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Abstract

Woodall conjectured that the size of a smallest dicut of a digraph is equal to the size of a
largest set of pairwise disjoint transversals of dicuts. Lee and Wakabayashi proved that
the conjecture is true when restricted to series-parallel digraphs. Their proof is indirect,
as it deals with the dual of the conjecture, which concerns dicircuits instead of dicuts.
The present paper gives a (rather verbose) direct proof.

1 Introduction

The paper is organized as follows. Section 2 proves two properties of series-parallel graphs.
Section 3 defines dicuts and dijoins of digraphs. Section 4 states Woodall’s conjecture relat-
ing minimum dicuts to maximum sets of pairwise disjoint dijoins. Section 5 adds capacities
to the arcs of the digraphs and states the corresponding generalization of Woodall’s con-
jecture. The section also introduces the idea of critical capacities and shows some simple
properties of such capacities. Section 6 states the Lee–Wakabayashi theorem, which verifies
the restriction of Woodall’s conjecture to series-parallel digraphs. The section also sketches a
reduction of the theorem to 2-connected acyclic digraphs. Section 7 gives a proof of the Lee–
Wakabayashi theorem. An appendix summarizes graph theory terminology and establishes
some notational conventions. Finally, an index points to the definitions of all the technical
terms.

2 Series-parallel graphs

A graph is a pair (V,E) of sets where V is a finite set of vertices and E is some set of
unordered pairs of vertices. Each element of E is an edge. According to this definition, a
graph has no loops and no parallel edges.

To subdivide an edge of a graph H is to replace that edge by two edges “in series”. More
precisely, to subdivide an edge yz is to add a new vertex r to H and to replace yz with the
new edges yr and rz . A subdivision of a graph H is any graph obtained by recursively
subdividing edges of H .
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A graph G is K4-free, or series-parallel, if it does not contain a subdivision of a complete
graph on 4 vertices, i.e., if no subgraph of G is a subdivision of a K4 .

EXAMPLES: Any graph that consists of a circuit and nothing else is K4-free. For any graph
G consisting of a circuit of length greater than 3 and any two nonadjacent vertices v and w
of G , the graph G+ vw is K4-free.

Lemma 2.1 (Duffin [Duf65]) Every 2-connected K4-free graph has a vertex of degree 2 .

PROOF: Let G be a 2-connected graph. (Of course G has at least 3 vertices.) Let d(v) denote
the degree of a vertex v of G . Suppose that there is no vertex v such that d(v) = 2 ; we will
show that G is not K4-free.

Of course d(v) ≥ 2 for every vertex v . Hence G has a circuit. Let C be a circuit of maximum
length. Let’s say that a path across C is any path of nonnull length in G − E(C) that has
origin and terminus in V (C) but no internal vertices in V (C) . We claim that every vertex of
C is the origin of a path across C . Here is a proof of this claim:

Let r be a vertex of C and let R be the set of termini of all the paths in G − E(C) that
have origin r and no vertices in C other than the origin. Let ∂R be the set of all edges of
G that have exactly one end in R . Suppose for a moment that ∂R ∖ E(C) = ∅ . Then either
R = {r} , in which case d(r) = 2 , or R ̸= {r} , in which case G − r is disconnected, i.e.,
r is a cut vertex. Both alternatives are contrary to our hypotheses. Hence, we must have
∂R ∖ E(C) ̸= ∅ . Since r ∈ R and every edge in ∂R ∖ E(C) has one end in R and the other
in C , there exist a path across C with origin r , as claimed.

Let P be any path across C and let r be the origin and s the terminus of P . Let C0(P ) be
the segment of C running from r to s and let C1(P ) be the complement of C0 in C i.e., the
segment of C running from s to r . Of course C0(P ) and C1(P ) are paths of G . Let l(L)
denote the length of any path L and adjust notation so that the l(C0(P )) ≤ l(C1(P )) . Choose
P so that l(C0(P )) is as small as possible. If l(C0(P )) = 1 then l(P ) ≥ 2 and therefore the
circuit that results from concatenating P and C1(P ) will be longer than C , contrary to our
choice of C . We conclude that l(C0(P )) ≥ 2 and therefore C0(P ) has an internal vertex,
say x . As shown in the previous paragraph, x is the origin of a path Q across C . Let z
be the terminus of Q . Suppose for a moment that z is a vertex of C0(P ) . Then C0(Q) is a
segment of C0(P ) and l(C0(Q)) < l(C0(P )) , contrary to our choice of P . This contradiction
shows that z must be an internal vertex of C1(P ) . But then the circuit C together with the
paths P and Q constitute a subdivision of a K4 in G . The existence of such a subgraph
proves that G is not K4-free. 2

A triplet in a graph G is a vertex of degree 2 together with its two neighbors. More precisely,
a triplet is a sequence (y, r, z) of three vertices of G such that yr and rz are edges of G . We
say that r is the head of the triplet while y and z are the feet. The edges yr and rz are the
legs of the triplet. A triplet (y, r, z) is closed if yz is an edge of G and open otherwise. If the
triplet is closed, the edge yz is the base of the triplet.

Two triplets, (y, r, z) and (p, s, q) , overlap if (r, z) = (p, s) . If triplets (y, r, z) and (p, s, q)
overlap then, clearly, both are open.

An ear of a graph is a path of nonnull length whose internal vertices have degree 2 . Every
triplet is, of course, an ear. Moreover, if vi is an interval vertex of ear (v0, v1, v2, . . . , vk) then
(vi−1, vi, vi+1) is a triplet. Hence, an ear is a sequence of overlapping triplets, the number of
triplets being equal to the number of internal vertices of the ear.
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Of particular interest are pairs of ears with a common origin and a common terminus. The
two ears of any such pair are, of course, internally disjoint.

Lemma 2.2 (pair of ears) Every 2-connected K4-free graph has two ears with a common
origin and a common terminus.

PROOF: Let G be a 2-connected K4-free graph. According to lemma 2.1, G has a vertex of
degree 2 and therefore a triplet, say (y, r, z) . If the triplet is closed — this is certainly the
case if G has only 3 vertices — then (y, r, z) and (y, z) are the required ears. Next, suppose
that the triplet is open, i.e., that yz is not an edge of G . Let G′ be the graph (G − r) + yz .
Clearly G′ is K4-free. Moreover, G′ is 2-connected, as we proceed to show.

Let s and t be any two vertices of G′ . Since G is 2-connected, there are two internally
disjoint paths, say S and T , from s to t in G . If r is neither a vertex of S nor a vertex of T
then S and T are internally disjoint in G′ . Suppose next that r is a vertex of S or T , say
a vertex of S . Since r is not in G′ , it is internal to S , and therefore (y, r, z) is a segment
of S . Replace the segment (y, r, z) with (y, z) to obtain a path S ′ . Then S ′ and T are
internally disjoint in G′ . Moreover, S ′ ̸= T since otherwise S and T would be (y, r, z) and
(y, z) respectively and yz would be an edge of G , contrary to our hypothesis. Hence, G′ is
2-connected, as claimed.

Since G′ is 2-connected and K4-free, and since V (G′) ⊂ V (G) , we may assume, as induction
hypothesis, that G′ has two ears, say P ′ and Q′ , with common origin and common terminus.
If yz is not an edge of P ′ or Q′ then P ′ and Q′ are ears in G , as required. Next suppose
that yz is an edge of P ′ or Q′ , say an edge of P ′ . Replace the segment (y, z) of P ′ with the
triplet (y, r, z) to obtain a path P . Now P and Q′ are the required ears in G . 2

3 Digraphs, cuts, and joins

A digraph is a pair (V,A) of sets where V is a finite set of vertices and A is some set of
ordered pairs of distinct vertices. Each element of A is an arc. Any arc of the form (v, w)
will be denoted by vw . The positive end of vw is v and the negative end is w . The sets
of vertices and arcs of a digraph D will be denoted by V (D) and A(D) respectively. The
digraph D is empty if A(D) = ∅ .

We add an unusual requirement to the definition: our digraphs have no antiparallel arcs. In
other words, for any two vertices v and w , at most one of the pairs (v, w) and (w, v) is an
arc.

The underlying graph of a digraph is obtained by replacing each arc vw of D with the
edge vw . In other words, a graph G underlies a digraph D if V (G) = V (D) and G has
an edge vw for each arc vw of D . Of course |E(G)| = |A(D)| .
An orientation of a graph G is any digraph D obtained by choosing one of the two possible
orientations for each edge of G . In other words, an orientation of G is any digraph D
obtained by replacing each edge vw of G with the arc vw or the arc wv . A digraph D is an
orientation of a graph G if and only if G is the graph underlying D .

