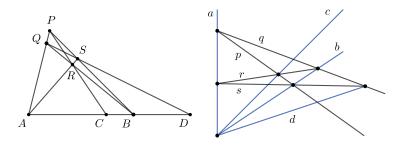


Figura 2. Fileira e feixe harmônicos.

Essa definição é independente do quadrângulo ou quadrilátero usado.

Proposição 2. Dados os pontos A, B e C colineares e distintos, e quadrângulos $P_iQ_iR_iS_i$ ($i \in \{0,1\}$), tais que para $i \in \{0,1\}$, A é incidente com P_iQ_i e R_iS_i , B é incidente com P_iS_i e Q_iR_i , e C é incidente com P_iR_i , se D_i for o ponto incidente com as retas AB e Q_iS_i , então $D_0 = D_1$. Veja a Figura 3.

Demonstração. Por Desargues (Axiomas 5 e 6), os triângulos $P_0R_0S_0$ e $P_1R_1S_1$ estão em perspectiva, com eixo a reta AB ($P_0R_0S_0 \stackrel{=}{\wedge} P_1R_1S_1$)). O ponto Q_0 incide com as retas P_0A e BR_0 e, assim, o ponto Q_1 , que incide com as retas P_1A e BR_1 , é a projeção de Q_0 . A projeção da reta Q_0S_0 é a reta Q_1S_1 , que encontram-se no eixo AB no mesmo ponto $D = D_0 = D_1$.

Dualizamos e obtemos o mesmo resultado para feixes harmônicos.

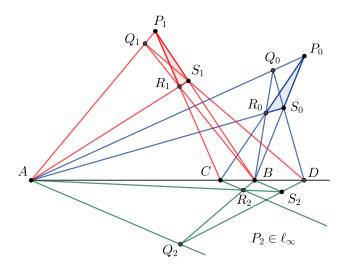


FIGURA 3. Independência da fileira harmônica em relação aos quadrângulos usados. Na figura, os triângulos $P_0R_0S_0$ (azul) e $P_1Q_1S_1$ (vermelho) estão em perspectiva, cujo eixo é a reta AB.

Proposição 3. Dadas as retas $a, b \in c$ concorrentes em um ponto O, e para $i \in \{0,1\}$ quadriláteros $p_iq_ir_is_i$, tais que os vértices $p_i \cdot q_i \in r_i \cdot s_i$ incidem com $a, p_is_i \in q_i \cdot r_i$ com $b, p_i \cdot r_i$ com c, se d_i forem as retas incidentes com o ponto O e com o vértice $q_i \cdot s_i$, então $d_0 = d_1$. Veja a Figura 3.

Demonstração. Dualize a demonstração do caso da fileira harmônica, com a observação que os triláteros p_0r_0b e p_1r_1b estão em perspectiva de centro O.

Existem algumas simetrias nas noções de H(AB,CD) e H(ab,cd).

Exercício 7. Mostre que se H(AB,CD) e se O for um ponto que não incida com a reta AB, então H(ab,cd) onde a=OA, b=OB, c=OC e d=OD.

Exercício 8. Mostre que se H(ab,cd) e r for uma reta que não incida com O, o ponto de concorrência do feixe harmônico, então H(AB,CD), onde $A=a\cdot r$, $B=b\cdot r$, $C=c\cdot r$ e $D=d\cdot r$.

Exercício 9. Mostre que se H(AB,CD) e $ABCD \overline{\wedge} A'B'C'D'$, então H(A'B',C'D').

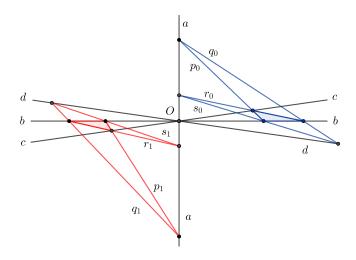


FIGURA 4. Independência do feixe harmônico em relação aos quadriláteros usados. Na figura, os triláteros p_0r_0b (azul) e p_1r_1b (vermelho) estão em perspectiva, cujo centro é o ponto O = ab.

Exercício 10. Mostre que se H(ab, cd) e $abcd \overline{\wedge} a'b'c'd'$, então H(a'b', c'd').

Exercício 11. Mostre que se H(AB,CD), então H(AB,DC), e também H(BA,CD). [Sugestão: use a notação da figura 5. e verifique que $ACD \ \overline{\wedge}\ AUW \ e \ AUW \ \overline{\wedge}\ ADC$; também, $ABD \ \overline{\wedge}\ QSD \ e \ QSD \ \overline{\wedge}\ BAD$.]

Proposição 4. Se H(DC, BA), então H(AB, CD). Veja a Figura 5

Demonstração. Supomos que H(DC,BA) e tomamos um quadrângulo TUVW de modo que $C=TU\cdot VW,\ D=TW\cdot UV,\ A=CD\cdot UW$ e $B=CD\cdot TV$ (veja a construção em vermelho na Figura 5). Seja $O=TV\cdot UW$ o ponto diagonal remanescente. Sejam $P=OC\cdot TW,\ Q=OD\cdot TU,\ R=OC\cdot UV$ e $S=OD\cdot VW.$

Com isso, obtemos um novo quadrângulo ORVS, tal que $C = OR \cdot VS$, $D = OS \cdot VR$ e $B = OV \cdot CD$. Como vale H(DC, BA), a diagonal RS deverá ser incidente com A. O mesmo argumento com o quadrângulo TQOP mostra que PQ também será incidente com A. Assim, o quadrângulo PQRS (em azul na Figura 5) testemunha o fato que H(AB, CD).

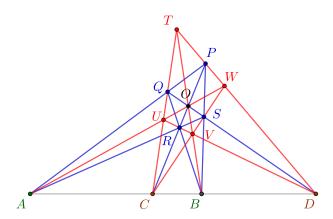


FIGURA 5. H(AB, CD) se, e somente se, H(DC, BA).

Exercício 12. Se valer H(AB, CD), quais são as permutações dos pontos ABCD para que continue sendo fileira harmônica?

Exercício 13. Suponha que H(AB,CD) e H(A'B',C'D'). Mostre que $ABCD \times A'B'C'D'$ [Existe uma projetividade $ABC \times A'B'C'$. Mostre que D tem que ser levado em D'.]

Os exercícios seguintes usam as coordenadas não homogêneas do plano projetivo como uma extensão do plano euclidiano juntando os pontos do infinito (representados por vetores não nulos com coordenadas entre colchetes, [a,b], e a nova reta ℓ_{∞} contendo os pontos do infinito.)

