MAE 5905: Introdução à Ciência de Dados

Pedro A. Morettin

Instituto de Matemática e Estatística Universidade de São Paulo pam@ime.usp.br http://www.ime.usp.br/~ pam

Aula 10

9 de abril de 2025

Sumário

1 Classificador de Margem Não Linear

2 Noções da Teoria

Regressão por SVM

- Na seção anterior apresentamos um algoritmo de classificação (CMF), usado quando as fronteiras são lineares. Para fronteiras não lineares, precisamos aumentar a dimensão do espaço de dados por meio de outras funções, polinomiais ou não, para determinar as fronteiras de separação.
- Pode-se demonstrar que um classificador linear como aquele definido anteriormente (CMF) depende somente dos vetores suporte e pode ser escrito na forma

$$f(\mathbf{x}) = \sum_{i \in S} \gamma_i < \mathbf{x}, \mathbf{x}_i > +\delta, \tag{1}$$

- em que S indica o conjunto dos vetores suporte, os γ_i são funções de α e β e < x, y > indica o produto interno dos vetores x e y.
- Uma das vantagens de se utilizar kernels na construção de classificadores é que eles dependem somente dos vetores suporte e não de todas as observações o que implica uma redução considerável no custo computacional.

• O classificador CMF usa um kernel linear, da forma

$$K(\mathbf{x}_i, \mathbf{x}_j) = \sum_{k=1}^p x_{ik} x_{jk} = \mathbf{x}_i^{\top} \mathbf{x}_j.$$

- Se quisermos usar um CMF em um espaço característico de dimensão maior, podemos incluir polinômios de grau maior ou mesmo outras funções na definicão do classificador.
- Os kernels mais utilizados na prática são:
 - a) lineares: $K(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^{\top} \mathbf{x}_2$;
 - b) polinomiais: $K(\mathbf{x}_1, \mathbf{x}_2) = (a + \mathbf{x}_1^{\top} \mathbf{x}_2)^d$;
 - c) radiais: $K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma ||\mathbf{x}_1 \mathbf{x}_2||^2)$, com $\gamma > 0$ constante.
 - d) tangentes hiperbólicas: $K(\mathbf{x}_1, \mathbf{x}_2) = \tanh(\theta + k\mathbf{x}_1^{\top}\mathbf{x}_2)$.

CMNL

Os classificadores CMNL são obtidos combinando-se CMF com kernels não lineares, de modo a obter

$$f(\mathbf{x}) = \alpha + \sum_{i \in S} \gamma_i K(\mathbf{x}, \mathbf{x}_i) + \delta.$$
 (2)

em que os γ_i são funções de α e β .

- Exemplo. Consideremos uma análise alternativa para dados do exemplo anterior, utilizando um *kernel* polinomial, de grau 3.
- Os comandos e resultados da reanálise dos dados por meio do classificador de margem não linear são:

> summary(escolhaparam)

Parameter tuning of svm:

- sampling method: 10-fold cross validation
- best parameters: degree gamma cost 3 0.5 4
- best performance: 0.1681818

- Detailed performance results:

	degree	gamma	cos	t error d	ispersion
1	3	0.5	4	0.1681818	0.09440257
2	3	1.0	4	0.1772727	0.12024233
3	3	2.0	4	0.1872727	0.11722221
4	3	4.0	4	0.1872727	0.11722221
5	3	0.5	5	0.1972727	0.11314439
6	3	1.0	5	0.1772727	0.12024233
7	3	2.0	5	0.1872727	0.11722221
8	3	4.0	5	0.1872727	0.11722221
9	3	0.5	6	0.1872727	0.12634583
10	3	1.0	6	0.1772727	0.12024233
11	3	2.0	6	0.1872727	0.11722221
12	3	4.0	6	0.1872727	0.11722221

```
svm.model <- svm(grupo ~ altfac + proffac, data=face,</pre>
                 type='C-classification', kernel='polynomial',
                 degree=3, gamma=1, cost=4, coef0=1, scale=FALSE)
summary(svm.model)
Parameters:
   SVM-Type: C-classification
 SVM-Kernel:
             polynomial
             4
       cost:
    degree:
     coef.0: 1
Number of Support Vectors:
 ( 11 10 19 )Number of Classes: 3
Levels:
 braq dolico meso
A tabela de classificação é
        true
pred
         braq dolico meso
           29
                  0
 braq
 dolico 0
                 26 3
                      30
 meso
```

O gráfico correspondente está apresentado na Figura 1.