Two distinct vertices v and w of a digraph are adjacent if they are adjacent in the underlying
graph. The degree of a vertex in the digraph is the degree of the vertex in the underlying
graph. A digraph is connected if its underlying graph is connected.
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A path in a digraph is a path in its underlying graph. Similarly, a circuit in a digraph is a
circuit in its underlying graph. For any path or a circuit (v0, v1, . . . , vk) in a digraph, any arc
of the form vi−1vi is forward-directed and any arc of the form vivi−1 is backward-directed.

A path in a digraph is directed if all its arcs are forward-directed. Similarly, a circuit is
directed if all its arcs are forward-directed. A digraph is acyclic if it has no directed circuits.
Acyclic digraphs are also known as dags. For any two distinct vertices s and t of an acyclic
digraph, if there is a directed path from s to t then there is no directed path from t to s .

The transpose, or directional dual, of a digraph D is the digraph D̃ obtained by replacing
each arc vw of D with the ordered pair (w, v) . Of course D is acyclic if and only if D̃ is
acyclic.

For any arc a of a digraph D , we denote by D−a the digraph (V (D), A(D)−a) . For any two
nonadjacent vertices v and w of D , we denote by D + vw the digraph (V (D), A(D) + vw) .
For any vertex v of a digraph D , we denote by D − v the digraph whose set of vertices is
V (D)− v and whose arcs are all the arcs of D that have no end equal to v .

3.1 Cuts

For any set X of vertices of a digraph D , we denote by ∂X the set of all the arcs that have
exactly one end in X . Of course ∂X = ∂(V (D) ∖ X) . The set X is trivial if ∂X = ∅ . The
sets ∅ and V (D) are, of course, trivial. These are the only trivial sets if and only if D is
connected.

An arc vw leaves a set X if v ∈ X and w ∈ V (D) ∖ X . An arc vw enters X if it leaves
V (D) ∖ X . A source is a vertex r such that no arc enters {r} and a sink is a vertex s such
that no arc leaves {s} . More generally, a source is a set of vertices that no arc enters and a
sink is a set of vertices that no arc leaves.

A dicut, or simply cut, of a digraph is any nonempty set of the form ∂S where S is a source
or a sink. In other words, a cut is a set ∂S such that S is a nontrivial source or a nontrivial
sink. We say that the cut ∂S is associated with S . The positive shore of a cut C is any
source S such that ∂S = C . The negative shore of C is any sink S such that ∂S = C . In a
connected digraph, every cut has a unique positive shore and a unique negative shore.

A cut ∂S separates a vertex x from a vertex y if x ∈ S and y /∈ S . More generally, a cut ∂S
separates a set X of vertices from a set Y if X ⊆ S and Y ∩ S = ∅ .

EXAMPLES: Let D be a digraph consisting of a path of nonnull length. Then, for every arc
a of D , the set {a} is a cut. Now let D be a digraph consisting of a directed circuit. Then D
has no cuts.

Lemma 3.1 (dichotomy) Every arc of a digraph belongs to a cut or to a directed circuit,
but not both.

PROOF: Let vw be an arc of a digraph. Let S be the set of termini of all directed paths with
origin w . Of course S is a sink. If v ∈ S then vw belongs to a directed circuit. Otherwise,
vw ∈ ∂S and ∂S is a cut. 2
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3.2 Joins

A dijoin, or simply join, of a digraph D is any set of arcs that intersects every cut. In other
words, a join of D is any subset J of A(D) such that J ∩ C ̸= ∅ for every cut C . In any
digraph D , the set A(D) is a join. A join J is minimal if no proper subset of J is a join.

Lemma 3.2 In any connected digraph, a set J of arcs is a join if and only if, for every
vertex s and every vertex t , there is a path from s to t whose forward-directed arcs
belong to J .

PROOF: Suppose J is a join of a connected digraph and let s and t be two vertices of the
digraph. Let S be the set of termini of all paths with origin s whose forward-directed arcs
are in J . All we need to show is that t ∈ S . No arc enters S and therefore S is a source.
Moreover, no arc of J leaves S , whence ∂S ∩ J = ∅ . Since J is a join, ∂S = ∅ . Since the
digraph is connected, S = V (G) and so t ∈ S .

Now suppose that J is any set of arcs such that, for every vertex s and every vertex t , there
is a path from s to t whose forward-directed arcs belong to J . All we need to show is that
J ∩ C ̸= ∅ for every cut C . Let S the positive shore of a cut. Since ∂S ̸= ∅ , there is vertex s
in S and a vertex t in V (D) ∖ S . Let P be a path from s to t whose forward-directed arcs
belong to J . Of course some arc a of P belongs to ∂S . Since S is a source, a is forward-
directed in P and therefore a ∈ J . Hence J ∩ ∂S ̸= ∅ . 2

4 Woodall’s conjecture

A packing of joins of a digraph is a disjoint set of joins, i.e., a set of joins such that each arc of
the digraph belongs to at most one of the joins of the set. The following lemma establishes
an obvious inequality:

Lemma 4.1 In any digraph, for any cut C and any packing P of joins, the inequality
|P| ≤ |C| holds. 2

Woodall conjectured [Woo78a, Woo78b] that

Conjecture 1 (Woodall) Every digraph has a packing P of joins and a cut C such that
|P| = |C| .

A cut C of a digraph is minimum if there is no cut C ′ such that |C ′| < |C| . A packing P of
joins is maximum if there is no packing P ′ such that |P ′| > |P| . The size of a minimum cut
and the size of a maximum packing of joins of a digraph D are denoted by

τ(D) and ν(D)

respectively. If D has no cuts then τ(D) = ∞ and ∅ is a join, whence ν(D) = ∞ . Otherwise,
both τ(D) and ν(D) are finite and τ(D) > 0 .

Lemma 4.1 is equivalent to the following statement: ν(D) ≤ τ(D) for every digraph D .
Conjecture 1 can be stated as follows: ν(D) = τ(D) for every digraph D .
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EXAMPLE: Let D be an acyclic orientation of a graph that consists of a circuit and nothing
else. Then τ(D) = 2 . If J1 is the set of forward-directed arcs of the circuit and J2 is the set
of backward-directed arcs then {J1, J2} is a packing of joins of D . Hence, ν(D) = 2 .

By virtue of lemma 3.1, conjecture 1 holds if ν(D) = τ(D) for every dag D . Hence, it is
enough to prove the conjecture for dags.

5 Conjecture for capacitated digraphs

A capacity vector, or upper bound vector, for a digraph D is any vector u indexed by A(D)
with values in the set {0, 1, 2, 3, . . .} of natural numbers. For any arc a , the number ua is the
capacity of a . The capacity of a set C of arcs is the number u(C) :=

∑
a∈C ua .

A capacitated digraph is a pair (D, u) where D is a digraph and u a capacity vector for D .
We say that an arc a of D is null if ua = 0 . It may seem that a null arc a can be simply
deleted, but this is not so. If S is a source of D then S is also a source of D− a , but a source
of D − a may not be a source of D . In other words, the digraph D − a may have cuts not
present in D . (The sets of cuts of D and D − a are the same if and only if there is a path in
D − a from the positive end of a to the negative end.)

In a capacitated digraph, the idea of a set of joins must be replaced with that of a collection of
joins, where a collection is a “set” that may contain two or more copies of some elements,
each copy contributing 1 to the size of the collection.

The definition of packing must be updated to take into account the capacities of the arcs.
Thus, in a capacitated digraph (D, u) , a collection P of joins is disjoint if

|P(a)| ≤ ua

for every arc a , where P(a) denotes the collection of all the elements of P that contain a . In
particular, P(a) = ∅ whenever ua = 0 . To make u explicit, we may say that P is u-disjoint.

In a capacitated digraph (D, u) , a packing of joins is any u-disjoint collection of joins of D .
To make u explicit, we may say that P is a u-packing. Lemma 4.1 can be generalized as
follows:

Lemma 5.1 (basic inequality) In any capacitated digraph (D, u) , for any cut C and any
packing P of joins, the inequality |P| ≤ u(C) holds. Moreover, if |P| = u(C) then
|J ∩ C| = 1 for each J in P and |P(a)| = ua for each a in C .