Exemplo 1. Sejam A = (0,0), B = (2,0) e C = (4,0), determinemos as coordenadas de D, tal que H(AB,CD). Precisamos construir um quadrilátero PQRS com $A = PQ \cdot ES$, $B = PS \cdot QR$ e C incidente com PR e obter o ponto $D = (x_D,0)$ incidente com QS. Para facilitar as contas, usamos $P = [0,1] \in \ell_{\infty}$. Observe que as retas PQ, PR e PS são verticais. Escolhemos o ponto Q = (0,2) e determinamos $R = BQ \cdot CP = (4,-2)$ e $S = BP \cdot AR = (2,-1)$. Assim, $D = (\frac{3}{2},0)$.

Exercício 14. Calcule as coordenadas do ponto D, tal que H(AB, CD), onde

- (a) $A = (-1,0), B = (1,0) \in C = (2,0); resposta: D = (\frac{1}{2},0);$
- (b) $A = (-1,0), B = (1,0) \in C = (10,0); resposta: D = (\frac{1}{10},0);$
- (c) $A = (-1,0), B = (1,0) \in C = (\frac{1}{2},0); resposta: D = (2,0);$
- (d) $A = (-1,0), B = (1,0) \in C = [1,0] \in \ell_{\infty}$; resposta: D = (0,0).

Exemplo 2. Sejam $A = [1, 0] \in \ell_{\infty}$, $B = [0, 1] \in \ell_{\infty}$, $C = [4, 2] \in \ell_{\infty}$. Vamos determinar as coordenadas de $D \in \ell_{\infty}$, tal que H(AB, CD). Sejam P = (0, 0), Q = (2, 0), $R = CP \cdot BQ = (2, 1)$ e $S = BP \cdot AR = (0, 1)$. Assim, $D = PR \cdot \ell_{\infty} = [2, -1]$.

Exercício 15. Determine as coordenadas do ponto $D \in \ell_{\infty}$, tal que H(AB, CD), onde

- (a) $A = [1,0] \in \ell_{\infty}, B = [0,1] \in \ell_{\infty}, C = [1,1] \in \ell_{\infty};$ resposta: D = [1,-1];
- (b) $A = [1,0] \in \ell_{\infty}, B = [0,1] \in \ell_{\infty}, C = [1,-1] \in \ell_{\infty}; resposta: D = [1,1];$
- (c) $A = [1,0] \in \ell_{\infty}, B = [0,1] \in \ell_{\infty}, C = [1,2] \in \ell_{\infty}; resposta: D = [1,-2];$
- (d) $A = [1,0] \in \ell_{\infty}, B = [0,1] \in \ell_{\infty}, C = [-1,1] \in \ell_{\infty}, resposta: D = [1,1].$

Se você entendeu esse exercício, você consegue saber as respostas do exercício seguinte.

Exercício 16. Determine a equação vetorial da reta d, tal que H(ab, cd), onde

- (a) a: x = 0, b: y = 0 e c: (x, y) = (0, 0) + t(1, 1);
- (b) a: x = 0, b: y = 0 e c: (x, y) = (0, 0) + t(-1, 1);
- (c) a: x = 0, b: y = 0 e c: (x, y) = (0, 0) + t(1, 2);
- (d) a: x = 0, b: y = 0 e c: (x, y) = (0, 0) + t(1, -2).

Exemplo 3. Sejam a: x = 0, b: x = 6 e $c = \ell_{\infty}$ (este é um feixe de retas incidentes com o ponto comum O = [0,1]). Determinemos d, tal que H(ab,cd). Aqui a resposta é d: x = 3. (Faça as contas. Observe que as interseções com o eixo x são os pontos A = (0,0), B = (6,0) e $C = [1,0] \in \ell_{\infty}$, e D, com H(AB,CD).)

Exercício 17. Sejam $a: x = 0, b = \ell_{\infty}$ e c: x = 4. Determine d, tal que H(ab, cd). (Resposta: d: x = -4.)

Exercício 18. Mostre que se $A=(a,0),\ B=(b,0),\ C=(c,0)$ e D=(d,0) satisfazem H(AB,CD), então

$$\frac{(c-a)(d-b)}{(d-a)(c-b)} = -1.$$

4. Ordem

Os axiomas de ordem foram estudados primeiramente por Moritz Pasch, [4], que os introduziu tanto na geometria euclidiana como na geometria projetiva. Como as retas do plano projetivo são "curvas

fechadas", a relação de B estar entre A e C não se comporta bem na geometria projetiva, mas a noção de A e B separam C e D, denotada AB // CD funciona muito bem. Axiomatizemos essa noção.

O próximo axioma substitui o segundo axioma, pois a relação "//" requer quatro pontos distintos.

Axioma 7. Cada reta é incidente com pelo menos quatro pontos distintos.

Exercício 19. Mostre que cada ponto é incidente com pelo menos 4 retas distintas.

Axioma 8. Se $AB /\!\!/ CD$, então A, B, C e D são quatro pontos colineares e distintos.

Axioma 9. Se AB // CD, então AB // DC

Axioma 10. Se A, B, C e D forem quatro pontos colineares e distintos, então valerá pelo menos uma das relações AB // CD, BC // DA ou BD // AC.

Axioma 11. Se *AB* // *CD* e *AC* // *BE*, então *AB* // *DE*.

Axioma 12. Se AB // CD e $ABCD \overline{\wedge} A'B'C'D'$, então A'B' // C'D'.

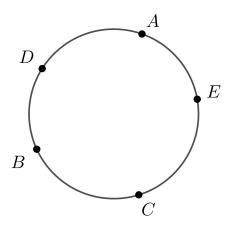


FIGURA 6. Axiomas de ordem.

Exercício 20. Mostre que são equivalentes essas relações (uma implica a outra – indique os axiomas usados): AB //CD, AB //DC, BA //DC, BA //DC, CD //AB, CD //BA, DC //AB e DC //BA.

Exercício 21. Mostre que cada uma das três relações exclui as outras duas: AB // CD, BC // DA, BD // AC.

Exercício 22. Mostre que se $AB /\!\!/ CD$ e $AC /\!\!/ BE$, então $BE /\!\!/ CD$. [Sugestão: $BE /\!\!/ AC$ e $BA /\!\!/ ED$.]

Exercício 23. Mostre que se ABC for uma fileira, então existe (pelo menos) um ponto D, tal que AB // CD.

