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1. Model Theoretic Preliminaries

We assume familiarity with the basic results of Predicate Calculus:
Completeness, Compactness, Löwenheim-Skolem. You can read about
these in your preferred Model Theory book.

We recall only the basics of infinitary logic and some specific con-
cepts and results from Model Theory which are akin to model theoretic
forcing.

2. Infinitary Language

We also work with a logic which admits formulas of infinite length.
The one considered here is named Lω1ω and extends the first order logic
(also named Lωω).

Definition 2.1. The language of first order logic is extended with two
new logical symbols,

∧
and

∨
. The construction rules for these symbols

are: given a non empty and countable (finite or denumerable infinite)
set of formulas Φ,

∧
Φ and

∨
Φ are formulas. If the set Φ carries an

enumeration Φ = {φn : n ∈ ω}, the we may write instead
∨
n<ω φn and∧

n<ω φn. (This is important whenever we need to talk about recursive
relations and functions.)

Structures are the same as before, with the satisfaction relation ex-
tended by M |=

∧
Φ[s] if and only if, for each φ ∈ Φ M |= φ[s], and

M |=
∨

Φ[s] if and only if, for some φ ∈ Φ M |= φ[s].

The notions of free and bound variables for Lω1ω is mutatis mutandis
the same as for first order formulas. The only difference is the cases
FV (

∧
n∈N ψn) = FV (

∨
n∈N ψn) =

⋃
n∈N FV (ψn). Now the function FV

has values countable sets of variables.

The full language Lω1ω has always uncountably many formulas and
we may be interested in only a well behaved subset of such formulas (in
particular, a countable subset). So we define such fragments, but start
with the necessary concept of sub-formulas.

Definition 2.2 (Sub-formulas). We define recursively the function SF
on formulas of Lω1ω with values countable sets of formulas as follows.

If φ is an atomic formula then SF (φ) = {φ}. Suppose that we
have defined SF (φ) and SF (ψ). We define SF (¬φ) = {¬φ} ∪ SF (φ)
and SF (φ ◦ ψ) = {φ ◦ ψ} ∪ SF (φ) ∪ SF (ψ) where ◦ stands for any
of the symbols ∧, ∨, → and ↔. We define SF (∃xiψ) = {∃xiψ} ∪
SF (ψ) and SF (∀xiψ) = {∀xiψ} ∪ SF (ψ). Now we suppose that we
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have defined SF (φn) for all formulas of the sequence (φn)n∈N. We
define SF (

∧
n∈N φn) = {

∧
n∈N φn} ∪

⋃
n∈N SF (φn) and SF (

∨
n∈N φn) =

{
∨
n∈N φn} ∪

⋃
n∈N SF (φn).

We say that φ is a sub-formula of ψ if φ ∈ SF (ψ).

Definition 2.3 (Admissible Fragment of Lω1ω). An admissible frag-
ment, or just a fragment, of Lω1ω is a set of formulas LA containing
the first order formulas, closed under quantification (if φ ∈ LA then
∃xiφ ∈ LA and ∀xiφ ∈ LA), sub-formulas (if φ ∈ LA then SF (φ) ⊆ LA),
and if φ(x) ∈ LA and τ is a term then φ(τ) ∈ LA.

Remark 2.4. The first order logic is an admissible fragment of Lω1ω,
the smallest one.

Remark 2.5 (Larger Infinitary Languages). We can sometimes work
with infinitary languages with uncountable conjunctions of formulas.
For these we assume that the set of variables is indexed by a limit
ordinal of cardinality κ, for some regular cardinal κ > ℵ0, but still
finitely many quantifiers (we do not consider here languages with infi-
nite strings of quantifiers). The terms and formulas are defined in the
usual manner, but we admit formulas of the type

∨
Φ and

∧
Φ, where

the cardinality of the set of formulas Φ does not exceed κ.

If we do not impose the restriction on the cardinality of Φ we obtain
the logic denoted L∞ω. The satisfaction relation is defined accordingly.

3. Preservation Results

In this section we collect some preservation results which allows us to
prove some syntactic characterizations of generic models and forcing.