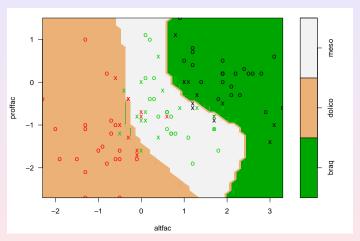


Figura: Classificação do tipo facial obtida pelo classificador de margem não linear.

- Neste caso, o número de classificações erradas (16) é igual ao caso do classificador de margem flexível. A TEC é 0,16.
- Com base nesses resultados, podemos classificar indivíduos para os quais dispomos apenas dos valores das variáveis preditoras. Com essa finalidade, consideremos o seguinte conjunto de previsão com 4 indivíduos:

```
paciente altfac proffac
1 102 1.4 1.0
2 103 3.2 0.1
3 104 -2.9 -1.0
4 105 0.5 0.9
```

CMNL

Por meio dos seguintes comandos

obtemos a tabela com as probabilidades de classificação de cada um dos 4 indivíduos

```
1 2 3 4
braq braq dolico meso
attr(,"probabilities
```

```
braq dolico meso

1 0.954231749 0.0193863931 0.0263818582

2 0.961362058 0.0006154201 0.0380225221

3 0.008257919 0.9910764215 0.0006656599

4 0.254247666 0.1197179567 0.6260343773
```

Levels: braq dolico meso

O processo classifica os indivíduos 102 e 103 como braquicéfalos, o indivíduo 104 como dolicocéfalo e o 105, como mesocéfalo.

Hiperplano separador

Um hiperplano definido num espaço de dimensão p é um subespaço de dimensão p-1 definido por

$$\alpha + \beta_1 X_1 + \ldots + \beta_\rho X_\rho = 0. \tag{3}$$

Um ponto com coordenadas (x_1,\ldots,x_p) satisfazendo (3) situa-se no hiperplano. Se $\alpha+\beta_1x_1+\ldots+\beta_px_p>0$, esse ponto situa-se num lado do hiperplano e se $\alpha+\beta_1x_1+\ldots+\beta_px_p<0$, o ponto situa-se no outro lado desse hiperplano. Dessa forma, o hiperplano separa o espaço p dimensional em duas metades.

- Consideremos o espaço característico $\mathcal{T} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ e as respostas y_1, \dots, y_n com $y_i \in \{-1, 1\}$, definindo o conjunto de treinamento. Novos dados \mathbf{x}_0 são classificados de acordo com o sinal de $f(\mathbf{x}_0)$.
- Suponha que exista um hiperplano separador, de modo que α e β são tais que $f(\mathbf{x}) > 0$, para pontos com y = +1 e $f(\mathbf{x}) < 0$, para pontos com y = -1, de modo que $yf(\mathbf{x}) > 0$, para qualquer dado de treinamento.
- O CMM tem como objetivo maximizar a margem que é a menor distância entre o hiperplano e qualquer ponto do conjunto de treinamento.
- Para entender o procedimento de otimização, considere a distância de um ponto \mathbf{x} ao hiperplano cuja equação é $f(\mathbf{x}) = 0$, nomeadamente

$$d = |f(\mathbf{x})|/||\boldsymbol{\beta}||,$$

em que denominador indica a norma do vetor β .

• Como o interesse está nos pontos que são corretamente classificados, devemos ter $y_i f(\mathbf{x}_i) > 0$, i = 1, ..., n. Logo, a distância entre qualquer ponto \mathbf{x}_i e o hiperplano é

$$\frac{y_i f(\mathbf{x}_i)}{||\boldsymbol{\beta}||} = \frac{y_i (\alpha + \boldsymbol{\beta}^{\top} \mathbf{x}_i)}{||\boldsymbol{\beta}||}.$$
 (4)

• A margem é a distância do hiperplano ao ponto ${\bf x}$ mais próximo e queremos escolher α e ${\boldsymbol \beta}$ de modo a maximizar essa distância. A margem máxima é obtida por meio da resolução de

$$\operatorname{argmax}_{\alpha,\beta} \left\{ \frac{1}{||\beta||} \min \left[y_i (\alpha + \beta^{\top} \mathbf{x}_i) \right] \right\}.$$
 (5)

 A solução de (5) é complicada mas é possível obtê-la por meio da utilização de Multiplicadores de Lagrange. Note que se multiplicarmos α e β por uma constante, a distância de um ponto x ao hiperplano separador não se altera.