PROOF: Let P a packing of joins and C a cut of D . For each element J of P there is an arc
a of C such that P(a) ∋ J . Hence,

|P| ≤
∑

a∈C |P(a)| ≤
∑

a∈C ua = u(C). (1)

Now suppose that |P| = u(C) . Then the first “≤” in (1) holds as “=” and therefore
|J ∩ C| = 1 for each J in P . The second “≤” also holds as “=”, whence |P(a)| = ua

for each a in C . 2

Edmonds and Giles proposed [EG77] the following generalization of Woodall’s conjecture 1:

Conjecture 2 (Edmonds–Giles) Every capacitated digraph (D, u) has a packing P of
joins and a cut C such that |P| = u(C) .
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Schrijver has shown [Sch80] that the Edmonds–Giles conjecture is false. (See more in Fe-
ofiloff [Feo05].) As we show in section 6, however, every K4-free digraph has a packing P
and a cut C such that |P| = u(C) .

EXAMPLE: Let G be the graph consisting of a circuit (y, r, z, s, y) and a path (y, t, z) such
that t is distinct from r and s . Let D be an orientation of G such that r and s are sinks and
t is a source. Let u be the capacity vector defined by the following table:

yr zr ys zs ty tz
1 2 5 1 2 2

Let J1 := {yr, zs, ty} , J2 := {zr, ys, tz} , and C := {yr, zr} . Then C is a cut and P :=
{J1, J2, J2} is a u-packing of joins. Of course |P| = 3 = u(C) .

In a capacitated digraph (D, u) , a cut C is minimum if there is no cut C ′ such that u(C ′) <
u(C) . To make u explicit, we may say that the cut is u-minimum. The capacity of any
u-minimum cut of D is denoted by

τ(D, u).

If D has no cuts then τ(D, u) = ∞ ; otherwise, τ(D, u) is finite. The size of a maximum
u-packing of joins of D is denoted by

ν(D, u).

According to lemma 5.1, every capacitated digraph (D, u) satisfies the inequality ν(D, u) ≤
τ(D, u) . The Edmonds–Giles conjecture 2 can be stated as follows: ν(D, u) = τ(D, u) for
every capacitated digraph (D, u) .

The transpose of a capacitated digraph (D, u) is the capacitated digraph (D̃, ũ) where D̃ is
the transpose of D and ũ is the capacity vector defined in the obvious way: ũwv = uvw for
every arc wv of D̃ . Clearly, ν(D̃, ũ) = ν(D, u) and τ(D̃, ũ) = τ(D, u) .

Acyclic circuits satisfy the Edmonds–Giles conjecture, as the following observation shows:

Proposition 5.1 Let D be an acyclic digraph consisting of a single circuit. Then
ν(D, u) = τ(D, u) for any capacity vector u .

PROOF: Let J1 be the set of forward-directed arcs and J2 the set of backward-directed arcs of
the circuit. Since D is acyclic, J1 and J2 are nonempty. Clearly, J1 and J2 are joins. Let a be
an arc that minimizes ua in J1 and b an arc that minimizes ub in J2 . Then τ(D, u) = ua+ub .
On the other hand, the collection consisting of ua copies of J1 and ub copies of J2 is u-
disjoint. Hence, ν(D, u) = τ(D, u) . 2

5.1 Critical capacity and oriented triplets

An arc of a capacitated digraph is critical if it belongs to a minimum cut or it is null. In
other words, an arc c of a capacitated digraph (D, u) is critical if uc = 0 or there exists a
u-minimum cut C such that C ∋ c . If every arc of D is critical, we say that u is critical.

If u is critical then, according to lemma 3.1, each arc of every directed circuit in D is null.
Here is another simple property:

Property 5.1 If u is critical then ua ≤ τ(D, u) for every arc a of D .
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PROOF: Suppose u is critical and let a be an arc of D . If a is null then of course ua ≤ τ(D, u) .
If a is nonnull then it belongs to some minimum cut C and therefore ua ≤ u(C) = τ(D, u) . 2

Suppose that the graph underlying D has a triplet. As the edges of the graph become arcs
of D , each triplet becomes serial or alternating. A triplet (y, r, z) is serial if r is the negative
end of one of its legs and the positive end of the other leg. Otherwise, the triplet is alter-
nating. In the latter case, r is a source or a sink and we say that ∂{r} is the head cut of the
triplet. If a triplet (y, r, z) is closed then exactly one of the pairs yz and zy is an arc of D ;
this arc is the base of the triplet.

r
a b

f
zy

r
a b

y z

Figure 1: A serial closed triplet and an alternating open triplet.

Property 5.2 If u is critical then ua = ub for every serial triplet of D with legs a and b .

PROOF: Suppose u is critical. If a and b are null then, of course, ua = ub . Now suppose
that ua > 0 . Then a belongs to some minimum cut C . Since C − a+ b is also a cut, we have
τ(D, u) ≤ u(C − a+ b) = u(C)− ua + ub = τ(D, u)− ua + ub, whence ub ≥ ua . In particular,
ub > 0 , and so b belongs to some minimum cut B . Since B − b + a is also a cut, we have
τ(D, u) ≤ u(B − b+ a) = u(B)− ub + ua = τ(D, u)− ub + ua, whence ua ≥ ub . We conclude
that ua = ub . 2

Property 5.3 If u is critical then uf + ua ≤ τ(D, u) and uf + ub ≤ τ(D, u) for every serial
closed triplet with legs a and b and base arc f .

PROOF: Suppose u is critical. If f is null then uf + ua ≤ τ(D, u) by property 5.1. If uf > 0
then f belongs to some minimum cut C . Of course C ∋ a or C ∋ b . In the first case,
uf + ua ≤ u(C) = τ(D, u) ; in the second, uf + ub ≤ u(C) = τ(D, u) . Since ua = ub by
property 5.2, both inequalities hold. 2

Property 5.4 If u is critical then uf + ua ≤ τ(D, u) or uf + ub ≤ τ(D, u) for every alter-
nating closed triplet with legs a and b and base arc f . The first inequality holds if f and
a have the same positive end or the same negative end and the second inequality holds
if f and b have the same positive or the same negative end.

PROOF: Suppose u is critical. If f is null, both inequalities hold by property 5.1. Now
suppose that uf > 0 . Then f belongs to some u-minimum cut C . Adjust notation, by
interchanging (D, u) with its transpose (D̃, ũ) if necessary, so that r is a sink. Then f has
the same positive end as a or the same positive end as b . In the first case, C ∋ a and
therefore uf + ua ≤ u(C) = τ(D, u) . In the second case, C ∋ b and therefore uf + ub ≤
u(C) = τ(D, u) . 2

An alternating triplet is special if there is a minimum cut that separates one of the feet of
the triplet from the head and the other foot. In other words, an alternating triplet (y, r, z) is
special if some minimum cut separates y from {r, z} or separates z from {r, y} .
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Property 5.5 If u is critical then, any closed alternating triplet with a nonnull base is
special.

PROOF: Suppose u is critical and let (y, r, z) be a closed alternating triplet. Let f be the base
of the triplet and suppose uf > 0 . Then f belongs to a minimum cut. Such cut necessarily
separates y from {r, z} or separates z from {y, r} . Hence, the triplet is special. 2

Property 5.6 If u is critical then the head cut of every nonspecial alternating triplet is
u-minimum.

PROOF: Suppose u is critical. Let r be the head and a and b the legs of an alternating
triplet. The head cut of the triplet is, of course, ∂{r} = {a, b} . If a and b are null then
u(∂{r}) = 0 = τ(D, u) and so ∂{r} is minimum. Now suppose ua > 0 or ub > 0 . Adjust
notation so that the first alternative holds. Then a belongs to some minimum cut C . If
the triplet is not special then C separates r from the two feet of the triplet, and therefore
C ⊇ ∂{r} . Hence, ∂{r} is minimum. 2

Special alternating triplets occur naturally when two triplets overlap:

Property 5.7 If u is critical then, in any pair of overlapping alternating triplets, at least
one of the triplets is special.

PROOF: Suppose u is critical and let (y, r, z) and (r, z, w) be overlapping alternating triplets.
Suppose that the first triplet is not special. Then, by virtue of property 5.6, the cut ∂{r} is
minimum. This cut separates r from {z, w} , i.e., separates one of the feet of the second
triplet from the head and the other foot of the triplet. Hence, the second triplet is special. 2

6 Theorem for K4-free digraphs

Lee and Wakabayashi found [LW01] that the Edmonds–Giles conjecture 2 is true when re-
stricted to orientations of K4-free graphs:

Theorem 1 (Lee–Wakabayashi) The equality ν(D, u) = τ(D, u) holds for every capaci-
tated digraph (D, u) such that D is an orientation of a K4-free graph.