Just for the record:

Definition 3.1 (Theory). A theory is a consistent set of sentences.
No completeness assumption is added. We say that the theory T is
axiomatized by the theory Γ if both have the same logical consequences
(or, in the case of first order, the same theorems).

Definition 3.2 (Prenex Form). A first order formula φ is in prenex
form if it is of the type Q1xi1 . . . Qnxinψ, where each Qi is a quantifier
“∃” or “∀” and ψ is a quantifier-free formula. If L is a signature, we
denote by ∃1(L) (or just ∃1 if L is understood in the context) the set
of formulas logically equivalent to one in prenex form which contains
only existential quantifiers, ∀1(L) (or just ∀1) the set of formulas log-
ically equivalent to one in prenex form which contains only universal
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quantifiers. We define recursively ∃n+1(L) and ∀n+1(L) the sets of for-
mulas logically equivalent to one of the form Q1xi1 . . . Qnxinψ, where
ψ ∈ ∀n(L) or ψ ∈ ∃n(L), respectively.

Observe that L∞ω-formulas may not admit a prenex form due to the
fact that we cannot bring forward the quantifiers in infinite conjunc-
tions or disjunctions of a set of formulas with an unbounded quantity
of quantified variables, as we can see in the sentence

∧
n<ω φn, where

φn says that there are at least n+ 1 distinct elements.

We put the consistency assumption on a theory T to avoid unneces-
sary extra hypotheses in the results we deal with.

Remark 3.3 (Chain of Structures). A chain of structures is a sequence
(Mα)α<λ os L-structures such that for each pair α < β < λ, Mα is a
substructure of Mβ.

Firstly we prove Tarski’s elementary chain theorem.

Theorem 3.4. Let (Mα)α<λ be an elementary chain of structures, that
is, if α < β, then Mα ≺ Mβ. Let M =

⋃
α<λMα turned naturally into

an L-structure. In this setting, for each α < λ, Mα ≺M .

Proof. We prove by induction on the complexity of formulas that for ā
in Mα, M |= φ(ā) if, and only if, Mα |= φ(ā).

The basic step (atomic formulas) and the induction steps for the
propositional connectives are easy and left as exercises.

We treat here the case where φ(x̄) is ∃yψ(x̄, y), and assume the
induction hypothesis that the statement is true for ψ.

If M |= φ(ā), then there is some b ∈ M such that M |= ψ(ā, b). By
the inductions hypothesis, there is some ξ ≥ α for which Mξ |= ψ(ā, b)
(the index ξ is any one such that ā and b are in Mξ). By definition,
Mξ |= ∃yψ(ā) and because Mα � Mξ, Mα |= φ(ā). Analogous argu-
mentation shows that if Mα |= φ(ā), then M |= φ(ā).

The equivalence between ∀yψ(x̄, y) and ¬[∃y¬φ(x̄, y)] releases us the
proof of this case. �

For the next three theorems we prove firstly the following lemma
which contains the structure of their proofs.

Lemma 3.5. Let ∆ be a set of first order sentences closed under finite
disjunctions. The following are equivalent.

(1) The theory T has a set Γ ⊆ ∆ of axioms.
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(2) For all M |= T and M ′ an L-structure, if for all δ ∈ ∆, M |= δ
implies M ′ |= δ, then the L-structure M ′ must be also a model
of T .

Proof. The implication (1)⇒ (2) is obvious.

Assume (2) and let Γ = {δ ∈ ∆ : T |= δ}. It is clear that T |= Γ.
We need to show that Γ |= T .

Let M |= Γ be an arbitrary model and let Σ = {¬δ : M |= ¬δ,
δ ∈ ∆}. Observe that if ¬δ ∈ Σ, then δ 6∈ Γ (this is the fact to
be contradicted below). We claim that T ∪ Σ is consistent, because
otherwise there would be δ1, . . . , δn ∈ ∆ such that T ` ¬(¬δ1∧· · ·∧δn)
(this is Compactness), that is, T ` (δ1 ∨ · · · ∨ δn). Because ∆ is closed
under finite disjunctions the sentence (δ1 ∨ · · · ∨ δn) is in Γ and so
M |= (δ1 ∨ · · · ∨ δn), a contradiction.