• Logo podemos considerar a transformação $\alpha^* = \alpha/f(\mathbf{x})$ e $\boldsymbol{\beta}^* = \boldsymbol{\beta}/f(\mathbf{x})$ e para o ponto mais próximo do hiperplano, digamos \mathbf{x}^* , obtendo

$$y^*(\alpha + \boldsymbol{\beta}^{\top} \mathbf{x}^*) = 1, \tag{6}$$

- e consequentemente, $d = ||\beta||^{-1}$.
- Desse modo, todos os pontos do conjunto de treinamento satisfarão

$$y_i(\alpha + \boldsymbol{\beta}^{\top} \mathbf{x}_i) \ge 1, \quad i = 1, \dots, n.$$
 (7)

Esta relação é chamada representação canônica do hiperplano separador.

• Dizemos que há uma restrição ativa para os pontos em que há igualdade; para os pontos em que vale a desigualdade, dizemos que há uma restrição inativa. Como sempre haverá um ponto que está mais próximo do hiperplano, sempre haverá uma restrição ativa.

- Então, o problema de otimização implica maximizar $||\beta||^{-1}$, que é equivalente a minimizar $||\beta||^2$.
- Na linguagem de Vapnik (1995), isso equivale a escolher $f(\mathbf{x})$ de maneira que seja a mais achatada (flat) possível, que por sua vez implica que $\boldsymbol{\beta}$ deve ser pequeno.
- Isso corresponde à resolução do problema de programação quadrática

$$\operatorname{argmin}_{\alpha,\beta} \left\{ \frac{1}{2} ||\beta||^2 \right\},\tag{8}$$

sujeito a (7). O fator 1/2 é introduzido por conveniência.

• Com esse objetivo, para cada restrição em (7), introduzimos os Multiplicadores de Lagrange $\lambda_i \geq 0$, obtendo a função lagrangeana

$$L(\alpha, \boldsymbol{\beta}, \boldsymbol{\lambda}) = \frac{1}{2} - \sum_{i=1}^{n} \lambda_i [y_i(\alpha + \boldsymbol{\beta}^{\top} \mathbf{x}_i) - 1],$$
 (9)

em que $\lambda = (\lambda_1, \dots, \lambda_n)^{\top}$. O sinal negativo no segundo termo de (9) justifica-se por que queremos minimizar em relação a α e β e maximizar em relação a λ .

• Derivando L em relação a $oldsymbol{eta}$ e a $oldsymbol{\lambda}$, obtemos

$$\beta = \sum_{i=1}^{n} \lambda_i y_i \mathbf{x}_i \quad \text{e} \quad \sum_{i=1}^{n} \lambda_i y_i = 0.$$
 (10)

• Eliminando α e β em (9) e usando (10), obtemos a chamada representação dual do problema da margem máxima, no qual maximizamos

$$\tilde{L}(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j), \tag{11}$$

com respeito a λ , sujeito às restrições

$$\lambda_i \geq 0, \quad i=1,\ldots,n, \tag{12}$$

$$\sum_{i=1}^{b} \lambda_i y_i = 0. \tag{13}$$

 Em (11), K(x,y) = x^Ty é um kernel linear, que será estendido para algum kernel mais geral com a finalidade de ser aplicado a espaços característicos cuja dimensionalidade excede o número de dados. Esse kernel deve ser positivo definido.