The theorem can be easily reduced to the acyclic case by contracting every directed circuit
of D to a single vertex. The theorem can be also reduced to the case where the underlying
graph is 2-connected by dealing with each 2-connected component in separate and then
gluing all the solutions together. Hence, to establish theorem 1 it is sufficient to prove the
following lemma:

Lemma 6.1 (Lee–Wakabayashi) The equality ν(D, u) = τ(D, u) holds for any capaci-
tated digraph (D, u) such that D is an acyclic orientation of a 2-connected K4-free graph.

The proof of this lemma is the object of the next section.
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7 Proof of the Lee–Wakabayashi lemma

We prove lemma 6.1 by induction. Let G be a 2-connected K4-free graph, let D an acyclic
orientation of G , and let u be a capacity vector for D . We proceed to show that ν(D, u) =
τ(D, u) .

Of course G has more than 2 vertices. If G has only 3 vertices then G consists of a circuit
of length 3 and then ν(D, u) = τ(D, u) by virtue of proposition 5.1. This is the basis of the
induction.

Now suppose that G has more than 3 vertices. The induction step has six cases. In what
follows, we discuss the cases at an “executive” level and relegate the technical details to the
next subsection. To simplify the wording, we shall say that a digraph is 2-connected and
K4-free if its underlying graph has these properties.

The first case of the induction step, which we refer to as case 0, deals with the instances in
which u is not critical.

Case 0: the capacity vector u is not critical. Let c be a nonnull arc that does not belong to a
u-minimum cut. Define a new capacity vector u′ for D as follows: u′ coincides with u
on all arcs except c and u′

c = uc − 1 . Of course u′(C) = u(C)− 1 for every cut C of D
that contains c and u′(C) = u(C) for all the other cuts of D . Hence, τ(D, u′) = τ(D, u) .

Now consider the joins. Since u′ < u , we may assume, as induction hypothesis, that
ν(D, u′) = τ(D, u′) . Hence, there is a u′ -packing P ′ of joins of D such that |P ′| =
τ(D, u′) = τ(D, u) . Since |P ′(a)| ≤ u′

a ≤ ua for each arc a of D , the collection P ′ is
a u-packing. The existence of such u-packing, together with lemma 5.1, show that
ν(D, u) = τ(D, u) .

From now on, suppose that u is critical and assume, as induction hypothesis, that ν(D′, u′) =
τ(D′, u′) for every capacitated acyclic digraph (D′, u′) such that V (D′) ⊂ V (D) and D ’ is
2-connected and K4-free.

By lemma 2.1, graph G has a vertex of degree 2 and therefore a triplet. As the edges of G
are replaced with arcs of D , each triplet becomes serial or alternating, as defined in subsec-
tion 5.1. The next two cases of the induction step deal with the instances in which D has a
serial triplet.

Case 1: D has a serial open triplet. Let (y, r, z) be a serial open triplet. Adjust notation, by
interchanging (D, u) with its transpose (D̃, ũ) if necessary, so that the legs of the triplet
are yr and rz .

Let f denote the ordered pair yz and let D′ := (D− r)+ f . Since D is acyclic, so is D′ .
Since D has more than 3 vertices and is 2-connected, D′ is also 2-connected. Since D
is K4-free, so is D′ . Since V (D′) ⊂ V (D) , we may assume, by induction hypothesis,
that ν(D′, u′) = τ(D′, u′) for any capacity vector u′ .

Let a := yr and b := rz . Define u′ so that it coincides with u on all arcs of D − r and
has u′

f = ua . Then lemma 7.1 (see the next subsection) shows that ν(D, u) = τ(D, u) .

Case 2: D has a serial closed triplet. Let (y, r, z) be a serial closed triplet. Adjust notation,
by interchanging (D, u) with (D̃, ũ) if necessary, so that the legs of the triplet are yr
and rz . Since the triplet is closed and D is acyclic, yz is the base of the triplet.
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Let D′ := D − r . Since D has more than 3 vertices and is 2-connected, D′ is also
2-connected. Since D is K4-free and acyclic, so is D′ . Since V (D′) ⊂ V (D) , we may
assume, by induction hypothesis, that ν(D′, u′) = τ(D′, u′) for any capacity vector u′ .

Let a := yr , b := rz , and f := yz . Define u′ so that it coincides with u on all arcs of
D− r except f and has u′

f = uf + ua . Then lemma 7.2 (see the next subsection) shows
that ν(D, u) = τ(D, u) .

From now on, we assume that D has no serial triplets, i.e., that every triplet is alternating.

Case 3: D has an alternating closed triplet. Let (y, r, z) be an alternating closed triplet.
Adjust notation, by interchanging (D, u) with (D̃, ũ) if necessary, so that r is a sink.
Adjust the notation further, by interchanging (y, r, z) with (z, r, y) if necessary, so that
the base of the triplet is yz .

Let D′ := D − r . Since D is acyclic and K4-free, so is D′ . Since D has more than
3 vertices and is 2-connected, D′ is also 2-connected. Since V (D′) ⊂ V (D) , we may
assume, by induction hypothesis, that ν(D′, u′) = τ(D′, u′) for any capacity vector u′ .

Let a := yr , b := zr , and f := yz . Let u′ be the capacity vector for D′ that coincides
with u on all arcs of D− r except f and has u′

f = uf + ua . Then lemma 7.3 shows that
ν(D, u) = τ(D, u) .

From now on, we assume that D has no closed alternating triplets. Hence, every triplet is
alternating and open. The next case of the induction step deals with the instances in which
some alternating triplet is special, as defined in subsection 5.1.

Case 4: D has a special alternating open triplet. Let (y, r, z) be a special alternating open
triplet. Adjust notation, by interchanging (D, u) with (D̃, ũ) if necessary, so that r is
a sink. Adjust notation further, by interchanging (y, r, z) with (z, r, y) if necessary, so
that a u-minimum cut C separates y from {r, z} .

Let f be the ordered pair yz and let D′ := (D − r) + f . Due to the presence of C ,
there is no directed path from z to y in D and so D′ is acyclic. Since D is K4-free, so is
D′ . Since D has more than 3 vertices and is 2-connected, D′ is also 2-connected. Since
V (D′) ⊂ V (D) , we may assume, by induction hypothesis, that ν(D′, u′) = τ(D′, u′) for
any capacity vector u′ .

Let a := yr and b := zr . Let u′ be the capacity vector for D′ that coincides with u on
all arcs of D − r and has u′

f = ua . Then lemma 7.4 shows that ν(D, u) = τ(D, u) .

We assume, from now on, that every triplet of D is alternating, open, and nonspecial. In
view of property 5.7, D has no overlapping triplets.

According to lemma 2.2, G has two ears, say P and Q , with a common origin and a common
terminus. Each ear consists of a sequence of triplets, one triplet for each internal vertex of
the ear. Since all triplets of D are alternating and do not overlap, P and Q have at most one
internal vertex each. Since all triplets are open, P and Q have exactly one internal vertex
each and therefore both P and Q consist of a single triplet. Of course these two triplets have
the same pair of feet.

Case 5: D has a pair of nonspecial alternating open triplets with common feet. Let (y, r,
z) and (y, s, z) be two nonspecial alternating open triplets. In view of property 5.6,
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Figure 2: Two pairs of alternating open triplets with common feet.

the head cuts ∂{r} and ∂{s} are minimum. Adjust notation, by interchanging (D, u)
with (D̃, ũ) if necessary, so that r is a sink.

Suppose first D has only 4 vertices. Then D is the circuit and so ν(D, u) = τ(D, u) as
proposition 5.1 shows.

From now on, we assume that D has more than 4 vertices. Let D′ := D − r . Since
D has more than 4 vertices and D is 2-connected, thus D′ is 2-connected. Since D
is K4-free and acyclic, so is D′ . Since V (D′) ⊂ V (D) , we may assume, by induction
hypothesis, that ν(D′, u′) = τ(D′, u′) for any u′ .

Suppose first that s is a sink. Let a := yr , b := zr , c := ys , and d := zs . Let u′ be the
capacity vector for D′ that coincides with u on all arcs of D − r except c and d and
has u′

c = uc + ua and u′
d = ud + ub . Then lemma 7.5 shows that ν(D, u) = τ(D, u) .

Now suppose that s is a source. Let a := yr , b := zr , d := sy , and c := sz . Let u′ be
the capacity vector for D′ that coincides with u on all arcs of D− r except d and c and
has u′

d = ud + ua and u′
c = uc + ub . Then lemma 7.6 shows that ν(D, u) = τ(D, u) .