Definição 7 (Segmento). Dados três pontos distintos e colineares A, $B \in C$, o segmento AB/C é o conjunto de todos os pontos D (incidentes com AB), tais que AB // CD. (Observe que $C \notin AB/C$.) Os pontos $A \in B$ são os extremos de AB/C.

Exercício 24. Mostre que a imagem do segmento AB/C pela projetividade T é o segmento T(A)T(B)/T(C).

Exercício 25. Dado um segmento AB/C, mostre que existem projetividades T_1 e T_2 distintas da identidade, tais que imagem de AB/C por T_1 é AB/C e por T_2 é AB/D, onde AC // BD.

Exercício 26. Mostre que toda fileira de $n \geq 4$ pontos pode ser nomeada $A_1 \ldots A_n$, de modo que se $1 \leq i < n$, não existem $j,k \in \{1,\ldots,n\} \setminus \{i,i+1\}$, tais que $A_iA_jA_{i+1}A_k$ e também para todo $j,k \in \{1,\ldots,n\} \setminus \{1,n\}$, não ocorre a relação $A_1A_n /\!/ A_jA_k$. [Veja a Figura 7. Faça indução em $n \geq 4$.]

Definição 8 (Fileira em Ordem Cíclica). Uma fileira $A_1 ... A_n$ está enumerada em *ordem cíclica* se satisfizer a condição do Exercício 26.

Observação 2. Se a fileira $A_1
ldots A_n$ estiver em ordem cíclica, então se $j, k \in \{1, \ldots n\} \setminus \{i, i+1\}$, então $A_j \notin A_i A_{i+1} / A_k$ (e o análogo para $A_1 A_n / A_k$).

Proposição 5. Toda reta é incidente com uma infinidade de pontos.

Demonstração. Vamos mostrar que se $n \geq 3$, então toda reta incide com mais do que n pontos, por indução em n.

O caso inicial, n = 3, é o Axioma 7.

Suponha que a reta r reta incida com os n pontos distintos A_1, \ldots, A_n . Podemos supor que estejam em ordem cíclica. Veja a figura 7.

Sejam $A = A_1$, $B = A_2$ e $C = A_3$. Pelo Exercício 23, existe D tal que AB // CD. Como a fileira $A_1 ... A_n$ está em ordem cíclica, $D \in AB/C$. Daí, D não é nenhum dos pontos da fileira, ou seja, existem n + 1 pontos colineares e distintos.

Exercício 27. Detalhe o argumento final da proposição acima.

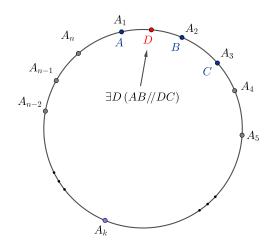


FIGURA 7. Infinidade de pontos em retas.

Exercício 28. Mostre que cada ponto é incidente com uma infinidade de retas.

Proposição 6. Dados os pontos A_1, \ldots, A_n , com $n \geq 2$, não todos colineares, existem $i, j \in \{1, \ldots, n\}, i \neq j$, tais que a reta $A_i A_j$ não é incidente com nenhum dos outros pontos.

Demonstração. Suponhamos que o enunciado seja falso e cheguemos a uma contradição.

Como os pontos não são colineares, existem três deles formando um triângulo. Podemos supor que esses sejam $A_1A_2A_3$. Seja a uma reta incidente com A_1 e com nenhum outro desses pontos, que existe devido à infinidade de retas incidentes com A_1 . As retas incidentes com dois dos pontos entre A_1, \ldots, A_n incidem com pontos incidentes com a, com A_1 sendo um deles. Podemos considerá-los em ordem cíclica. Seja $B \neq A_1$ incidente com a um desses pontos, escolhido de forma que não haja nenhum desses pontos em um dos segmentos de a de extremidades A_1 e B. Observe que B não é nenhum dos pontos A_1, \ldots, A_n . Por hipótese, existem três pontos distintos A_i , A_j , A_k na reta que incide com B. Podemos supor que estejam nomeados de modo que valha a relação BA_i // A_jA_k . A reta A_1A_i de ser incidente com um terceiro

ponto A_m . Projetamos em a com centro A_m e obtemos $BA_iA_jA_k \stackrel{\underline{\wedge}_m}{\overline{\wedge}} BA_1A'_jA'_k$, ou seja $A'_j \in BA_1/A'_k$ e $A'_k \in BA_1/A'_j$, o que contradiz a escolha do ponto B.

Como aplicações dessa Proposição, temos os três resultados a seguir.

Exercício 29. Mostre que os três pontos diagonais de um quadrângulo não são colineares.

Exercício 30. Se H(AB, CD), então $D \neq C$. [Suponha que C = D e obtenha configuração em que as retas têm 3 pontos cada.]

Exercício 31. Se H(AB,CD), então $AB /\!\!/ CD$. [Use o exercício anterior e uma projetividade que troque C com D. O que acontece com a separação de pontos?]

5. Continuidade

Para apresentarmos o axioma de continuidade (Dedekind)², vamos definir a relação ternária de "estar entre" em cada segmento AB/C.

Definição 9 (Relação *Estar Entre*). Dado o segmento AB/C e os pontos $P, Q, R \in AB/C$, definimos a relação P - Q - R (Q está entre $P \in R$) se, e somente se, $AQ /\!/ PR$.

Exercício 32. Sejam ABC e A'B'C' duas fileiras de pontos distintos cada uma (na mesma reta, ou em retas distintas), e suponha que $ABC \ \overline{\land}\ A'B'C'$. Mostre que se $P,Q,R \in AB/C$ e $P',Q',R' \in A'B'/C'$ forem tais que $PQR \ \overline{\land}\ P'Q'R'$ (mesma projetividade), então P-Q-R se, e somente se, P'-Q'-R'.

Observação 3. Como $AQ /\!/ PR$ é equivalente a $AQ /\!/ RP$, a relação P-Q-R é simétrica em relação aos pontos P e R: vale também que R-Q-P.

Exercício 33. Sejam $P, Q, R \in AB/C$ pontos distintos, tais que AQ/P PB, AR/PQB. Mostre que AR/PB. Mostre que a relação $P \prec Q$ em AB/C definida por AQ/PB é transitiva, e que para cada par de pontos distintos $P, Q \in AB/C$, se $P \prec Q$ então não vale a simétrica $Q \prec P$. Ou seja \prec é uma relação de ordem linear em AB/C.

Definição 10 (Ordem Linear em Segmentos). Definimos uma ordem linear no segmento AB/C, $P \prec Q$ se AQ // PB.

Exercício 34. Mostre que existe projetividade que mapeia o segmento AB/C nele mesmo, decrescente em relação à ordem \prec .

Exercício 35. Mostre que se $P,Q,R\in AB/C$ e AQ // PR, então PR // QB.

²Aqui divergimos do livro de Coxeter, [1].

Exercício 36. Mostre que se $P, Q, R \in AB/C$ forem distintos, então vale exatamente uma das relações P-Q-R, ou P-R-Q, ou Q-P-R.

Exercício 37. Mostre que se $P, Q, R \in AB/C$, então existem $N, S \in AB/C$, tais que N - P - Q e Q - R - S.

Exercício 38. Mostre que se $P, Q, R \in AB/C$, então existem $N, S \in AB/C$, tais que P - N - Q e Q - S - R.

Exercício 39. Mostre que se $M, N, P, Q \in AB/C, M-N-P$, e N-P-Q, então M-N-Q e M-P-Q.

Axioma 13 (Continuidade). Dados o segmento AB/C, dois subconjuntos disjuntos e não vazios $\mathcal{X}, \mathcal{Y} \subseteq AB/C$, tais que para todos $P,Q \in \mathcal{X}$, com $P \neq Q$ e $R \in \mathcal{Y}$, ou P-Q-R, ou Q-P-R, e todos $R,S \in \mathcal{Y}$, com $R \neq S$, e $P \in \mathcal{X}$, ou P-R-S, ou P-S-R (ou seja, não existe ponto de um dos conjuntos entre dois pontos do outro conjunto), existe um ponto $D \in AB/C$, tal que para todo $P \in \mathcal{X}$ e todo $Q \in \mathcal{Y}$, ou P = D, ou Q = D, ou P - D - Q, e não existem pontos $P,Q \in \mathcal{X}, R,S \in \mathcal{Y}$, tais que P-D-Q ou R-D-S.

6. O Teorema Fundamental para Retas

O Teorema Fundamental para retas declara que dadas duas fileiras de três pontos distintos cada, ABC e A'B'C', existe uma única projetividade $ABC \ \overline{\land}\ A'B'C'$. A existência já foi deduzida na Proposição 1, página 5. A unicidade requer mais trabalho e é o objetivo dessa Seção.

Exercício 40. Seja P incidente com r um ponto que não seja fixo por uma projetividade de r em r. Mostre que existe um segmento AB/C em r, com $P \in AB/C$, tal que nenhum ponto $Q \in AB/C$ seja ponto fixo da projetividade.

Proposição 7. Se uma projetividade entre retas tem pelo menos três pontos fixos, então ela é a identidade.

Demonstração. Sejam A,B e C três pontos colineares fixos por uma projetividade. Por causa disso, o segmento AB/C é mapeado em si mesmo. O ponto $D \in AB/C$, tal que H(AB,CD) também é ponto fixo.

Se houver um ponto $P \in AB/C$ que não seja fixo, então sua imagem P' será tal que ou $AP/C \subset AP'/C$ ou $BP/C \subset BP'/C$. Devido à simetria da argumentação, podemos assumir somente o primeiro caso.

Não pode haver nenhum ponto fixo no segmento PP'/C. Aplicamos o Axioma da Continuidade ao par de conjuntos $\mathcal{X} = \{Q \in PB/C : n\tilde{a}o existe ponto fixo em <math>PQ/C\}$ e seu complemento $\mathcal{Y} = \{Q \in PB/C : n\tilde{a}o existe ponto fixo em PQ/C\}$

existe ponto fixo em PQ/C} \cup {B}, para obtermos um ponto $M \in (PB/C) \cup \{B\}$ que os separa. Esse ponto M será um ponto fixo. O mesmo argumento aplicado ao par de conjuntos $\mathcal{X}' = \{Q \in PA/C : n\~ao \ existe \ ponto \ fixo \ em \ PQ/C\}$ e seu complemento $\mathcal{Y}' = \{Q \in PA/C : existe \ ponto \ fixo \ em \ PQ/C\} \cup \{A\}$ produz um ponto $N \in PA/C \cup \{A\}$ que separa os dois conjuntos e que também tem que ser um ponto fixo. Além disso, no segmento MN/C não pode haver nenhum ponto fixo. No entanto, se L for tal que H(MN, LC), $L \in MN/C$ e L também será ponto fixo, pois M, N e C o são. Essa contradição demonstra a proposição.

Exercício 41 (Unicidade). Mostre que dadas duas fileiras de três pontos cada, ABC e A'B'C', então existe uma única projetividade $ABC \times A'B'C'$.

Exercício 42. Mostre que se T for projetividade da fileira ABC... sobre a fileira A'B'C'... e X e Y dois pontos, com X não incidente com a reta AB e Y não incidente com a reta A'B', então T induz projetividade do feixe abc... sobre o feixe a'b'c'..., onde a = XA, b = XB, c = XC, ..., a' = YA', b' = YB', c' = YC',

Exercício 43. Mostre que se T for projetividade do feixe abc... sobre o feixe a'b'c'..., e x e y duas retas, com x não incidente com o ponto $a \cdot b$ e y não incidente com o ponto a'b', então T induz projetividade da fileira ABC... sobre o feixe A'B'C'..., onde $A = x \cdot a$, $B = x \cdot b$, $C = x \cdot c, ..., A' = y \cdot a', B' = y \cdot b', C' = y \cdot c',$

7. Classificação de Projetividades em Retas

Essa Seção dedica-se à classificar projetividades de uma reta nela mesma. Consideremos os seguintes exemplos, que motivam os conceitos a seguir. Os nomes entre parênteses nos exemplos são explicados mais adiante, e referem-se às classes de projetividades.

Observe que dadas as fileiras ABC e A'B'C', cada uma com três pontos distintos, uma projetividade $ABC \subset A'B'C'$ mapeia o segmento AB/C bijetivamente sobre o segmento A'B'/C', pois se $AP /\!\!/ BC$ e $ABPC \subset A'P'B'C'$, então $A'P' /\!\!/ B'C'$.

Definição 11 (Orientação de Retas). Dada uma fileira de três pontos colineares e distintos, $P_0P_1P_{\infty}$, uma fileira $ABC\dots$ de pelo menos três pontos distintos, ordenados ciclicamente, tem a mesma orientação que $P_0P_1P_{\infty}$ se sua união $A_0A_1A_2\dots$ puder ser ordenada ciclicamente de modo que a ordem cíclica restrita às fileiras originais forem as ordens cíclicas iniciais. Caso contrário, dizemos que a orientação é oposta.

Observação 4. A orientação de uma fileira de pelo menos três pontos em ordem cíclica é determinada pelos primeiros três pontos.

Exemplo 4 (Projetividade Hiperbólica Direta). Dada a fileira ABC de três pontos distintos, se $D \neq A, B, C$, e $D \notin AB/C$, existe uma projetividade $ABC \times ABD$. Essa projetividade mapeia o segmento AB/C nele mesmo e tem exatamente A e B como pontos fixos.

Exemplo 5 (Projetividade Hiperbólica Oposta). Dada a fileira ABC de três pontos distintos, se $D \in AB/C$, existe uma projetividade $ABC \times ABD$. Essa projetividade mapeia o segmento AB/C no segmento AB/D, disjunto de AB/C, e tem exatamente $A \in B$ como pontos fixos.

Exemplo 6 (Projetividade Parabólica). Dada a fileira ABCD de quatro pontos distintos, tais que H(AC,BD), a projetividade $ABC \overline{\wedge} ACD$ mapeia o segmento BC/A em CD/A, o segmento AB/D em AC/D, e CA/B em DA/B, com ponto fixo A. Como H(AC,BD), existe um quadrilátero PQRS, tal que $A = PQ \cdot RS$, $C = PS \cdot QR$, B incide com

PR e D incide com QS. Observe que $ABC \stackrel{P}{\overline{\wedge}} ARS$ e $ARS \stackrel{Q}{\overline{\wedge}} ACD$. Isso mostra que a projetividade desse exemplo é a composição dessas duas perspectivas (devido à unicidade da projetividade determinada por três pontos). O único ponto fixo é o ponto A.

Exemplo 7 (Projetividade Elíptica). Dada a fileira ABC de três pontos distintos, a projetividade $ABC \\ \\tau BCA$ mapeia o segmento AB/C no segmento BC/A, o segmento BC/A no segmento CA/B e o segmento CA/B no segmento AB/C, e não tem pontos fixos.

Definição 12. Uma projetividade de uma reta sobre ela mesma, que não seja a identidade, é dita *elíptica* se não tiver pontos fixos; *parabólica* se tiver um único ponto fixo; *hiperbólica direta* se tiver dois pontos fixos e não inverter a orientação da reta; *hiperbólica oposta* se tiver dois pontos fixos e inverter a ordem da reta.

Exercício 44. Mostre que uma projetividade em uma reta r que for a composição de suas perspectivas tem (pelo menos) um ponto fixo. [Considere uma das perspectivas de centro O_1 da reta r sobre a reta $s \neq r$, e a segunda perspectiva de centro O_2 da reta s sobre s; observe que s são concorrentes.]

Observação 5. Por causa disso, uma projetividade elíptica tem que ser a composição de (pelo menos) três perspectivas. Examine a demonstração da Proposição 1, página 5, para ver que bastam três perspectivas.

Exercício 45. Mostre que uma projetividade hiperbólica ou parabólica em uma reta r é a composição de duas perspectivas. [Se M for um dos pontos fixos incidentes com r, suponha que a projetividade seja dada por $MAB \ \overline{\wedge}\ MA'B'$; escolha uma reta $s \neq r$ incidente com M e uma perspectiva $MAB \ \overline{\wedge}\ MA_1B_1$ de r em s; tome $O_2 = A_1A' \cdot B_1B'$.]

Exercício 46. Dada uma orientação $P_0P_1P_\infty$ de uma reta, considere a projetividade $P_0P_1P_\infty$ $\overline{\wedge}$ ABC nessa mesma reta. Ou a orientação de ABC coincide com a de $P_0P_1P_\infty$, ou é oposta e, para quaisquer ordem cíclica $Q_0Q_1Q_2\ldots$, sua imagem pela projetividade $Q_0'Q_1'Q_2'\ldots$ tem mesma orientação, ou tem a orientação oposta, respectivamente. [Analise o que ocorre com os pontos dos segmentos AB/C, BC/A e CA/B.]

Exercício 47. Dada uma projetividade hiperbólica em r, cujos dois pontos fixos sejam M e N, e mapeia um terceiro ponto A em $A' \neq A$ (isto é, $MNA \land MNA'$), mostre que ele é oposta se MN / / AA' e direta se MA / / NA'.

Proposição 8. Se a projetividade de uma reta sobre ela mesma inverter as ordem cíclica dos pontos, então ela terá dois pontos fixos.

Demonstração. Observe que a identidade é uma projetividade que mantém a ordem cíclica dos pontos. Daí, essa projetividade não pode ser a identidade.

Convenhamos que se P denotar um ponto qualquer da reta em questão, P' denotará sua imagem pela projetividade.

Sejam ABC uma fileira ordenada ciclicamente, e A'B'C' a fileira tal que $ABC \times A'B'C'$. A ordem cíclica de A'B'C' é oposta à de ABC, por hipótese.

Se dois dos pontos já forem pontos fixos, já vale o enunciado.

Suponhamos que A=A' e que $B\neq B'$ e $C\neq C'$. Assim, ou $B,B'\in CC'/A$, ou $C,C'\in BB'/A$, ou BB'/CC'. Nesse último caso, a ordem cíclica é AC'BCB'. Se $B_1\in AC'/B\subset AB/C$, então sua imagem $B_1'\in AB'/C'$. Assim, obtemos a ordem cíclica $AB_1C'CB_1'$, ou seja, $C,C'\in BB'/A$. Dessa forma, basta analisarmos os dois primeiros casos. Pela sua simetria, basta analisarmos o primeiro caso, pois o segundo é análogo. A ordem cíclica do primeiro caso é AC'BB'C. Observe que

Sejam $\mathcal{X} = \{P \in BB'/A : vale \ a \ ordem \ c´iclica \ ABPP'B'\} \ e \ \mathcal{Y} = \{P \in BB'/A : vale \ a \ ordem \ c´iclica \ ABP'PB'\}$. Esses conjuntos são disjuntos que satisfazem as hipóteses do Axioma 13 (da Continuidade), página 15. Da´í, o ponto $D \in BB'/A$ que separa os dois conjuntos não pode pertencer a nenhum deles e, assim, D' = D é o outro ponto fixo.