• Para classificar um novo dado x_0 usando o modelo treinado, avaliamos o sinal de $f(x_0)$, que por meio de (10), pode ser escrito como

$$f(\mathbf{x}_0) = \alpha + \sum_{i=1}^n \lambda_i y_i K(\mathbf{x}_0, \mathbf{x}_i).$$
 (14)

 Pode-se demonstrar (veja Bishop, 2006), que esse tipo de otimização restrita satisfaz certas condições, chamadas de condições de Karush-Kuhn-Tucker (KKT) que implicam

$$\lambda_{i} \geq 0,$$

$$y_{i}f(\mathbf{x}_{i}) - 1 \geq 0,$$

$$\lambda_{i}(y_{i}f(\mathbf{x}_{i}) - 1) = 0.$$

$$(15)$$

- Para cada ponto, ou $\lambda_i = 0$ ou $y_i f(\mathbf{x}_i) = 1$. Um ponto para o qual $\lambda_i = 0$ não aparece em (14) não tem influência na classificação de novos pontos.
- Os pontos restantes são chamados vetores suporte e satisfazem y_if(x_i) = 1; logo esses pontos estão sobre as fronteiras do espaço separador, como na Figura 3 da Aula 9.
- ullet O valor de lpha pode ser encontrado a partir de

$$y_i \left(\sum_{j \in S} \lambda_j y_j K(\mathbf{x}_j \mathbf{x}_j) + \alpha \right) = 1, \tag{16}$$

em que S é o conjunto dos vetores suporte.

• Multiplicando essa expressão por y_i , observando que $y_i^2 = 1$ e tomando a média de todas as equações sobre S, obtemos

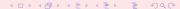
$$\alpha = \frac{1}{n_S} \sum_{i \in S} \left(y_i - \sum_{j \in S} \lambda_i y_i K(\mathbf{x}_i, \mathbf{x}_j) \right), \tag{17}$$

em que n_S é o número de vetores suporte.

- Vamos considerar agora, o caso em que as duas classes podem se sobrepor.
 Precisamos modificar o CMM para permitir que alguns pontos do conjunto de treinamento sejam classificados erroneamente. Para isso introduzimos uma penalidade, que cresce com a distância ao hiperplano separador.
- Isso é conseguido pela introdução de variáveis de folga (slack) $\xi_i \geq 0, i = 1, \dots, n$, uma para cada dado.
- Então, $\xi_i = 0$ para pontos sobre ou dentro da fronteira correta [delimitada por $f(\mathbf{x}) = -1$ e $f(\mathbf{x}) = 1$] e ξ_i dado pela distância do ponto à fronteira, para os outros pontos.
- Assim, um ponto que estiver sobre o hiperplano $f(\mathbf{x}) = 0$ terá $\xi_i = 1$ e pontos com $\xi_i > 1$ são classificados erroneamente.
- Nesse caso, a restrição para o caso CMM será substituída por

$$y_i(\alpha + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i) \ge 1 - \xi_i, \quad i = 1, \dots, n,$$
 (18)

com $\xi_i \geq 0$.



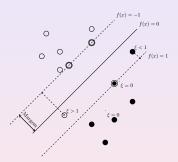


Figura: Detalhes sobre o classificador de margem flexível.

- Pontos para os quais $0<\xi_i\le 1$ estão dentro da fronteira da margem, mas do lado correto do hiperplano, e pontos para os quais $\xi_i>1$ estão do lado errado do hiperplano e são classificados erroneamente. Pontos para os quais $\xi_i=0$ são corretamente classificados e estão sobre a fronteira da margem ou do lado correto da fronteira da margem.
- Nesse contexto, estamos diante de uma margem flexível ou suave. O objetivo é maximizar a margem e, para isso, minimizamos

$$C\sum_{i=1}^{n}\xi_{i}+\frac{1}{2}||\beta||^{2},$$
 (19)

em que C>0 controla o balanço entre a penalidade das variáveis de folga e a margem.

• Como qualquer ponto classificado erroneamente satisfaz $\xi_i > 1$, segue-se que $\sum_{i=1}^n \xi_i$ é um limite superior do número de classificações errôneas. No limite, quando $C \to \infty$, obtemos o CMM.

• Para minimizar (19) sujeito a (18) e $\xi_i > 0$ consideramos o lagrangeano

$$L(\alpha, \boldsymbol{\beta}, \mathbf{x}_i, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \frac{1}{2} ||\boldsymbol{\beta}||^2 + C \sum_{i=1}^n \xi_i$$

$$- \sum_{i=1}^n \lambda_i [y_i f(\mathbf{x}_i) + \xi_i - 1] - \sum_{i=1}^n \mu_i \xi_i,$$
(20)

em quel $\lambda_i \geq 0, \mu_i \geq 0$ são multiplicadores de Lagrange.