If M ′ |= T ∪ Σ then (2) implies that M |= T . Therefore Γ |= T . �

We now apply this to the sets ∀1, ∀2 and of positive formulas (those
built up from atomic formulas, ∨, ∧, ∃, ∀; we do not use negation in
any form, and we recall that implication has a built in negation). Any
one of those sets are closed under finite disjunctions.

Theorem 3.6. The class of models of T is closed under substructures
if, and only if, T has a ∀1 set of axioms.

Proof. The right to left implication is simple and left to the reader.

Let ∆ be the set of all sentences logically equivalent to ∀1 sentences.

Assume now that the class of models of T is closed under substruc-
tures and let Γ = {δ ∈ ∆ : T |= δ}. Our objective is to prove that
Γ |= T . Let M |= T any model and M ′ a model of the universal sen-
tences true in M . Let T ′ = T ∪ ∆(M ′), where ∆(M ′) is the diagram
of M ′. Compactness, plus the fact that the existential sentences true
in M ′ must also be true in M , imply that T ′ is consistent. Any model
M ′′ |= T ′ has an isomorphic copy of M ′ as a substructure. Therefore
M ′ |= T because the class of models of T are closed under substruc-
tures. Lemma 3.5 ends our proof. �

Example 3.7. A typical example of a ∀1 theory is the Theory of
Rings. A substructure of a ring is a sub-ring which is also a ring
per se. The signature contains the constant symbols “0” and “1”, the
unary operation symbol “−” and the binary operation symbols “+”
and “·”. A list of axioms is ∀x(x + 0 = x), ∀x∀y(x + y = y + x),
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∀x∀y∀z[(x + y) + z = z + (y + z)], ∀x[x + (−x) = 0], ∀x[x · 0 = 0],
∀x[x · 1 = x], ∀x[1 · x = x], ∀x∀y∀z[(x · y) · z = x · (y · z)] and
∀x∀y∀z[x · (y + z) = (x · y) + (x · z)].

Theorem 3.8. The class of models of T is closed under union of chains
of its models if, and only if, T has a set of ∀2 axioms.

Proof. The easy part, the right side implies the left side, is left as an
exercise.

Now we assume that the class of models of T is closed under union
of chains of its models and prove that T has a set of ∀2 axioms. We use
again Lemma 3.5, with ∆ as the set of all sentences logically equivalent
to ∀2 sentences. Let M |= T and M ′ |= φ for all φ ∈ ∆ such that
M |= φ. We want to show that M ′ |= T .

In order to do this we construct an increasing chain of structures
M ′ = M ′

0 ⊂ M1 ⊂ M ′
1 ⊂ M2 ⊂ . . . with Mk ≡ M and M ′

k ≺ M ′
k+1 as

follows.

Suppose we have constructed the sequence up to the level n ≥ 0 with
the desired properties.

Let (M ′
n,m)m∈M ′

n
be the expansion of the model M ′

n by interpreting
the new constant symbols cm, m ∈ M ′

n. We indicate this model again
as M ′

n. Let T1 be the L-theory of M and T2 = {φ ∈ ∀1(L(M ′
n)) : M ′

n |=
φ}. By existentially quantifying out the new constants we deduce that
T1 ∪ T2 is consistent, because of the induction hypothesis on the pair
of models Mn ≡ M and M ′

n � M ′. Let Mk+1 |= T1 ∪ T2. This model
is elementary equivalent to M and contains an isomorphic copy of M ′

k

and so we can assume that M ′
k ⊂Mk+1. Because of T2 being what it is

every universal L(M ′
k)-sentence true in M ′

k must be true in Mk+1 what
implies that every existential L(M ′

k)-sentence true in Mk+1 is also true
in M ′

k.

