Reveja o vídeo abaixo sobre Medidas de Curtose e faça os exercícios a seguir para exercitar os seus conhecimentos.
Considere os dois conjuntos de dados abaixo: Dados \(x_i\): [113, 128, 129, 132, 142, 147, 148, 149, 166, 168, 169, 170, 177, 194, 199, 208, 224] Dados \(y_i\): [133, 134, 146, 155, 157, 159, 160, 160, 165, 169, 171, 171, 172, 172, 192, 199, 203] Para cada conjunto de dados, considere \[ z_i = \frac{(x_i - \bar{x})}{\sqrt{\frac{1}{17}\sum\limits_{i=1}^{17} (x_i - \bar{x})^2}}, \ i = 1,2, \ldots, 17\] \[ w_i = \frac{(y_i - \bar{y})}{\sqrt{\frac{1}{17}\sum\limits_{i=1}^{17} (y_i - \bar{y})^2}}, \ i = 1,2, \ldots, 17\] Calcule: a média de \(z^2\), ou seja, \(\frac{1}{17} \sum\limits_{i=1}^{17} z_i^2\), a média de \(z^4\), ou seja, \(\frac{1}{17} \sum\limits_{i=1}^{17} z_i^4\), a média de \(w^2\), ou seja, \(\frac{1}{17} \sum\limits_{i=1}^{17} w_i^2\) e a média de \(w^4\), ou seja, \(\frac{1}{17} \sum\limits_{i=1}^{17} w_i^4\). Digite a sua resposta com uma casa decimal de precisão. Use o ponto como separador decimal. Média de z² = Média de z⁴ = Média de w² = Média de w⁴ = O sistema considera uma precisão de 0.05 na resposta. Média de z² = 1.00 |