Agora, consideramos o caso em que os seis pontos A, B, C, A', B' e C' são distintos. Pela escolha conveniente de novos pontos B e C, podemos assumir que os pontos formam a ordem cíclica ABCC'B'A'. Sejam $\mathcal{X}' = \{P \in CC'/A : vale \ a \ ordem \ cíclica \ ACPP'C'\}$ e $\mathcal{Y}' = \{P \in CC'/A : vale \ a \ ordem \ cíclica \ ACP'PC'\}$. Usamos o mesmo argumento com o Axioma da Continuidade como acima e obtemos um ponto fixo, e caímos no caso anterior.

8. Involuções

Nesta Seção seguimos as referências [3, 5].

Consideramos aqui as projetividades que satisfazem $AA' \times A'A$, para um par de pontos distintos A e A', chamadas de involuções. Essas são usadas para a introdução de coordenadas não homogêneas em uma reta projetiva.

Proposição 9. Suponha que A, A' e X sejam colineares e distintos, e que $AA'X \ \overline{\wedge} \ A'AX'$. Neste caso, $XX' \ \overline{\wedge} \ X'X$. Ou seja, se uma projetividade (involução) troca um par de pontos A e A', então troca todos os pares de pontos X e X', (onde $AX \ \overline{\wedge} \ A'X'$) da mesma reta.

Demonstração. O Exercício 6, página 5, indica como obter uma projetividade que troca pares de pontos, $AA'XX' \times A'AX'X$. Ela coincide com $AA'X \times A'AX'$ (unicidade).

Observação 6. Uma involução é determinada por dois pares de pontos, sendo que um deles não é ponto fixo. Sejam $A \neq A'$, $B \neq A$ e $B \neq A'$, e B', tais que $AA'BB' \land A'AB'B$. Isso é uma involução, e está determinada devido à unicidade da projetividade $(AA'B \land A'AB')$.

Exercício 48. Suponha que H(AB, CD). Mostre que $ABC \times ABD$ é uma involução (hiperbólica oposta).

Exercício 49. Mostre que uma involução hiperbólica $ABC \times ABD$, onde A, B, C e D são distintos, satisfaz H(AB, CD).

Exercício 50. Mostre que se $AB /\!\!/ CD$, então $ABC \land BAD$ é uma involução elíptica.

Exercício 51. Mostre que se uma involução tiver um ponto fixo, então ela é hiperbólica (oposta). [Sugestão: se $AA'M \times A'AM$, se HMN, AA'), então N também é ponto fixo, A involução neste caso é $MNX \times MNX'$, com H(MN, XX').]

Proposição 10. Qualquer projetividade em uma reta é a composição de duas involuções.

Demonstração. Uma involução composta consigo mesma é a identidade.

Dada uma projetividade $T:AA' \land A'A''$, com $A \neq A'$, seja $S:AA''A' \land A''AA'$. Sua composição $R=S \circ T:AA'A'' \land A'AA'''$ é uma involução, e $T=S \circ R$.

Proposição 11. Os três pares de pontos A, A', B, B', C, C' (com $C \neq C'$) formam uma involução $AA'BB'CC' \times A'AB'BC'C$ se, e somente se $ABCC' \times B'A'CC'$.

Demonstração. Suponha que AA'BB'CC'
ota A'AB'BC'C. Isso implica ABCC'
ota A'B'C'C e o Exercício 6, página 5, A'B'C'C
ota B'A'CC'. A composição é ABCC'
ota B'A'CC'.

Para a recíproca, suponhamos que $ABCC' \land B'A'CC'$ e que $ABC \land A'B'C'$. Daí, $ABCC' \land B'A'CC' \land A'B'CC'$.

O seguinte resultado relaciona três triplas de pontos em uma involução com quadrângulos, muito útil na introdução de coordenadas.

Proposição 12. Os três pares de pontos X, X', Y, Y', Z, Z' incidentes com uma reta ℓ formarão uma involução $XX'YY'ZZ' \\to X'XY'YZ'Z$ se, e somente se, existir um quadrângulo PQRS, cujos pontos diagonais sejam $A = PQ \cdot RS$, $B = PS \cdot QR$ e $C = PR \cdot AS$, tal que $X = \ell \cdot AP$, $X' = \ell \cdot AS$, $Y = \ell \cdot BQ$, $Y' = \ell \cdot BP$, $Z = \ell \cdot CP$ e $Z' = \cdot CQ$.

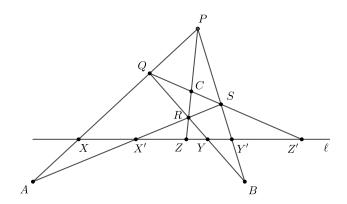


Figura 8

Demonstração. Acompanhe a Figura 8.

Primeiramente suponhamos que exista tal quadrângulo. A composição das perspectividades

$$YX'ZZ' \stackrel{R}{\overline{\wedge}} QSZZ' \stackrel{P}{\overline{\wedge}} Y'XZZ' \Rightarrow YX'ZZ' \overline{\wedge} Y'XZZ',$$

produz a projetividade que implica a involutção desejada, devido ao critério da Proposição 11.

Para a recíproca, aplicamos o exercício 45 na página 18 para obter um tal quadrângulo. $\hfill\Box$

Exercício 52. Detalhe a obtenção do quadrângulo na demonstração da recíproca da Proposição 12 acima.

Exercício 53. Dados cinco ponto colineares X, X', Y, Y' e Z, mostre que existe um único ponto Z', tal que existe uma involução $XYZ \times X'Y'Z'$. [Obtenha um quadrângulo conveniente.]

Exercício 54. Mostre que existe a projetividade $UVXY \land UVX'Y'$ se, e somente se existir a projetividade $UVXX' \land UVYY'$.

Exercício 55. Mostre que se A e B forum par de pontos relacionados nas involuções $XX'YA \times X'XY'B$ e $XX''YA \times X''XY''B$, então $X'X''Y'A \times X''X'Y''B$.

9. Coordenadas Não Homogêneas de uma Reta

Para a introdução de coordenadas em uma reta projetiva, escolhemos três de seus pontos (distintos) P_0 , P_1 e P_{∞} , fixos ad eternum.

Definição 13 (Pontos Racionais). Para cada $n \in \mathbb{N}$, $n \geq 1$, definimos recursivamente P_{n+1} como o conjugado harmônico de P_n em relação a P_{n-1} e P_{∞} , $H(P_{n-1}P_{\infty},P_nP_{n+2})$, e P_{-n} como o conjugado harmônico de P_{-n+1} em relação a P_{-n+2} e P_{∞} . Para $n \in \mathbb{N}$, n > 1, definimos $P_{1/n}$ como o harmônico conjugado de P_n em relação aos pontos P_1 e P_{-1} , e $P_{-1/n}$ como o harmônico conjugado de P_n em relação a P_1 e P_{-1} .