• Derivando (21) com relação a β , α , ξ_i , obtemos

$$\beta = \sum_{i=1}^{n} \lambda_i y_i \mathbf{x}_i, \quad \sum_{i=1}^{n} \lambda_i y_i = 0$$
 (21)

е

$$\lambda_i = C - \mu_i. \tag{22}$$

Substituindo (21) - (22) em (21), temos

$$\widetilde{L}(\lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j),$$
(23)

que é uma expressão idêntica ao caso separável, com exceção das restrições, que são diferentes.

• Como $\lambda_i \geq 0$ são multiplicadores de Lagrange e como $\mu_i \geq 0$, de (22) segue que $\lambda_i \leq C$. Logo, precisamos maximizar (23) com respeito às variáveis duais λ_i , sujeito a

$$0 \leq \lambda_i \quad \leq \quad C, \tag{24}$$

$$\sum_{i=1}^{n} \lambda_{i} y_{i} = 0, \quad i = 1, \dots, n.$$
 (25)

• Novamente, estamos diante de um problema de programação quadrática.

• A previsão para um novo ponto x é obtida avaliando o sinal de f(x) na equação do hiperplano(eq. 3, Aula 9). Substituindo (21) nessa mesma equação, obtemos

$$f(\mathbf{x}) = \alpha + \sum_{i=1}^{n} \lambda_i y_i K(\mathbf{x}, \mathbf{x}_i).$$
 (26)

• Dados para os quais $\lambda_i = 0$ não contribuem para (26). Os dados restantes formam os vetores de suporte. Para esses, $\lambda_i > 0$ e, por (28) abaixo, devem satisfazer

$$y_i f(\mathbf{x}_i) = 1 - \xi_i. \tag{27}$$

No caso de CMF, as condições de KKT são dadas por

$$\lambda_{i} \geq 0, \quad y_{i}f(\mathbf{x}_{i}) - 1 + \xi_{i} \geq 0,$$

$$\lambda_{i}(y_{i}f(\mathbf{x}_{i}) - 1 + \xi_{i}) = 0,$$

$$\mu_{i} \geq 0, \quad \xi_{i} \geq 0,$$
(28)

$$\mu_i \xi_i = 0, \quad i = 1, \dots, n.$$
 (29)

Procedendo como no caso de CMM, obtemos

$$\alpha = \frac{1}{N_{\mathcal{M}}} \sum_{i \in \mathcal{M}} \left(y_i - \sum_{j \in S} \lambda_j y_j K(\mathbf{x}_i, \mathbf{x}_j) \right), \tag{30}$$

em que \mathcal{M} é o conjunto do pontos tais que $0 < \lambda_i < C$.

• Se $\lambda_i < C$, então, por (22), $\mu_i > 0$ e por (29), temos $\xi = 0$ e tais pontos estão na fronteira de separação. Pontos com $\lambda_i = C$ estão dentro da fronteira de separação e podem ser classificados corretamente se $\xi_i \leq 1$ e erroneamente se $\xi_i > 1$.

Teoria-CMNL

• Seja $\mathcal X$ o conjunto de dados (ou de padrões). A função $K: \mathcal X \times \mathcal X \to \mathbb R$ é um kernel se existir um espaço vetorial com produto interno, $\mathcal H$ (usualmente um espaço de Hilbert) e uma aplicação $\Phi: \mathcal X \to \mathcal H$, tal que, para todos $x,y \in \mathcal X$, tivermos

$$K(x,y) = \langle \Phi(x), \Phi(y) \rangle. \tag{31}$$

 Φ é a aplicação característica e \mathcal{H} , o espaço característico.

ullet Por exemplo, tomemos $\mathcal{X}=\mathbb{R}^2$ e $\mathcal{H}=\mathbb{R}^3$ e definamos

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^3,$$

$$(x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1x_2).$$

Então, se $x=(x_1,x_2)$ e $y=(y_1,y_2)$, é fácil verificar que $<\Phi(x),\Phi(y)>=< x,y>$; logo $K(x,y)=<\Phi(x),\Phi(y)>=< x,y>$ é um kernel.

