Reveja o vídeo abaixo sobre os Axiomas do PAR e da UNIÃO e faça os exercícios a seguir para exercitar os seus conhecimentos.
Sejam \(A\), \(B\) e \(C\) três conjuntos bem definidos. Considere também \(x\) um conjunto bem definido que representará, em alguns casos, um elemento genérico dos conjuntos anteriores. Digite 1 se a afirmação for verdadeira, 0 se for falsa. A sua resposta será avaliada instantaneamente (cor verde acerto e cor vermelha erro). \(A \cup (B \cup C) = (A \cup B) \cup C\) \(A \cup B = B \cup A\) \(x \in (A^c\cup B)^c \Leftrightarrow x \not\in A \cap B^c\) \(x \in (A \cup B) \Leftrightarrow (x \in A \ \mbox{OU} \ x \in B)\) \(x \in (A \cup B) \Rightarrow x \in B\) \(x \in (A\cup B)^c \Leftrightarrow x \not\in A^c \cap B^c\) 1 \(A \cup (B \cup C) = (A \cup B) \cup C\) |