The proof of lemma 6.1 has now been reduced to lemmas 7.1 to 7.6. These lemmas will be
discussed in the next subsection.

7.1 Main lemmas

Lemmas 7.1 to 7.6 contain the gist of the proof of the Lee–Wakabayashi lemma. Each lemma
features a digraph D and a digraph D′ derived from D . We shall write

∂ and ∂′

to indicate the cuts associated with the sources and sinks of D and D′ respectively.

Lemma 7.1 (serial open triplet) Let (y, r, z) be a serial open triplet in a capacitated di-
graph (D, u) such that u is critical. Suppose a := yr and b := rz are the arcs of the
triplet. Let f denote the ordered pair yz and let D′ := (D − r) + f . Let u′ be the
capacity vector for D′ that coincides with u on all arcs of D − r and has u′

f = ua . If
ν(D′, u′) = τ(D′, u′) then ν(D, u) = τ(D, u) .

PROOF: Let P ′ be a maximum u′ -packing of joins of D′ . Then |P ′| = τ(D′, u′) . Proposi-
tion 7.1 (see next subsection) shows that τ(D′, u′) ≥ τ(D, u) . Adjust notation, by discarding
some elements of P ′ is necessary, so that

|P ′| = τ(D, u).
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Let Q′ := P ′(f) and S ′ := P ′ ∖ P ′(f) . Clearly, |Q′| ≤ u′
f = ua since P ′ is u′ -disjoint.

Proposition 7.7 (see next subsection) shows that, for each J ′ in Q′ ∪ S ′ ,

if J ′ ∈ Q′ then J ′ − f + a+ b is a join of D , and
if J ′ ∈ S ′ then J ′ is a join of D .

Let Q be the collection of all sets of the form J ′ − f + a + b with J ′ in Q′ and let S := S ′ .
Of course P := Q ∪ S is a collection of joins of D . We argue next that P is u-disjoint. For
arc a , we have

|P(a)| = |Q(a)|+ |S(a)| = |Q′|+ 0 ≤ ua.

An analogous argument shows that |P(b)| ≤ ub since ub = ua by property 5.2. Moreover, for
each arc e of D−a−b , we have |P(e)| = |P ′(e)| ≤ u′

e = ue . We conclude that P is u-disjoint.
Finally, since each element of P belongs to one and only one of Q and S , we have

|P| = |Q|+ |S| = |P ′| = τ(D, u).

Hence ν(D, u) ≥ |P| = τ(D, u) and therefore ν(D, u) = τ(D, u) . 2

Lemma 7.2 (serial closed triplet) Let (y, r, z) be a serial closed triplet in a capacitated
digraph (D, u) such that u is critical. Suppose a := yr , b := rz , and f := yz are the
arcs of the triplet and let D′ := D− r . Let u′ be the capacity vector for D′ that coincides
with u on all arcs of D − r except f and has u′

f = uf + ua . If ν(D′, u′) = τ(D′, u′) then
ν(D, u) = τ(D, u) .

PROOF: Let P ′ be a maximum u′ -packing of joins of D′ . Then |P ′| = τ(D′, u′) . Proposi-
tion 7.2 shows that τ(D′, u′) ≥ τ(D, u) . Adjust notation, by discarding some elements of P ′

if necessary, so that
|P ′| = τ(D, u).

By property 5.3, |P ′| ≥ uf + ua . On the other hand, |P ′(f)| ≤ u′
f = uf + ua since P ′ is

u′ -disjoint. Hence, we can adjust the notation, by adding f to some elements of P ′ ∖ P ′(f)
if necessary, so that

|P ′(f)| = uf + ua.

This equality leads to the following partition (Q′,R′,S ′) of P ′ :

Q′ is any collection of ua elements P ′(f) ,
R′ is the collection of the remaining uf elements of P ′(f) , and
S ′ is the collection P ′ ∖ P ′(f) .

Of course, |Q′| = ua and |R′| = uf . Proposition 7.8 shows that, for every element J ′ of
Q′ ∪R′ ∪ S ′ ,

J ′ − f + a+ b and J ′ are joins of D .

Let Q be the collection of all sets of the form J ′ − f + a + b for J ′ in Q′ . Let R := R′ and
let S := S ′ . Of course P := Q ∪R ∪ S is a collection of joins of D . We argue next that P is
u-disjoint. For arc a , we have

|P(a)| = |Q(a)|+ |R(a)|+ |S(a)| = |Q′|+ 0 + 0 = ua.

Similarly, |P(b)| = ub since ub = ua by property 5.2. For arc f , we have

|P(f)| = |Q(f)|+ |R(f)|+ |S(f)| = 0 + |R′|+ 0 = uf .
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For each arc e of D − a− b− f , we have |P(e)| = |P ′(e)| ≤ u′
e = ue . We conclude that P is

u-disjoint. Finally, since each element of P belongs to one and only one of Q , R and S , we
have

|P| = |Q|+ |R|+ |S| = |P ′| = τ(D, u).

Hence, ν(D, u) ≥ |P| = τ(D, u) and so ν(D, u) = τ(D, u) . 2

Lemma 7.3 (alternating closed triplet) Let (y, r, z) be an alternating closed triplet in a
capacitated digraph (D, u) such that u is critical. Suppose r is a sink and yz is the base
of the triplet. Let a := yr , b := zr , f := yz , and let D′ := D − r . Let u′ be the capacity
vector for D′ that coincides with u on all arcs of D − r except f and has u′

f = uf + ua .
If ν(D′, u′) = τ(D′, u′) then ν(D, u) = τ(D, u) .

PROOF: Let P ′ be a maximum u′ -packing of joins of D′ . Then |P ′| = τ(D′, u′) . Proposi-
tion 7.3 shows that τ(D′, u′) ≥ τ(D, u) . Adjust notation, by discarding some elements of P ′

if necessary, so that
|P ′| = τ(D, u).

By property 5.4, |P ′| ≥ uf + ua . On the other had, |P ′(f)| ≤ u′
f = uf + ua since P ′ is u′ -

disjoint. Hence, we can adjust the notation, by adding f to some elements of P ′ ∖ P ′(f) if
necessary, so that

|P ′(f)| = uf + ua.

This equality leads to the following partition (Q′,R′,S ′) of P ′ :

Q′ is any collection of ua elements of P ′(f) ,
R′ is the collection of the remaining uf elements P ′(f) , and
S ′ is the collection P ′ ∖ P ′(f) .

Clearly, |Q′| = ua , |R′| = uf , and

|S ′| = |P ′| − |P ′(f)| = τ(D, u)− (uf + ua) ≤ (ua + ub)− (uf + ua) = ub − uf ,

where “≤” holds because τ(D, u) ≤ u(∂{r}) = ua + ub . Proposition 7.9 shows that, for each
element J ′ of Q′ ∪R′ ∪ S ′ ,

J ′ − f + a and J ′ + b are joins of D .

Let Q , R and S be the collections of joins of D defined as follows:

Q is the result of replacing each element J ′ of Q′ with J ′ − f + a ,
R is the result of replacing each element J ′ of R′ with J ′ + b , and
S is the result of replacing each element J ′ of S ′ with J ′ + b .

Of course P := Q ∪ R ∪ S is a collection of joins of D . We argue next that P is u-disjoint.
For arc a , we have

|P(a)| = |Q(a)|+ |R(a)|+ |S(a)| = |Q′|+ 0 + 0 = ua.

For arc b , we have

|P(b)| = |Q(b)|+ |R(b)|+ |S(b)| = 0 + |R′|+ |S ′| ≤ uf + (ub − uf ) = ub.

For arc f , we have

|P(f)| = |Q(f)|+ |R(f)|+ |S(f)| = 0 + |R′|+ 0 = uf .
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Finally, for each arc e of D − a − b − f , we have |P(e)| = |P ′(e)| ≤ u′
e = ue . We conclude

that P is u-disjoint. Finally, since each element of P belongs to one and only one of Q , R
and S , we have

|P| = |Q|+ |R|+ |S| = |P ′| = τ(D, u).

Hence ν(D, u) ≥ |P| = τ(D, u) and so ν(D, u) = τ(D, u) . 2

Lemma 7.4 (special alternating open triplet) Let (y, r, z) be an alternating open triplet
in a capacitated digraph (D, u) . Suppose that D is 2-connected and r is a sink. Let
a := yr and b := zr . Let f be the ordered pair yz and let D′ := (D − r) + f . Let u′ be
the capacity vector for D′ that coincides with u on all arcs of D − r and has u′

f = ua .
Suppose that some u-minimum cut of D separates y from {r, z} . If ν(D′, u′) = τ(D′, u′)
then ν(D, u) = τ(D, u) .