Teoria-CMNL

• Para tornar o algoritmo de suporte vetorial não linear, notamos que ele depende somente de produtos internos entre os vetores de \mathcal{X} ; logo, é suficiente conhecer $K(\mathbf{x},\mathbf{x}^{\top})=<\Phi(\mathbf{x}),\Phi(\mathbf{x}^{\top})>$, e não Φ explicitamente. Isso permite formular o problema de otimização, substituindo a derivada do Lagrangeano no caso de CMF por

$$\beta = \sum_{i=1}^{n} \alpha_i \Phi(\mathbf{x}_i). \tag{32}$$

- Agora, β não é mais dado explicitamente como antes. Também, o problema de otimização é agora realizado no espaço característico e não em \mathcal{X} .
- Os kernels a serem usados têm que satisfazer certas condições de admissibilidade. Veja Smola e Schölkopf (2004) para detalhes. Os kernels mencionados anteriormente são admissíveis.

Regressão via SVM

- Dado um conjunto de treinamento, $\mathcal{T} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, o objetivo é obter uma função $f(\mathbf{x}_i)$, a mais achatada (flat) possível tal que $|y_i f(\mathbf{x}_i)| < \epsilon$, $i = 1, \dots, n$ em que $\epsilon > 0$ é o maior erro que estamos dispostos a cometer. Por exemplo, ϵ pode ser a máxima perda que admitimos ao negociar com ações dadas certas características obtidas do balanço de um conjunto de empresas.
- No caso de funções lineares, o objetivo é determinar α e β tais que $|f(\mathbf{x}_i)| = |\alpha + \boldsymbol{\beta}^{\top} \mathbf{x}_i| \leq \epsilon$. A condição de que $f(\mathbf{x})$ seja a mais achatada possível corresponde a que $\boldsymbol{\beta}$ seja pequeno, ou seja o problema a resolver pode ser expresso como

minimizar
$$\frac{1}{2}||\boldsymbol{\beta}||^2$$
 sujeito a
$$\begin{cases} y_i - \boldsymbol{\beta}^{\top} \mathbf{x}_i - \alpha \leq \epsilon, \\ \alpha + \boldsymbol{\beta}^{\top} \mathbf{x}_i - y_i \leq \epsilon \end{cases}$$
 (33)

Regressão via SVM

• Nem sempre as condições (33) podem ser satisfeitas e nesse caso, assim como nos modelos de classificação, podemos introduzir variáveis de folga ξ_i e ξ_i^* , $i=1,\ldots,n$, que permitem flexibilizar a restrição de que o máximo erro permitido seja ϵ . O problema a resolver nesse contexto é

minimizar
$$\frac{1}{2}||\boldsymbol{\beta}||^2 + \sum_{i=1}^n C(\xi + \xi^*)$$
 sujeito a
$$\begin{cases} y_i - \boldsymbol{\beta}^\top \mathbf{x}_i - \alpha \leq \epsilon + \xi_i, \\ \alpha + \boldsymbol{\beta}^\top \mathbf{x}_i - y_i \leq \epsilon + \xi_i^*, \\ \xi_i, \xi_i * > 0. \end{cases}$$
 (34)

• A constante C>0 determina um compromisso entre o achatamento da função f e o quanto estamos dispostos a tolerar erros com magnitude maior do que ϵ .

Regressão via SVM

 As soluções de (33) ou (34) podem ser encontradas mais facilmente usando a formulação dual (ver Nota de Capítulo 3). No caso de modelos lineares, a previsão para um elemento com valor das variáveis preditoras igual a x₀ é obtida de

$$f(\mathbf{x}_0) = \sum_{i=1}^n \widehat{\lambda}_i K(\mathbf{x}_0, \mathbf{x}_i) + \widehat{\alpha},$$

em que $\widehat{\lambda}_i$ são multiplicadores de Lagrange, $K(\mathbf{x}_0, \mathbf{x}_i)$ é um *kernel*, $\widehat{\alpha} = y_i - \varepsilon - \widehat{\boldsymbol{\beta}}^{\top} \mathbf{x}_i$ e $\widehat{\boldsymbol{\beta}} = \sum_{i=1}^n \widehat{\lambda}_i \mathbf{x}_i$.

- Os vetores suporte são aqueles para os quais os multiplicadores de Lagrange $\widehat{\lambda}_i$ são positivos.
- Se optarmos por um kernel linear, $K(\mathbf{x}, \mathbf{x}_i) = \langle \mathbf{x}_0, \mathbf{x}_i \rangle$.