Por recursão em $k \in \mathbb{N}$, k > 0, para todo $n \in \mathbb{Z}$, |n| > 1, definimos $P_{(k+1)/n}$ como o harmônico conjugado de $P_{k/n}$ em relação a $P_{(k-1)/n}$ e P_{∞} .

Os pontos P_r $(r \in \mathbb{Q})$ são os pontos racionais da reta.

Exercício 56. Suponha que $r, s, t \in \mathbb{Q}$ sejam tais que r < s < t. Mostre que $P_{\infty}P_s /\!/ P_r P_t$.

No que segue, fixamos três pontos distintos P_o , P_1 e P_{∞} incidentes com uma reta ℓ .

Definição 14 (Soma de Pontos). Sejam P_x e P_y pontos incidentes com ℓ e distintos de P_0 e de P_∞ (mas P_x e P_y podem ser o mesmo ponto), e seja AXBY um quadrângulo, tal que $P_\infty = AY \cdot BX$, $P_x = AX \cdot \ell$, $P_y = BY \cdot \ell$, $P_0 = AB \cdot \ell$. Definimos o ponto denotado $P_x + P_y$ como o ponto $\ell \cdot XY$. Veja a Figura 9.

Estendemos essa definição por $P_0+P=P$ e $P_\infty+P=P_\infty$, para todo P incidente com ℓ .

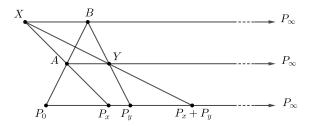


FIGURA 9. Definição da soma dos pontos P_x e P_y . O ponto P_{∞} foi colocado "no infinito" para mostrar o paralelo com o caso euclidiano.

Observação 7. A Proposição 12 na página 20 diz que isso é equivalente a existir uma involução $P_x P_y P_0 P_\infty \overline{\wedge} P_y P_x (Px + Py) P_\infty$. O ponto $P_x + P_y$ é unicamente determinado pelos outros pontos, devido ao resultado do Exercício 53 na página 21.

Proposição 13 (Associatividade da Soma de Pontos). A operação de soma de pontos é associativa.

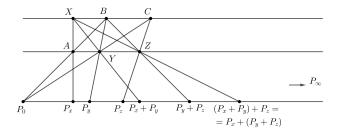


FIGURA 10. A soma de pontos é associativa.

Demonstração. Acompanhe a Figura 10.

Na figura, com o quadrilátero XYZC, obtemos o ponto $(P_x + P_y) + P_z = \ell \cdot XZ$ e com o quadrilátero XYZB obtemos o ponto $P_x + (P_y + P_z) = \ell \cdot XZ$, o mesmo ponto.

Restringimos aos pontos racionais e damos um significado aos subíndices dos pontos.

Proposição 14 (Soma de Pontos Racionais). A imagem de P_0 pela involução $P_r P_s P_{\infty} \ \overline{\wedge} \ P_s P_r P_{\infty}$ é P_{r+s} .

Demonstração. Observe que a involução é hiperbólica. O outro ponto fixo é o conjugado harmônico de P_{∞} em relação aos pontos P_r e P_s que é o ponto $P_{(r+s)/2}$. [Exercício: verifique!]

A imagem de P_0 é o harmônico conjugado de P_0 em relação P_{∞} e $P_{(r+s)/2}$, que é o ponto P_{r+s} . [Exercício: verifique!]

Definição 15 (Multiplicação de Pontos). Dados dois pontos P_x e P_y incidentes com a reta ℓ , distintos de P_0 e P_∞ , seja AXBY uma quadrângulo, tal que $P_0 = AY \cdot \ell$, $P_1 = AB \cdot \ell$, $P_\infty = XB \cdot \ell$, $P_x = AX \cdot \ell$, $P_y = BY \cdot \ell$. O sexto ponto $XY \cdot \ell$ é denotado $P_x \times P_y$, independe do quadrângulo e é chamado de $P_x \times P_y$.

Estendemos essa definição a $P_0 \times P_x = P_0$ e se $P_x \neq P_0, P_\infty \times P_x = P_\infty$.

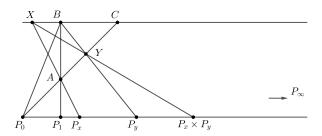


FIGURA 11. Definição de produto de pontos. O ponto P_{∞} foi colocado "no infinito" para mostrar o paralelo com o caso euclidiano.

Exercício 57. Mostre que essa definição é equivalente a existir uma involução $P_0P_xP_yP_1 \ \overline{\wedge}\ P_\infty P_y P_x (P_x \times P_y)$.

Observação 8. A comutatividade do produto segue imediatamente dessa observação.

Proposição 15 (Associatividade do Produto de Pontos). O produto de pontos é operação associativa.

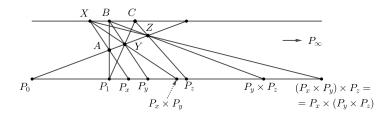


FIGURA 12. O produto de pontos é associativo.

Demonstração. Acompanhe a Figura 12. A reta XZ é diagonal dos quadrângulos XBZY e XCZA.

Exercício 58 (Multiplicação de Pontos Racionais). A imagem de P_1 pela involução $P_r P_s P_0 \overline{\wedge} P_s P_r P_{\infty}$ é o ponto P_{rs} .

Observação 9. Usamos o Axioma da Continuidade e obtemos uma bijeção $x \in \mathbb{R} \mapsto P_x$ (incidente com ℓ), tal que $P_x + P_y = P_{x+y}$ e $Px \times P_y = P_{xy}$.

10. Projetividades em Coordenadas

Proposição 16 (Projetividades em Coordenadas não Homogêneas). Transformações projetivas têm a forma

$$x \mapsto \frac{ax+b}{cx+d}$$

com det $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc \neq 0$ e as regras:

- (1) $a/\infty = 0$ e $a/0 = \infty$ ($a \in \mathbb{R}$, $a \neq 0$),
- (2) $a + \infty = \infty$ ($\infty \pm \infty$ não são definidas),
- (3) $a\infty = \infty$ se $a \neq 0$, e $0\infty = 0$
- $(4) (a\infty + b)/(c\infty + d) = a/c.$

A matriz $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ representa a projetividade (ax + b)/(cx + b)

d), e se $\lambda \neq 0$, a matriz $\lambda M = \begin{pmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{pmatrix}$ representa a mesma projetividade.