PROOF: Let P ′ be a maximum u′ -packing of joins of D′ . Then |P ′| = τ(D′, u′) . Proposi-
tion 7.4 shows that τ(D′, u′) ≥ τ(D, u) . Actually, equality holds, as we argue next.

Let Y be a nontrivial source of D such that Y ∩{y, r, z} = {y} and u(∂Y ) = τ(D, u) . Clearly,
Y is also a nontrivial source of D′ and ∂′Y − f = ∂Y − a . Since u′

f = ua , we have

τ(D, u) = u(∂Y ) = u′(∂′Y ) ≥ τ(D′, u′) ≥ τ(D, u)

and therefore τ(D′, u′) = τ(D, u) . Hence,

|P ′| = τ(D, u) (2)

and |P ′| = u′(∂′Y ) . Since ∂′Y contains f , the second part of lemma 5.1, with (D′, u′,P ′,
f, ∂′Y ) in place of (D, u,P , a, C) , implies that

|P ′(f)| = u′
f . (3)

Let Q′ := P ′(f) and S ′ := P ′ ∖ P ′(f) . Clearly, |Q′| = |P ′(f)| = u′
f = ua due to (3) and

|S ′| = |P ′| − |Q′| = τ(D, u) − ua ≤ (ua + ub) − ua = ub, where the inequality holds because
{a, b} is a cut of D .

There is no harm in assuming that each join J ′ in Q′ is minimal, and therefore that J ′ − f
is not a join of D′ . With this assumption, and the 2-connectedness of D , propositions 7.10
and 7.11 apply and show that, for each J ′ in Q′ ∪ S ′ ,

if J ′ ∈ Q′ then J ′ − f + a is a join of D , and
if J ′ ∈ S ′ then J ′ + b is a join of D .

Let Q and S be the collections of joins of D defined as follows:

Q is the result of replacing each element J ′ of Q′ with J ′ − f + a and
S is the result of replacing each element J ′ of S ′ with J ′ + b .

Of course P := Q ∪ S is a collection of joins of D . Next, we argue that P is u-disjoint. For
arc a , we have

|P(a)| = |Q(a)|+ |S(a)| = |Q′|+ 0 = ua.

For arc b , we have
|P(b)| = |Q(b)|+ |S(b)| = 0 + |S ′| ≤ ub.

For any arc e of D − a − b , we have |P(e)| = |P ′(e)| ≤ u′
e = ue . Hence, P is u-disjoint.

Finally, since each element of P belongs to one and only one of Q and S ,

|P| = |Q|+ |S| = |P ′| = τ(D, u)
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due to (2). Hence ν(D, u) ≥ |P| = τ(D, u) and so ν(D, u) = τ(D, u) . 2

Lemma 7.5 (pair of nonspecial alternating open triplets) Let (y, r, z) and (y, s, z) be
two alternating open triplets in a capacitated digraph (D, u) . Suppose r and s are sinks
and the cuts ∂{r} and ∂{s} are u-minimum. Let a := yr , b := zr , c := ys , d := zs and
let D′ := D − r . Let u′ be the capacity vector for D′ that coincides with u on all arcs of
D− r except c and d and has u′

c = uc + ua and u′
d = ud + ub . If ν(D′, u′) = τ(D′, u′) then

ν(D, u) = τ(D, u) .

PROOF: Let P ′ be a maximum u′ -packing of joins of D′ . Then |P ′| = τ(D′, u′) . Proposi-
tion 7.5 shows that τ(D′, u′) ≥ τ(D, u) . Adjust the notation, by discarding some elements of
P ′ if necessary, so that

|P ′| = τ(D, u).

Clearly ∂{r} = {a, b} and ∂{s} = {c, d} . Since the cuts ∂{r} and ∂{r} are minimum, thus

ua + ub = uc + ud = τ(D, u). (4)

As a consequence, ua + uc ≥ τ(D, u) if and only if ub + ud ≤ τ(D, u) . Adjust the notation, by
interchanging (y, r, z) with (z, r, y) and (y, s, z) with (z, s, y) if necessary, so that

ub + ud ≤ τ(D, u). (5)

Since P ′ is u′ -disjoint, |P ′(d)| ≤ u′
d = ud + ub . On the other hand, |P ′| = τ(D, u) ≥ ud + ub

due to (5). Hence, we can adjust the notation, by adding d to some elements of P ′ ∖P ′(d) if
necessary, so that

|P ′(d)| = ud + ub. (6)

Equality (6) leads to the following partition (Q′,R′,S ′) of P ′ :

Q′ is any collection of ub elements of P ′(d) ,
R′ is the collection of the remaining ud elements of P ′(d) , and
S ′ is the collection P ′ ∖ P ′(d) .

Of course |Q′| = ub , |R′| = ud , and |S ′| = |P ′| − |P ′(d)| = τ(D, u) − (ud + ub) = (ua + ub) −
(ud + ub) due to (6) and (4) and therefore

|S ′| = ua − ud = uc − ub.

Proposition 7.12 shows that, for each J ′ in Q′ ∪R′ ∪ S ′ ,

J ′ + b− d+ c , J ′ + a− c+ d , and J ′ + a are joins of D .

Let Q , R and S be the collections of joins of D defined as follows:

Q is the result of replacing each element J ′ of Q′ with J ′ + b− d+ c ,
R is the result of replacing each element J ′ of R′ with J ′ + a− c+ d = J ′ + a− c , and
S is the result of replacing each element J ′ of S ′ with J ′ + a .

Of course P := Q ∪ R ∪ S is a collection of joins of D . We argue next that P is u-disjoint.
For arc a , we have

|P(a)| = |Q(a)|+ |R(a)|+ |S(a)| = 0 + |R′|+ |S ′| = ud + (ua − ud) = ua.

For arc b , we have

|P(b)| = |Q(b)|+ |R(b)|+ |S(b)| = |Q′|+ 0 + 0 = ub.



DRAFT

Feofiloff Woodall’s conjecture and series-parallel digraphs 17

For arc c , we have

|P(c)| = |Q(c)|+ |R(c)|+ |S(c)| ≤ |Q′|+ 0 + |S ′| = ub + (uc − ub) = uc.

For arc d , we have

|P(d)| = |Q(d)|+ |R(d)|+ |S(d)| = 0 + |R′|+ 0 = ud.

For any arc e of D−a− b−c−d , we have |P(e)| = |P ′(e)| ≤ u′
e = ue . Hence, P is u-disjoint.

Finally, since each element of P belongs to one and only one of Q , R and S , we have

|P| = |Q|+ |R|+ |S| = |P ′| = τ(D, u).

Hence ν(D, u) ≥ |P| = τ(D, u) and so ν(D, u) = τ(D, u) . 2

Lemma 7.6 (pair of nonspecial alternating open triplets) Let (y, r, z) and (y, s, z) be
two alternating open triplets in a capacitated digraph (D, u) . Suppose r is a sink, s is
a source and the cuts ∂{r} and ∂{s} are u-minimum. Let a := yr , b := zr , d := sy ,
c := sz , and let D′ := D − r . Let u′ be the capacity vector for D′ that coincides with
u on all arcs of D − r except c and d and has u′

c = uc + ua and u′
d = ud + ub . If

ν(D′, u′) = τ(D′, u′) then ν(D, u) = τ(D, u) .

PROOF: The proof of this lemma is formally identical to the proof of lemma 7.5 if the in-
vocations of propositions 7.5 and 7.12 are replaced with the invocations of propositions 7.6
and 7.13 respectively. 2

To complete the proofs of lemmas 7.1 to 7.6, we must verify propositions 7.1 to 7.13. This is
done in the next subsection.

7.2 Auxiliary propositions

This subsection proves propositions 7.1 to 7.13. Most proofs are rather tedious and repeti-
tive, the exception being the proofs of propositions 7.10, 7.12, and 7.13.

Each proposition features two digraphs, D and D′ . As in the previous subsection, we write

∂ and ∂′

to indicate the cuts associated with sources and sinks of D and D′ respectively.

Proposition 7.1 (cuts for serial open triplet) Let (y, r, z) be a serial triplet in a capaci-
tated digraph (D, u) . Suppose that a := yr and b := rz are the legs of the triplet. Let
f := yz , let D′ := (D− r)+ f and let u′ be the capacity vector for D′ that coincides with
u on all arcs of D − r and has u′

f = ua . Then τ(D′, u′) ≥ τ(D, u) .

