Reveja o vídeo abaixo sobre Medidas de Curtose e faça os exercícios a seguir para exercitar os seus conhecimentos.
Considere os dois conjuntos de dados abaixo: Dados \(x_i\): [133, 146, 158, 159, 168, 171, 185, 185, 193, 216, 221] Dados \(y_i\): [160, 162, 170, 174, 176, 176, 177, 180, 184, 184, 185] Para cada conjunto de dados, considere \[ z_i = \frac{(x_i - \bar{x})}{\sqrt{\frac{1}{11}\sum\limits_{i=1}^{11} (x_i - \bar{x})^2}}, \ i = 1,2, \ldots, 11\] \[ w_i = \frac{(y_i - \bar{y})}{\sqrt{\frac{1}{11}\sum\limits_{i=1}^{11} (y_i - \bar{y})^2}}, \ i = 1,2, \ldots, 11\] Calcule: a média de \(z^2\), ou seja, \(\frac{1}{11} \sum\limits_{i=1}^{11} z_i^2\), a média de \(z^4\), ou seja, \(\frac{1}{11} \sum\limits_{i=1}^{11} z_i^4\), a média de \(w^2\), ou seja, \(\frac{1}{11} \sum\limits_{i=1}^{11} w_i^2\) e a média de \(w^4\), ou seja, \(\frac{1}{11} \sum\limits_{i=1}^{11} w_i^4\). Digite a sua resposta com uma casa decimal de precisão. Use o ponto como separador decimal. Média de z² = Média de z⁴ = Média de w² = Média de w⁴ = O sistema considera uma precisão de 0.05 na resposta. Média de z² = 1.00 |