Reveja o vídeo abaixo sobre Medidas de Curtose e faça os exercícios a seguir para exercitar os seus conhecimentos.
Considere os dois conjuntos de dados abaixo: Dados \(x_i\): [110, 137, 142, 148, 158, 163, 166, 167, 168, 170, 176, 177, 179, 181, 185, 188, 191, 196, 207, 224] Dados \(y_i\): [140, 151, 155, 161, 167, 170, 172, 172, 176, 177, 182, 185, 185, 186, 188, 190, 193, 196, 198, 201] Para cada conjunto de dados, considere \[ z_i = \frac{(x_i - \bar{x})}{\sqrt{\frac{1}{20}\sum\limits_{i=1}^{20} (x_i - \bar{x})^2}}, \ i = 1,2, \ldots, 20\] \[ w_i = \frac{(y_i - \bar{y})}{\sqrt{\frac{1}{20}\sum\limits_{i=1}^{20} (y_i - \bar{y})^2}}, \ i = 1,2, \ldots, 20\] Calcule: a média de \(z^2\), ou seja, \(\frac{1}{20} \sum\limits_{i=1}^{20} z_i^2\), a média de \(z^4\), ou seja, \(\frac{1}{20} \sum\limits_{i=1}^{20} z_i^4\), a média de \(w^2\), ou seja, \(\frac{1}{20} \sum\limits_{i=1}^{20} w_i^2\) e a média de \(w^4\), ou seja, \(\frac{1}{20} \sum\limits_{i=1}^{20} w_i^4\). Digite a sua resposta com uma casa decimal de precisão. Use o ponto como separador decimal. Média de z² = Média de z⁴ = Média de w² = Média de w⁴ = O sistema considera uma precisão de 0.05 na resposta. Média de z² = 1.00 |