PROOF: Let S ′ be a nontrivial source of D′ . The intersection S ′ ∩ {y, z} has only three
possible values. For each of these values we argue that u′(∂′S ′) = u(∂S) for some nontrivial
source S of D .

Case i: S ′ ∩ {y, z} = ∅ . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ . Hence u′(∂′S ′) =
u(∂S ′) .
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Case ii: S ′ ∩ {y, z} = {y, z} . Then S ′ + r is a nontrivial source of D and ∂′S ′ = ∂(S ′ + r) .
Hence u′(∂′S ′) = u(∂(S ′ + r)) .

Case iii: S ′∩{y, z} = {y} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′−a+f . Hence,
u′(∂′S ′) = u′(∂S ′−a+f) = u′(∂S ′−a)+u′

f = u(∂S ′−a)+u′
f = u(∂S ′)−ua+u′

f = u(∂S ′) . 2

Proposition 7.2 (cuts for serial closed triplet) Let (y, r, z) be a serial triplet in a capaci-
tated digraph (D, u) . Suppose that a := yr and b := rz are the legs of the triplet. Let
f := yz be the base of the triplet, let D′ := D − r . and let u′ be the capacity vector
for D′ that coincides with u on all arcs of D − r except f and has u′

f = uf + ua . Then
τ(D′, u′) ≥ τ(D, u) .

PROOF: Let S ′ be a nontrivial source of D′ . The intersection S ′ ∩ {y, z} has only three
possible values. For each of these values we argue that u′(∂′S ′) = u(∂S) for some nontrivial
source S of D .

Case i: S ′ ∩ {y, z} = ∅ . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ . Hence u′(∂′S ′) =
u(∂S ′) .

Case ii: S ′ ∩ {y, z} = {y, z} . Then S ′ + r is a nontrivial source of D and ∂′S ′ = ∂(S ′ + r) .
Hence u′(∂′S ′) = u(∂(S ′ + r)) .

Case iii: S ′ ∩ {y, z} = {y} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ − a . Hence
u′(∂′S ′) = u′(∂S ′ − a) = u′(∂S ′ − a− f) + u′

f = u(∂S ′ − a− f) + u′
f = u(∂S ′)− ua − uf + u′

f =
u(∂S ′) . 2

Proposition 7.3 (cuts for alternating closed triplet) Let (y, r, z) be an alternating closed
triplet in a capacitated digraph (D, u) . Suppose that a := yr and b := zr are the legs of
the triplet. Let f := yz be the base of the triplet, let D′ := D−r , and let u′ be the capacity
vector for D′ that coincides with u on all arcs of D − r except f and has u′

f = uf + ua .
Then τ(D′, u′) ≥ τ(D, u) .

PROOF: Let S ′ be a nontrivial source of D′ . For each of the three possible values of the
intersection S ′ ∩ {y, z} , we argue next that u′(∂′S ′) = u(∂S) for some nontrivial source S
of D .

Case i: S ′∩{y, z} = ∅ . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ , whence u′(∂′S ′) =
u(∂S ′) .

Case ii: S ′ ∩ {y, z} = {y, z} . Then S ′ + r is a nontrivial source of D and ∂′S ′ = ∂(S ′ + r) ,
whence u′(∂′S ′) = u(∂(S ′ + r)) .

Case iii: S ′∩{y, z} = {y} . Then S ′ is a nontrivial source of D . Since the triplet is closed then
∂′S ′ = ∂S ′−a and therefore u′(∂′S ′) = u′(∂S ′−a) = u′(∂S ′−a−f)+u′

f = u(∂S ′−a−f)+u′
f =

u(∂S ′)− ua − uf + u′
f = u(∂S ′) . 2

Proposition 7.4 (cuts for alternating open triplet) Let (y, r, z) be an alternating open
triplet in a capacitated digraph (D, u) . Suppose that a := yr and b := zr are the legs of
the triplet. Let f be the pair yz , let D′ := (D−r)+f , and let u′ be the capacity vector for
D′ that coincides with u on all arcs of D − r and has u′

f = ua . Then τ(D′, u′) ≥ τ(D, u) .

PROOF: Let S ′ be a nontrivial source of D′ . For each of the three possible values of the
intersection S ′ ∩ {y, z} , we argue next that u′(∂′S ′) = u(∂S) for some nontrivial source S
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of D .

Case i: S ′∩{y, z} = ∅ . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ , whence u′(∂′S ′) =
u(∂S ′) .

Case ii: S ′ ∩ {y, z} = {y, z} . Then S ′ + r is a nontrivial source of D and ∂′S ′ = ∂(S ′ + r) ,
whence u′(∂′S ′) = u(∂(S ′ + r)) .

Case iii: S ′ ∩ {y, z} = {y} . Then S ′ is a nontrivial source of D . Since the triplet is open then
∂′S ′ = ∂S ′−a+f and therefore u′(∂′S ′) = u′(∂S ′−a+f) = u′(∂S ′−a)+u′

f = u(∂S ′−a)+u′
f =

u(∂S ′)− ua + u′
f = u(∂S ′) . 2

Proposition 7.5 (cuts for pair of alternating triplets) Let (y, r, z) and (y, s, z) be two al-
ternating triplets in a capacitated digraph (D, u) . Suppose that a := yr and b := zr are
the legs of the first triplet and c := ys and d := zs are the legs of the second triplet. Let
D′ := D − r and let u′ be the capacity vector for D′ that coincides with u on all arcs of
D − r except c and d and has u′

c = uc + ua and u′
d = ud + ub . Then τ(D′, u′) ≥ τ(D, u) .

PROOF: Let S ′ be a nontrivial source of D′ . For each of the five possible values of the
intersection S ′ ∩ {y, s, z} , we show next that u′(∂′S ′) = u(∂S) for some nontrivial source S
of D .

Case i: S ′ ∩ {y, s, z} = ∅ . Then S ′ is a nontrivial source of D and ∂S ′ = ∂′S ′ . Hence
u′(∂′S ′) = u(∂S ′) .

Case ii: S ′ ∩{y, s, z} = {y, s, z} . Then S ′+ r is a nontrivial source of D and ∂(S ′+ r) = ∂′S ′ .
Hence u′(∂′S ′) = u(∂(S ′ + r) .

Case iii: S ′∩{y, s, z} = {y} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′−a . Moreover,
c ∈ ∂S ′ but d /∈ ∂S ′ , whence u′(∂′S ′) = u′(∂S ′−a) = u′(∂S ′−a−c)+u′

c = u(∂S ′−a−c)+u′
c =

u(∂S ′)− ua − uc + u′
c = u(∂S ′) .

Case iv: S ′∩{y, s, z} = {z} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′−b . Moreover,
d ∈ ∂S ′ but c /∈ ∂S ′ , whence u′(∂′S ′) = u′(∂S ′−b) = u′(∂S ′−b−d)+u′

d = u(∂S ′−b−d)+u′
d =

u(∂S ′)− ub − ud + u′
d = u(∂S ′) .

Case v: S ′ ∩ {y, s, z} = {y, z} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ − a − b .
Moreover, c ∈ ∂S ′ and d ∈ ∂S ′ , whence u′(∂′S ′) = u′(∂S ′ − a− b) = u′(∂S ′ − a− b− c− d) +
u′
c + u′

d = u(∂S ′ − a− b− c− d) + u′
c + u′

d = u(∂S ′)− ua − ub − uc − ud + u′
c + u′

d = u(∂S ′) . 2

Proposition 7.6 (cuts for pair of alternating triplets) Let (y, r, z) and (y, s, z) be two al-
ternating triplets in a capacitated digraph (D, u) . Suppose that a := yr and b := zr are
the legs of the first triplet and d := sy and c := sz are the legs of the second triplet. Let
D′ := D − r and let u′ be the capacity vector for D′ that coincides with u on all arcs of
D − r except d and c and has u′

d = ud + ub and u′
c = uc + ua . Then τ(D′, u′) ≥ τ(D, u) .

PROOF: Let S ′ be a nontrivial source of D′ . For each of the five possible values of the
intersection S ′ ∩ {y, s, z} , we show next that u′(∂′S ′) = u(∂S) for some nontrivial source S
of D .

Case i: S ′ ∩ {y, s, z} = ∅ . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ . Hence
u′(∂′S ′) = u(∂S ′) .

