Reveja o vídeo abaixo sobre Medidas de Curtose e faça os exercícios a seguir para exercitar os seus conhecimentos.
Considere os dois conjuntos de dados abaixo: Dados \(x_i\): [117, 137, 140, 152, 158, 158, 160, 163, 186, 187, 190, 192, 197, 200, 203, 214] Dados \(y_i\): [138, 147, 153, 156, 160, 162, 163, 166, 169, 169, 171, 173, 181, 194, 216, 216] Para cada conjunto de dados, considere \[ z_i = \frac{(x_i - \bar{x})}{\sqrt{\frac{1}{16}\sum\limits_{i=1}^{16} (x_i - \bar{x})^2}}, \ i = 1,2, \ldots, 16\] \[ w_i = \frac{(y_i - \bar{y})}{\sqrt{\frac{1}{16}\sum\limits_{i=1}^{16} (y_i - \bar{y})^2}}, \ i = 1,2, \ldots, 16\] Calcule: a média de \(z^2\), ou seja, \(\frac{1}{16} \sum\limits_{i=1}^{16} z_i^2\), a média de \(z^4\), ou seja, \(\frac{1}{16} \sum\limits_{i=1}^{16} z_i^4\), a média de \(w^2\), ou seja, \(\frac{1}{16} \sum\limits_{i=1}^{16} w_i^2\) e a média de \(w^4\), ou seja, \(\frac{1}{16} \sum\limits_{i=1}^{16} w_i^4\). Digite a sua resposta com uma casa decimal de precisão. Use o ponto como separador decimal. Média de z² = Média de z⁴ = Média de w² = Média de w⁴ = O sistema considera uma precisão de 0.05 na resposta. Média de z² = 1.00 |