Consideremos os dados de distancia com o objetivo de estudar a relação entre a distância com que motoristas conseguem distinguir um certo objeto e sua idade. O diagrama de dispersão e a reta de mínimos quadrados ajustada (y=174,2-1,0x) correspondentes estão apresentados na Figura 3.

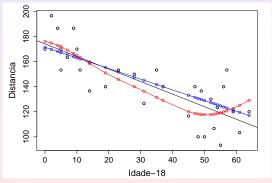


Figura 3: Regressão SVM para os dados de distância.

O ajuste de uma regressão com suporte vetorial baseada num *kernel* linear com os parâmetros *default* pode ser obtido por meio dos comandos

```
model1<- svm(x, y, kernel="linear")</pre>
summary(model1)
Parameters:
   SVM-Type: eps-regression
 SVM-Kernel: linear
       cost: 1
      gamma: 1
    epsilon: 0.1
Number of Support Vectors:
betahat <- model1$rho
[1] -0.08572489
coef1 <- sum(model1$coefs*x[model1$index])</pre>
alfahat <- coef1/model1$rho
[1] 172.8264
de forma que a função previsora corresponde à f(x) = 172, 9 - 0,09x.
```

- A previsão para as distâncias segundo esse modelo pode ser obtida por meio do comando yhat1 <- predict(model1, x). O RMSE correspondente pode ser obtido por meio do comando rmse(yhat1, y) é 16,51464 (maior do que o RMSE associado ao ajuste por meio de mínimos quadrados, que é 16,02487).
- Um modelo mais flexível pode ser ajustado com um kernel radial do tipo $K(\mathbf{x}_1,\mathbf{x}_2) = \exp\left(-\gamma||\mathbf{x}_1-\mathbf{x}_2||^2\right)$ com $\gamma>0$ constante. Nesse caso, convém realizar uma análise de sensibilidade com validação cruzada para a seleção da melhor combinação dos valores do máximo erro ϵ que estamos dispostos a cometer e do custo de penalização, C. Isso pode ser concretizado por meio dos comandos

```
sensib <- tune(svm, y \tilde{} x, ranges = list(epsilon = seq(0,1,0.1), cost = 2^{(2:9)})
```

Parameter tuning of svm:

- sampling method: 10-fold cross validation
- best parameters: epsilon cost 0.8 8
- best performance: 275.8086

Com esses resultados, realizamos um ajuste por meio de um kernel radial com parâmetros C=8 e $\epsilon=0.8$, obtendo

```
model2 <- svm(x, y, kernel="radial", cost=8, epsilon=0.8)
summary(model2)
Parameters:
   SVM-Type: eps-regression
SVM-Kernel: radial
        cost: 8
        gamma: 1
        epsilon: 0.8
Number of Support Vectors: 6</pre>
```

O *RMSE* para esse modelo é 15,84272, menor do que aqueles obtidos por meio dos demais ajustes. Um gráfico com os ajustes por mínimos quadrados (em preto) e por regressões com suporte vetorial baseadas em *kernels* linear (em azul) e radial (em vermelho) está apresentado na Figura 3.

Regressão via SVM - Observações

- Algoritmos de suporte vetorial no contexto de regressão também podem ser utilizados com o mesmo propósito de suavização daquele concretizado pelo método Lowess (veja a Nota de Capítulo 2 do Capítulo 5).
- Nesse contexto, a suavidade do ajuste deve ser modulada pela escolha do parâmetro ϵ . Valores de ϵ pequenos (próximos de zero) geram curvas mais suaves e requerem muitos vetores suporte, podendo produzir sobreajuste. Valores de ϵ grandes (próximos de 1,0, por exemplo) geram curvas menos suaves e requerem menos vetores suporte.
- O parâmetro C tem influência no equilíbrio entre as magnitudes da margem e das variáveis de folga. Em geral, o valor desse parâmetro deve ser selecionado por meio de uma análise de sensibilidade concretizada por validação cruzada.

Referências

Morettin, P. A. e Singer, J. M. (2024). *Estatística e Ciência de Dados*. 2a. edição. LTC: Rio de Janeiro.

Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. *Statistics and Computing*, **14**, 199–222.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer.

Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley.