Reveja o vídeo abaixo sobre Medidas de Curtose e faça os exercícios a seguir para exercitar os seus conhecimentos.
Considere os dois conjuntos de dados abaixo: Dados \(x_i\): [106, 135, 139, 142, 146, 148, 152, 153, 155, 157, 165, 166, 168, 176, 177, 182, 183, 194, 205] Dados \(y_i\): [25, 95, 121, 125, 130, 135, 135, 137, 145, 146, 152, 154, 163, 164, 165, 169, 172, 180, 214] Para cada conjunto de dados, considere \[ z_i = \frac{(x_i - \bar{x})}{\sqrt{\frac{1}{19}\sum\limits_{i=1}^{19} (x_i - \bar{x})^2}}, \ i = 1,2, \ldots, 19\] \[ w_i = \frac{(y_i - \bar{y})}{\sqrt{\frac{1}{19}\sum\limits_{i=1}^{19} (y_i - \bar{y})^2}}, \ i = 1,2, \ldots, 19\] Calcule: a média de \(z^2\), ou seja, \(\frac{1}{19} \sum\limits_{i=1}^{19} z_i^2\), a média de \(z^4\), ou seja, \(\frac{1}{19} \sum\limits_{i=1}^{19} z_i^4\), a média de \(w^2\), ou seja, \(\frac{1}{19} \sum\limits_{i=1}^{19} w_i^2\) e a média de \(w^4\), ou seja, \(\frac{1}{19} \sum\limits_{i=1}^{19} w_i^4\). Digite a sua resposta com uma casa decimal de precisão. Use o ponto como separador decimal. Média de z² = Média de z⁴ = Média de w² = Média de w⁴ = O sistema considera uma precisão de 0.05 na resposta. Média de z² = 1.00 |