We now extend this model to an elementary extension M ′
k+1 � M ′

k.
The diagram ∆(Mk+1) is consistent with ThL(M ′

k)(Mk) by Compactness
and the last observation of the previous paragraph. Select a model
M ′

k+1 |= ∆(Mk+1) ∪ ThL(M ′
k)(Mk). This model has an isomorphic copy

of Mk+1, which itself has a copy of M ′
k, and is elementary equivalent

to M ′
k (in the language L(M ′

k)) and so M ′
k ≺M ′

k+1 as desired. �

Example 3.9. One typical example here is the Theory of Fields in
the signature of the Theory of Rings. Add the following axiom to the
axioms for rings, ∀x[(x = 0) ∨ ∃y(x · y = 1)].
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Example 3.10. Another important example is the theory of groups
in the signature containig one constant symbol “e” and one binary
operation symbol “·”. One set of axioms contains ∀x(x · e = x),
∀x∀y∀z[(x · y) · z = x · (y · z)], ∀x∃y[(x · y = e) ∧ (y · x = e)].

Observe that substructures of a group may be just a semigroup
(closed under multiplication but not necessarily under inverse). If one
introduces an operation symbol for the inverse then there will be a set
of universal axioms.

4. Existentially Closed Structures and Model
Completeness

Some important algebraic structures have some closure property. For
instance, algebraically closed fields, or groups, real closed fields, differ-
entially closed fields. We present here two such closely related notions,
the existential closeness and model completeness. These are important
notions to the idea and application of forcing.

Definition 4.1 (Diagram of an L- Structure). LetM be an L-structure.
We expand the signature L to the signature L(M) by joining a new
constant symbol cm, for each m ∈ M . The diagram of M is the set
∆(M) of basic sentence (an atomic sentence or the negation of an
atomic sentence) that are satisfied in M .

Definition 4.2 (Existentially Closed Structures). An L structure M
is existentially closed if for all L structures M ′ ⊇M , all φ(x̄) ∈ ∃1(L),
and all Ā in M , if M ′ |= φ(ā), then M |= φ(ā). We denote this as
M ≺∃1 M ′. Let T be an L-theory. We say that the model M |= T
is existentially closed over T if forall M ′ ⊇ M , such that M ′ |= T ,
M ≺1 M

′.

The following result is a useful characterization of existentially closed
structures, due to Harold Simmons, [22, Theorem 2.1, p. 297].

Theorem 4.3. Let M be a model of a first order theory T . The
following are equivalent:

(1) The structure M is existentially closed over T .
(2) If M |= φ(ā), for some φ ∈ ∀1, then T ∪∆(M) ` φ(c̄ā), where

ā = (a1, . . . , an) ∈ Mn and c̄ā = (ca1 , . . . , can) is the tuple of
corresponding new constant symbols.

(3) If M |= φ(ā), for some φ ∈ ∀1, then M |= θ(ā), for some θ ∈ ∃1

such that T ` ∀x̄[θ(x̄)→ φ(x̄)].
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Proof. We prove the implications (1)⇒ (2)⇒ (3)⇒ (1).

(1) ⇒ (2): Suppose that M |= φ(ā), for some φ ∈ ∀1, and that
M is existentially closed. Any model M ′ |= T containing M can be
expanded naturally to a model of T ∪∆(M). Since M is existentially
closed, for all M ′ |= T ∪∆(M), M ′ |= φ(ā). This means that φ(c̄ā) is a
logical consequence of T ∪∆(M) and, by the Completeness Theorem,
T ∪∆(M) ` φ(c̄ā).

(2) ⇒ (3): Suppose that M |= φ(ā), for some φ ∈ ∀1. By (2),
T ∪ ∆ ` φ(c̄ā), which means that there exists a quantifier free L-
formula δ(x̄, ȳ) and tuple ā′ in M , such that T ` δ(c̄ā, c̄ā′) → φ(c̄ā)
and, therefore, T ` ∃ȳ[δ(c̄ā, ȳ) → φ(v)]. Since the constants c̄ā do
not occur in the sentences of T , T ` ∀x̄[θ(x̄) → φ(x̄)], where θ is the
existential formula ∃ȳδ(x̄, ȳ).

(3)⇒ (1): Assume (3) but suppose thatM is not existentially closed.
Then there is some φ(x̄) ∈ ∀1, some ā in M , and some M ′ |= T , with
M ⊂ M ′, such that M ′ |= ¬φ(ā) and M |= φ(ā). Let θ(x̄) ∈ ∃1, such
that T ` ∀x̄[θ(x̄) → φ(x̄)] and M |= θ(ā). Since θ is existential, it is
preserved upwards, so M ′ |= θ(ā) and so M ′ |= φ(ā) because M ′ |=
∀x̄[θ(x̄)→ φ(x̄)]. This contradiction proves the statement (1). �

Another closely related notion of completeness is that of model com-
pleteness.

