A Ciência da Estatística


Reveja o vídeo abaixo sobre FUNÇÕES e faça os exercícios a seguir para exercitar os seus conhecimentos.




Clique aqui para mudar os dados.

Clique aqui para voltar para a página inicial.

Sejam \(A\), \(B\) e \(C\) conjuntos bem definidos e \(F: A \to B\) uma função com domínio \(A\) e contradomínio \(B\). Considere \(\#(A)\) o número de elementos de \(A\). Digite 1 se a afirmação for verdadeira, 0 se for falsa. A sua resposta será avaliada instantaneamente (cor verde acerto e cor vermelha erro).

\(\exists C\subseteq A \ \mbox{tal que } \ B \subseteq F(C)\)

\(x \in A \Rightarrow F(x) \in B\)

\(\varnothing \in F(\varnothing)\)

\(x \in A \Rightarrow F(\{x\}) \subseteq B\)

\(B \subseteq F(F^{-1}(B))\)

\(F^{-1}(D_1\cap D_2) = F^{-1}(D_1)\cap F^{-1}(D_2)\)

0 : \(\exists C\subseteq A \ \mbox{tal que } \ B \subseteq F(C)\)
1 : \(x \in A \Rightarrow F(x) \in B\)
0 : \(\varnothing \in F(\varnothing)\)
1 : \(x \in A \Rightarrow F(\{x\}) \subseteq B\)
0 : \(B \subseteq F(F^{-1}(B))\)
1 : \(F^{-1}(D_1\cap D_2) = F^{-1}(D_1)\cap F^{-1}(D_2)\)

Noções de Estatística:

Teoria de conjuntos para a Estatística: