Woodall's conjecture: Bibliography

A. Abdi, M. Dalirrooyfard, M. Neuwohner.  Strong orientation of a connected graph for a crossing familyarXiv:2411.13202, 2024.

G. Cornuéjols, S. Liu, R. Ravi.  Approximately packing dijoins via nowhere-zero flowsarXiv:2311.04337, 2023.

A. Abdi, G. Cornuéjols, M. Zlatin.  On packing dijoins in digraphs and weighted digraphsSIAM Journal on Discrete Mathematics, 37, 2417-2461, 2023.

J. P. Gollin, K. Heuer, K. Stavropoulos.  Disjoint dijoins for classes of dicuts in finite and infinite digraphsCombinatorial Theory, 2022.

M. Chudnovsky, K. Edwards, R. Kim, A. Scott, P. Seymour.  Disjoint dijoinsJournal of Combinatorial Theory, Series B, v.120, 2016.

A. Schrijver.  Observations on Woodall's Conjecture.  2013.

F. B. Shepherd, A. Vetta.  Visualizing, finding and packing dijoins.  In D. Avis, A. Hertz, and O. Marcotte, editors, Graph Theory and Combinatorial Optimization. Chapter 8, pp.219–254. Springer Verlag, 2005.

A. M. Williams, B. Guenin.  Advances in packing directed joinsElectronic Notes in Discrete Mathematics, vol.19, pp.249–255, 2005. [Proceedings of the 2nd Brazilian Symposium on Graphs, Algorithms, and Combinatorics (GRACO2005)].

A. M. Williams.  Packing directed joins.  Master's thesis, University of Waterloo, 2004.

A. Schrijver.  Combinatorial Optimization: Polyhedra and Efficiency.  Number 24 in Algorithms and Combinatorics. Springer, 2003.

G. Cornuéjols, B. Guenin.  Note on dijoinsDiscrete Mathematics, vol.243, pp.213–216, 2002.

A. Schrijver.  Min-max relations for directed graphsAnnals of Discrete Mathematics vol.16, pp.261–280, North-Holland, 1982.

A. Schrijver.  A counterexample to a conjecture of Edmonds and GilesDiscrete Mathematics, vol.32, pp.213–214, 1980.

J. Edmonds, R. Giles.  A min-max relation for submodular functions on graphsAnnals of Discrete Mathematics, v.1, pp.185–204. North-Holland, 1977.

D. R. WoodallMenger and König systemsLecture Notes in Mathematics, vol.642, pp.620–635. Springer, 1978.

D. R. WoodallMinimax theorems in graph theorySelected Topics in Graph Theory, pp.237–269. Academic Press, 1978.

C. L. Lucchesi, D. H. Younger.  A minimax theorem for directed graphsJ. of the London Math. Soc. (2), vol.17, pp.369–374, 1978.

Special cases

G. Cornuéjols, S. Liu, R. Ravi.  Packing dijoins in weighted chordal digraphsarXiv:2501.10918, 2025.

Y. Wakabayashi, O. Lee.  A note on a min-max conjecture of WoodallJ. Graph Theory. vol.38, pp.36–41, 2001.

P. Feofiloff, D. H. Younger.  Directed cut transversal packing for source-sink connected graphsCombinatorica, vol.7, pp.255–263, 1987.

L. Lovász.  On two minimax theorems in graph theoryJ. of Combinatorial Theory (B), vol.21, 1976, pp.96--103.

D.R. Fulkerson, G.C. Harding.  On edge-disjoint branchingsNetworks vol.6, 1976, pp.97-104.

R. E. Tarjan.  A good algorithm for edge-disjoint branchingsInformation Processing Letters, vol.3, 1974, pp.51–53.

J. Edmonds.  Edge-disjoint branchings.  In R. Rustin, editor, Combinatorial Algorithms, volume 9 of Courant Computer Science Symposium, pp.91–96. Algorithmics Press, 1973.

WWW sites

Problem 12 in the collection of problems of the Egerváry Research Group on Combinatorial Optimization (EGRES)

Woodall's conjecture, Egerváry Research Group on Combinatorial Optimization (EGRES)

Woodall's Conjecture.  In Open Problemas Garden, hosted by CSI of Charles University

Cuts in Digraphs and Woodall's Conjecture.  In Problems in Topological Graph Theory, compiled by Dan Archdeacon

Clutters

G. Cornuéjols.  Combinatorial Optimization: Packing and Covering.  Volume 74 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM (Society for Industrial and Applied Mathematics), 2001.

G. Cornuéjols, B. Guenin, F. Margot.  The packing propertyMathematical Programming (Ser. A), vol.89, pp.113–126, 2000.

P. D. Seymour.  The matroids with max-flow min-cut propertyJ. of Combinatorial Theory (Ser. B), vol.23, pp.189–222, 1977.