Definition 4.4 (Model Completeness). A first order L-theory T is
model complete if for any M |= T , T ∪ ∆(M) is a complete L(M)-
theory.

There are other equivalent formulations of this concept.

Theorem 4.5. Let T be a first order theory. These statements are
equivalent:

(1) The theory T is model complete.
(2) Every embedding M1 →M2 of L-structures, where M1,M2 |= T

is elementary.
(3) Every model M |= T is existentially complete.
(4) For each L-formula φ(x̄), whose free variables are among the list

x̄, there is a formula φ(x̄) ∈ ∀1(L) with the same free variables,
such that T ` ∀x̄(φ↔ ψ).

(5) For each L-formula φ(x̄), whose free variables are among the list
x̄, there is a formula φ(x̄) ∈ ∃1(L) with the same free variables,
such that T ` ∀x̄(φ↔ ψ).
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Proof. We prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒
(4)⇒ (1).

(1) ⇒ (2): Assume that T is model complete and let M1,M2 |= T ,
with M1 a substructure of M2. We can expand M1 and M2 to L(M1)-
structures, both being models of T ∪∆(M1). Let φ(x̄) be an L-formula
and ā in M1, such that M2 |= φ(ā). The theory T ∪∆(M1) is complete
by hypothesis and so T ∪∆(M1) ` φ(c̄ā). Therefore M1 |= φ(ā). This
means that M1 is an elementary substructure of M2.

(2)⇒ (3): This is immediate.

(3) ⇒ (4): By the application of induction on the complexity of
formulas we can reduce this implication to the case of an existential
formula.

Let φ ∈ ∃1(L). The introduction of finitely many new constants
to the signature allows us to assume that φ is a sentence. Let Γ be
the set of all sentences γ ∈ ∀1 such that T ` (φ → γ). We can
assume that T ∪ {φ} is consistent, because otherwise we can choose
any inconsistent γ ∈ ∀1 and T ` (φ ↔ γ. Let M |= T ∪ Γ. The
set of sentences T ∪ {φ} ∪ ∆(M) is consistent because for each finite
conjunction θ(ā) of formulas, ∀x̄θ(x̄) is false in M and so it does not
belong to Γ. There is a model M ′ |= T ∪ {φ} ∪ Γ, such that M ⊆ M ′.
By (3), M is existentially closed and so M |= φ. We have then proved
that φ is a logical consequence of T ∪ Γ, and by compactness, there is
a finite Γ0 ⊂ Γ, such that T `

∧
Γ0 → φ. By the definition of Γ and

logical tricks, we obtain the desired γ ∈ ∀1 such that T ` (φ↔ γ.

(4)⇔ (5): This is a simple logical exercise.

(4) ⇒ (1): Let M,M ′ |= T with M a substructure of M ′, and φ(x̄)
an L-formula such that M ′ |= φ(ā) for some ā in M . Let ψ(x̄) ∈ ∀1 be
such that T |= φ↔ ψ, and we write ψ as ∀ȳθ(x̄, ȳ). This implies that
M |= ∀ȳθ(ā, ȳ) because universal formulas are preserved downwards.
Therefore T∪∆(M) ` ∀ȳθ(c̄ā, ȳ), because M ′ is arbitrary. From this we
can conclude that T ∪∆(M) ` φ(c̄ā), that is, T is model complete. �

Example 4.6. Model complete theories play an important role in Alge-
bra. Some known model complete theories (in their natural signatures)
are: (1) dense linear order without endpoints, (2) algebraically closed
fields, (3) real closed fields, (4) p-adic fields, (5) atom-less Boolean alge-
bras, (6) the additive group of integers with 1 as distinguished element,
(7) the non negative integers with the constant 0 and the successor op-
erator, (8) divisible torsion free abelian groups, (9) divisible ordered
groups, (10) the field of real numbers with the exponential function,



10 RICARDO BIANCONI

(11) the field of real numbers with restricted real analytic functions,
(12) the field of real numbers with restricted real analytic functions and
the unrestricted exponential functions, (13) differentially closed fields
of characteristic zero, and so on.