Demonstração. A demonstração divide-se em quatro passos, três dos quais são exercícios.

Exercício 59. Mostre que se $c \neq 0$

$$\left(\begin{array}{cc} 0 & \lambda \\ c & d \end{array}\right) = \left(\begin{array}{cc} \lambda & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} c & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & d/c \\ 0 & 1 \end{array}\right).$$

Exercício 60. Seja $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, com det $M\neq 0$ e $c\neq 0$. Mostre que

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} 1 & a/c \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & \lambda \\ c & d \end{array}\right),$$

onde $\lambda = (bc - ad)/c$.

Agora falta mostrar que toda projetividade pode ser construída pela composição de projetividades das formas

- (a) $x \mapsto \lambda x, \lambda \in \mathbb{R} \setminus \{0\};$
- (b) $x \mapsto x + a, a \in \mathbb{R}$;
- (c) $x \mapsto 1/x$.

Exercício 61. Sejam $\phi(x) = (ax+b)/(cx+d) e \psi(x) = (a'x+b')/(c'x+d')$, com as matrizes correspondentes

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad M' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}.$$

Mostre que a composição $\phi \circ \psi(x) = \phi(\psi(x))$ tem como matriz correspondente o produto M M'.

Fixo $\lambda \in \mathbb{R} \setminus \{0\}$, $x \mapsto \lambda x$ corresponde a $P_x \mapsto P_\lambda \times P_x$. Fixo $a \in \mathbb{R}$, $x \mapsto x + a$ corresponde a $P_x \mapsto P_x + P_a$. A inversão $x \mapsto 1/x$ corresponde á involução $P_1 P_{-1} P_0 \ \overline{\wedge} \ P_1 P_{-1} P_{\infty}$. Ou seja, essas três transformações são projetividades. Suas matrizes são, respectivamente

$$\left(\begin{array}{cc} \lambda & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Composições dessas projetividades tomam a forma esperada.

Observação 10 (Ordem Cíclica). Uma reta projetiva com coordenadas não homogêneas herdam uma ordem cíclica dada pela ordem usual de \mathbb{R} . A fileira de pontos $A_1 \dots A_n$ ($n \geq 3$) está na mesma ordem cíclica de \mathbb{R} se existir uma permutação cíclica dos índices $A_{i1} \dots A_{i_n}$ de forma que se a_p for a coordenada de A_{i_p} , então:

(a) se algum A_j for o ponto de coordenada ∞ , então $a_1 = \infty$ e se $p \neq 1$, então $a_p \in \mathbb{R}$ e $a_2 < a_3 < \cdots < a_n$;

(b) se nenhum dos pontos tiver como coordenada ∞ , então $a_1 < a_2 < \cdots < a_n$.

Exercício 62. Deduza condições em $a, b, c, d \in \mathbb{R}$, com $ad - bc \neq 0$, de modo que a projetividade $T: x \mapsto (ax + b)/(cx + d)$ seja elíptica, parabólica, hiperbólica direta ou hiperbólica oposta. [Sugestão: tente achar potos fixos resolvendo T(x) = x. O que acontece se o determinante for -1?]

Observação 11. Os exercícios acima servem para mostrar que podemos escrever uma transformação projetiva $\phi(x) = (ax + b)/(cx + d)$ como a composição das seguintes transformações:

- (1) $translações\ T(x) = x + u;$
- (2) homotetias $H(x) = \lambda x$;
- (3) inversões I(x) = 1/x.

Exercício 63. Para obter uma expressão para a projetividade $\phi(x) = (ax+b)/(cx+d)$, conhecendo a imagem de três pontos, o usual é escolher as imagens de P_0 , P_1 e P_∞ , cujas respectivas coordenadas sejam 0, 1 e ∞ (poderiam ser quaiquer 3 pontos distintos, mas esses simplificam as contas), basta substituir na expressão de $\phi(x)$: $\phi(0) = b/d$, $\phi(\infty) = a/c$ e $\phi(1) = (a+b)/(c+d)$. As duas primeira reduzem de 4 a 2 incógnitas, e a terceira reduz uma incógnita, entre as quatro incógnitas a, b, c e d. Determine expressões para as seguintes projetividades (sua resposta estará certa se os coeficientes obtidos forem algum múltiplo — pelo mesmo número $\lambda \neq 0$ — dos listados como respostas):

- (a) $\phi(0) = 1$, $\phi(\infty) = -1$ e $\phi(1) = 2$; [resposta: $\phi(x) = (x+3)/(-x+3)$];
- (b) $\phi(0) = 0$, $\phi(1) = \infty$ e $\phi(\infty) = 1$; [resposta: $\phi(x) = x/(x-1)$];
- (c) $\phi(0) = 1/2$, $\phi(\infty) = 1/3$, $\phi(1) = 3/7$; [resposta: $\phi(x) = (x + 2)/(3x + 4)$];
- (d) $\phi(0) = 1/2$, $\phi(\infty) = -5$, $\phi(1) = 6$; [resposta: $\phi(x) = (5x + 1)/(-x + 2)$];
- (e) $\phi(0) = 1$, $\phi(\infty) = 0$ e $\phi(1) = 1/2$; [resposta: $\phi(x) = 1/(x+1)$].

Exercício 64. Mostre que translações e homotetias com $\lambda > 0$ são projetividades diretas (não invertem a ordem cíclica dos pontos da reta projetiva). Mostre que inversões e homotetias com $\lambda < 0$ invertem essa ordem cíclica.

Exercício 65. Qual é a forma de uma involução em coordenadas? Considere os dois casos, que são uma elíptica e outra hiperbólica.

Exercício 66. Classifique cada uma das transformações projetivas abaixo e determine seus pontos fixos, caso existam:

- (a) $x \mapsto x + 1$
- (b) $x \mapsto -x+1$
- (c) $x \mapsto 1/x$
- (d) $x \mapsto -1/(x-2)$

Referências

- [1] H. M. S. Coxeter. The Real Projective Plane. 3 ed, Springer, Berlim, 1995.
- [2] L. Cremona. Elements of Projective Geometry. Dover Publications, Inc, NY, 1958.
- [3] C. W. O'Hara, D. R. Ward. *Introduction to Projective Geometry*. Clarendon Press, Oxford, 1937.
- [4] M. Pasch. Vorlesungen über neuere Geometrie. Teubner, Leipzig, 1882.
- [5] O. Veblen, J. W. Young. *Projective Geometry*, Vol. I. 2^a impressão, 1917, The Athenæum Press, Ginn & Co., Boston.