The proofs of model completeness of these theories can be lengthy
and involve lots of knowledge from other areas of Mathematics.

Example 4.7. We know that any field can be embedded in an alge-
braically closed field. So the role played by the latter in the class of all
fields suggests another concept.

Definition 4.8 (Companion Theories). A first order L-theory T ∗ is a
model companion of the L-theory T if both have the same universal
consequences (we denote T∀ = T ∗∀ ) and T ∗ is model complete. If T ⊂
T ∗, then T ∗ is a model completion of T .

Remark 4.9. Given a first order theory T , M |= T∀ if, and only if, there
is M ′ |= T such that M is a substructure of M ′. Indeed, given a model
M |= T∀, let Σ be the set of existential L sentences true in M . The
set T ∪ Σ is consistent because, otherwise, the usual argumentation
we obtain an existential sentence φ ∈ Σ such that T ` ¬φ, and so
M |= ¬φ. This contradicts M |= φ.

Lemma 4.10. A first order theory T has at most one model compan-
ion.

Proof. Let T ∗ and T ∗∗ be two model companions of T . They have the
same universal consequences as T , so T ∗∀ = T ∗∗∀ . We build a chain
of models M0 ⊂ M1 ⊂ . . . where for each k ≥ 0 M2k |= T ∗ and
M2k+1 |= T ∗∗. The odd and the even indexed sub-sequences are el-
ementary chains (because of model completeness). The union of the
chain is a model of both T ∗ and T ∗∗. �

We see in the following chapter the notion of forcing and its relation
with existential closure and model completeness.

5. Forcing Notions

We fix an admissible countable fragment LA of Lω1ω. Let D =
{dn : n ∈ N} be a set of constant symbols disjoint from the ones
from the original language. Let KA be the set of all formulas of the
form φ|xi1=dj1 ,...,xin=djn

(the substitution of all the free instances of the
variables xij by the corresponding constant symbol dij), for φ in LA,
dj1 , . . . , djn ∈ D. In order to avoid such a cumbersome notation we use
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φ(x̄) to denote the fact that the free variables of φ are among the ones
in the (countable) tuple x̄, and φ(d̄) the substitution just described.

Unless otherwise stated, T is a theory, that is, a (not necessarily
complete) consistent set of sentences from the fragment LA. We will
be precise when the fragment is the first order logic.

Definition 5.1. Let T be a theory. A forcing notion for the theory T
is a triple P = 〈P,≤, f〉 where

(a) 〈P,≤〉 is a partially ordered set with a least element 0 ∈ P ;
(b) f is a function from P into the set of finite subsets of atomic sen-

tences of KA, each of which consistent with T ;
(c) if p ≤ q then f(p) ⊂ f(q);
(d) for terms σ and τ of KA without variables and p ∈ P :

(i) if (σ = τ) ∈ f(p), then there is some q ≥ p such that (τ =
σ) ∈ f(q);

(ii) if (τ = σ), φ(τ) ∈ f(p), then there is some q ≥ p such that
φ(σ) ∈ f(q);

(iii) for some d ∈ D, there is some q ≥ p such that (τ = d) ∈ f(q).

Remark 5.2. This definition differs from Robinson’s original one, [20,
§ 2, p. 70], in which the conditions are finite sets of basic sentences .
These sentences are atomic or the negation of an atomic sentence.

Definition 5.3 (Forcing Relation). Let 〈P,≤, f〉 be a forcing notion.
We define the forcing relation p  φ (read “p forces φ”), for p ∈ P and
φ a KA sentence, recursively as follows:

(a) if φ is an atomic sentence then p  φ if, and only if, φ ∈ f(p);
(b) p  ¬φ if, and only if, for no q ≥ p, q forces φ;
(c) p  (φ ∧ ψ) if, and only if, p  φ and p  ψ;
(d) p 

∧
n∈N φn if, and only if, for all n ∈ N p  φn;

(e) p  ∃xiφ if, and only if, for some d ∈ D p  φ|xi=d.

Remark 5.4. See the exercises in the end of this chapter on how to
define the forcing relation applied to the other logical symbols.

Definition 5.5 (Weak Forcing Relation). We say that p weakly forces
the KA-sentence φ, p w φ, if p  ¬¬φ.

Remark 5.6. As usual, we write the negation of these relations as “ 6 ”
and “ 6 w”.

Let us first prove some basic facts about the forcing relation. These
results imitate Cohen’s forcing
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Lemma 5.7. Let 〈P,≤, f〉 be a forcing notion and φ a KA-sentence.

(a) If p ≤ q and p  φ then q  φ.
(b) If p  φ then p 6 ¬φ, and if p  ¬φ then p 6 φ.
(c) For p ∈ P , p w φ if, and only if, for each q ≥ p there is some r ≥ q

such that r  φ.
(d) If p  φ then p w φ.
(e) For p ∈ P , p  ¬φ if, and only if, p w ¬φ.

Proof. The proof is an easy consequence of the definitions.

(a) This item is proven by induction on the complexity of the sen-
tence φ. If p  φ and φ is atomic then φ ∈ f(p) and since f is non
decreasing if q ≥ p, then φ ∈ f(q), which means that q  φ. The
induction steps follow directly from the definitions.

(b) If p  φ then the definition of the forcing relation implies that
p 6 ¬φ. If p  ¬φ, then again the definition implies that p 6 φ.

(c) If for no q ≥ p q  φ, then p  ¬φ and, by the item (b), p 6 ¬¬φ.
Conversely, if p 6 ¬¬φ, then for some q ≥ p q  ¬φ and, therefore, for
no r ≥ q r  φ.

(d) If p  ¬φ then for all q ≥ p q  ¬φ, by the item (a). By the
item (b), for no q ≥ p q  ¬¬φ and, therefore, p  ¬¬¬φ. Conversely,
if for no q ≥ p q  ¬φ then p  ¬¬φ. By the item (b), p 6 ¬¬¬φ. �

Definition 5.8. Given the forcing notion 〈P,≤, f〉 and a theory T , we
denote T f as the set of KA sentences weakly forced by some p ∈ P .

6. Generic Models

We show in this section how to construct a model from a forcing
notion.

Definition 6.1 (Generic Sets). Let P = 〈P,≤, f〉 be a forcing notion.
A subset G ⊂ P is generic if, and only if,

(a) if p ∈ G and q ≤ p, then q ∈ G;
(b) for all p, q ∈ G, there is some r ∈ G with p ≤ r and q ≤ r;
(c) for each KA-sentence ϕ, there exists some p ∈ G such that either

p  ϕ or p  ¬ϕ.

We now deal with the existence of generic sets.

Lemma 6.2. Let P = 〈P,≤, f〉 be a forcing notion and p ∈ P . There
is a generic set G ⊂ P such that p ∈ G.
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Proof. Let (φn)n∈N be an enumeration of all KA sentences. We form
recursively the sequence (pn)n∈N of conditions as follows: let p0 = p;
suppose that we have defined the finite sequence of conditions p0 ≤
p1 ≤ · · · ≤ pn; if pn  ¬φn, then let pn+1 = pn, and otherwise, choose
some pn+1 ≥ pn such that pn+1  φn. Let G = {q ∈ P : q ≤ pn, for
some n ∈ N}.

The set G is generic: if q0 ∈ G and q1 ≤ q0, then there is some
n ∈ N such that q0 ≤ pn and, therefore, q1 ≤ pn, that is, q1 ∈ G; if
q0, q1 ∈ G, there are some m,n ∈ N such that q0 ≤ pm and q1 ≤ pn, so
q0, q1 ≤ r = pmax{m,n}; if φk is a KA sentence and pk 6 ¬φ, then there
is some n ≥ k such that pn  φk; if for no q ∈ G q  φk, then pk  ¬φ
(because otherwise there would be some n ≥ k such that pn  φk). �

We show in the following two lemmas that the generic sets produce
models. The first gives maximal consistency and the second gives the
properties used in Henkin’s method of constants to build a model.

Lemma 6.3. Let P = 〈P,≤, f〉 be a forcing notion. The set T of
all KA-sentences forced by some p ∈ G is a maximal consistent set of
KA-sentences.

Proof. We firstly tackle the consistency of T . If for some p ∈ G, p  φ,
then for all q ∈ G, there is some r ∈ G with p, q ≤ r and so r  φ.
This implies that q 6 ¬φ. Conversely, if for some p ∈ G, p  ¬φ, there
is no q ∈ G such that q  φ because if r ∈ G is such that r ≥ p, q, then
r 6 φ and, therefore, q 6 φ. This implies that the set T is consistent.

The maximality of T comes from the third condition in the definition
of generic set. �

Remark 6.4. The maximality of T implies that if φ, (φ → ψ) ∈ T ,
then ψ ∈ T ; and if φ(d) ∈ T , then ∃xφ(x) ∈ T ; and if φk ∈ T , then∨
n∈N φn ∈ T .

Lemma 6.5. Let P = 〈P,≤, f〉 be a forcing notion, and T the set of
all KA-sentences forced by some p ∈ G. This set T has the following
properties:

(1) (
∧
n∈N φn) ∈ T if, and only if, for all n ∈ N φn ∈ T ;

(2) (∃xφ(x)) ∈ T if, and only if, for some new constant symbol
d ∈ D φ(d) ∈ T ;

(3) if (σ = τ) ∈ T , for terms without variable σ and τ , then (τ =
σ) ∈ T ;

(4) if (σ = τ), φ(σ) ∈ T , for terms without variable σ and τ , and
sentence φ(σ), then φ(τ) ∈ T ;
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(5) for all terms τ there is some d ∈ D such that (d = τ) ∈ T .

Proof. Items (1), (2), (3) and (5) follow from the definition of forcing
and the above remark. Item (4) follows from (2). �

Definition 6.6 (Generic Model). Let T be an L-theory and D that
set of new constant symbols. An L(D)-structure M is said to be T -
generic if for all finite p ⊂ ∆(M), T ∪ p is consistent, and for each
L(D)-sentence, M |= φ if, and only if, there is a finite p ∈ ∆(M) such
that p  φ.

We must assure that generic models do exist.

Theorem 6.7 (Generic Model). Let 〈P,≤, f〉 be a forcing notion and
p ∈ P a condition. There is a generic model for p.

Proof. Let G 3 p be generic and let Σ be the set of all L(D) sentences
forced by some q ∈ G. We can do the Henkin construction with this
Σ. �

We have a useful characterization of a generic model, from [1, The-
orem 3.4, pp. 129-130].

Theorem 6.8. A modelM |= T f is T -generic if, and only if, T f∪∆(M)
is complete.

Proof. �

Let T0 be a consistent theory (set of sentences) in a countable ad-
missible fragment of Lω1ω. Let P be the set of finite subsets of basic
L(C)-sentences which are consistent with T0, with the order p ≤ q if,
and only if, q ⊆ p, and f(p) is the subset of p containing all of its
atomic sentences. The triple (P,≤, f) is a forcing notion.

The following result is taken from [15, Lemma 3, pp. 517-518]

Theorem 6.9 (Macintyre, [15]). The class of T f -generic models can
be axiomatised by an Lω1ω-sentence.

7. Robinson’s Infinite Forcing

Let M be a non empty class of L-structure (for some signature L)
and C a countable set of new constant symbols. A basic formula is an
atomic L(C)-sentence or its negation.
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Let P (M) be the collection of finite sets, p, of basic formulas which
are satisfiable in some M ∈ M, for some interpretation of the new
constants occurring in the formulas in p. Each such set p ∈ P (M)
is called a condition. We define the partial order ≤ in P (M) by the
reverse inclusion, p ≤ q if, and only if, q ⊆ p. The top element 1 is the
empty set. We define the function f : p ∈ P (M) 7→ f(p) = {φ ∈ p :
φis atomic}.

8. EXERCISES

Exercise 8.1. Let P = 〈P,≤, f〉 be a forcing notion. Show that

(a) p 
∨
n∈N φn if, and only if, for some n ∈ N p  φn;

(b) p  ∀xiφ if, and only if, for all d ∈ D, p  φ|xi=d;
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