Case ii: S ′ ∩{y, s, z} = {y, s, z} . Then S ′+ r is a nontrivial source of D and ∂′S ′ = ∂(S ′+ r) .
Hence u′(∂′S ′) = u(∂(S ′ + r)) .
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Case iii: S ′ ∩ {y, s, z} = {y, s} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ − a .
Moreover, c ∈ ∂S ′ but d /∈ ∂S ′ , whence u′(∂′S ′) = u′(∂S ′ − a) = u′(∂S ′ − a − c) + u′

c =
u(∂S ′ − a− c) + u′

c = u(∂S ′)− ua − uc + u′
c = u(∂S ′) .

Case iv: S ′ ∩ {y, s, z} = {z, s} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ − b .
Moreover, d ∈ ∂S ′ but c /∈ ∂S ′ , whence u′(∂′S ′) = u′(∂S ′ − b) = u′(∂S ′ − b − d) + u′

d =
u(∂S ′ − b− d) + u′

d = u(∂S ′)− ub − ud + u′
d = u(∂S ′) .

Case v: S ′ ∩ {y, s, z} = {s} . Then S ′ is a nontrivial source of D and ∂′S ′ = ∂S ′ . Hence
u′(∂′S ′) = u(∂S ′) . 2

Proposition 7.7 (joins for serial open triplet) Let (y, r, z) be a serial open triplet in a
digraph D . Suppose that a := yr and b := rz are the legs of the triplet. Let f := yz and
D′ := (D − r) + f . For any join J ′ of D′ , if f ∈ J ′ then J ′ − f + a+ b is a join of D and
if f /∈ J ′ then J ′ is a join of D .

PROOF: Let J ′ be a join of D′ and let S be a nontrivial source of D . For each of the four
possible values of the intersection S ∩ {y, r, z} , we argue next that (J ′ − f + a + b) ∩ ∂S or
J ′ ∩ ∂S is nonempty.

Case i: S ∩{y, r, z} = ∅ . Then ∂S = ∂′S and therefore (J ′ − f)∩ ∂S = J ′ ∩ ∂S = J ′ ∩ ∂′S ̸= ∅
since S is a nontrivial source of D′ . In particular, (J ′ − f + a+ b)∩ ∂S ̸= ∅ and J ′ ∩ ∂S ̸= ∅ .

Case ii: S ∩{y, r, z} = {y, r, z} . Then ∂S = ∂′(S− r) and therefore (J ′ − f)∩ ∂S = J ′ ∩ ∂S =
J ′∩∂′(S−r) ̸= ∅ since S−r is a nontrivial source of D′ . In particular, (J ′−f+a+b)∩∂S ̸= ∅
and J ′ ∩ ∂S ̸= ∅ .

Case iii: S ∩ {y, r, z} = {y} . Clearly (J ′ − f + a + b) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ . In addition,
∂S = ∂′S− f + a and therefore J ′ ∩ ∂S = J ′ ∩ (∂′S− f + a) = J ′ ∩ (∂′S+ a) provided f /∈ J ′ .
Finally, J ′ ∩ (∂′S + a) = J ′ ∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ .

Case iv: S ∩ {y, r, z} = {y, r} . Clearly (J ′ − f + a + b) ∩ ∂S ⊇ {b} ∩ ∂S ̸= ∅ . Now suppose
that f /∈ J ′ and note that ∂S = ∂′(S − r)− f + b . Then J ′ ∩ ∂S = J ′ ∩ (∂′(S − r)− f + b) =
J ′ ∩ (∂′(S − r) + b) = J ′ ∩ ∂′(S − r) ̸= ∅ since S − r is a nontrivial source of D′ . 2

Proposition 7.8 (joins for serial closed triplet) Let (y, r, z) be a serial closed triplet in a
digraph D . Suppose that a := yr and b := rz are the legs of the triplet and f := yz is
the base of the triplet. Let D′ := D − r . For any join J ′ of D′ , both J ′ − f + a+ b and J ′

are joins of D .

PROOF: Let J ′ be a join of D′ and let S be a nontrivial source of D . For each of the four
possible values of the intersection S ∩ {y, r, z} , we argue next that (J ′ − f + a+ b)∩ ∂S and
J ′ ∩ ∂S are nonempty.

Case i: S ∩{y, r, z} = ∅ . Then ∂S = ∂′S and therefore (J ′ − f)∩ ∂S = J ′ ∩ ∂S = J ′ ∩ ∂′S ̸= ∅
since S is a nontrivial source of D′ . In particular, (J ′ − f + a+ b)∩ ∂S ̸= ∅ and J ′ ∩ ∂S ̸= ∅ .

Case ii: S ∩{y, r, z} = {y, r, z} . Then ∂S = ∂′(S− r) and therefore (J ′ − f)∩ ∂S = J ′ ∩ ∂S =
J ′∩∂′(S−r) ̸= ∅ since S−r is a nontrivial source of D′ . In particular, (J ′−f+a+b)∩∂S ̸= ∅
and J ′ ∩ ∂S ̸= ∅ .

Case iii: S ∩ {y, r, z} = {y} . Clearly (J ′ − f + a + b) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ . In addition,
∂S = ∂′S + a and therefore J ′ ∩ ∂S = J ′ ∩ (∂′S + a) = J ′ ∩ ∂′S ̸= ∅ since S is a nontrivial
source of D′ .
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Case iv: S ∩ {y, r, z} = {y, r} . Clearly (J ′ − f + a + b) ∩ ∂S ⊇ {b} ∩ ∂S ̸= ∅ . In addition,
∂S = ∂′(S − r) + b and therefore J ′ ∩ ∂S = J ′ ∩ (∂′(S − r) + b) = J ′ ∩ ∂′(S − r) ̸= ∅ since
S − r is a nontrivial source of D′ . 2

Proposition 7.9 (joins for alternating closed triplet) Let (y, r, z) be an alternating
closed triplet in a digraph D . Suppose that a := yr and b := zr are the legs and f := yz
is the base of the triplet. Let D′ := D − r . For any join J ′ of D′ , both J ′ − f + a and
J ′ + b are joins of D .

PROOF: Let J ′ be a join of D′ and let S be a nontrivial source of D . For each of the four
possible values of the intersection S ∩ {y, r, z} , we argue next that (J ′ − f + a) ∩ ∂S and
(J ′ + b) ∩ ∂S are nonempty.

Case i: S ∩{y, r, z} = ∅ . Then ∂S = ∂′S and therefore (J ′ − f)∩ ∂S = J ′ ∩ ∂S = J ′ ∩ ∂′S ̸= ∅
since S is a nontrivial source of D′ . In particular, (J ′−f +a)∩∂S ̸= ∅ and (J ′+ b)∩∂S ̸= ∅ .

Case ii: S ∩{y, r, z} = {y, r, z} . Then ∂S = ∂′(S− r) and therefore (J ′ − f)∩ ∂S = J ′ ∩ ∂S =
J ′ ∩ ∂′(S− r) ̸= ∅ since S− r is a nontrivial source of D′ . In particular, (J ′ − f + a)∩ ∂S ̸= ∅
and (J ′ + b) ∩ ∂S ̸= ∅ .

Case iii: S ∩{y, r, z} = {y} . Then (J ′−f +a)∩∂S ⊇ {a}∩∂S ̸= ∅ . In addition, ∂S = ∂′S+a
and therefore (J ′ + b) ∩ ∂S = J ′ ∩ ∂S = J ′ ∩ (∂′S + a) = J ′ ∩ ∂′S ̸= ∅ since S is a nontrivial
source of D′ .

Case iv: S ∩ {y, r, z} = {y, z} . Then (J ′ − f + a) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ and (J ′ + b) ∩ ∂S ⊇
{b} ∩ ∂S ̸= ∅ . 2

Proposition 7.10 (join for alternating open triplet) Let (y, r, z) be an alternating open
triplet in a 2-connected digraph D . Suppose that a := yr and b := zr are the legs of the
triplet. Let f := yz and let D′ := (D − r) + f . For any minimal join J ′ of D′ , if f ∈ J ′

then J ′ − f + a is a join of D .

PROOF: Let J ′ be a minimal join of D′ such that J ′ ∋ f . Let S be a nontrivial source
of D . For each of the five possible values of the intersection S ∩ {y, r, z} we argue next that
(J ′ − f + a) ∩ ∂S is nonempty.

Case i: S ∩ {y, r, z} = ∅ . Then ∂S = ∂′S and therefore (J ′ − f + a) ∩ ∂S = (J ′ − f) ∩ ∂S =
J ′ ∩ ∂S = J ′ ∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ .

Case ii: S ∩ {y, r, z} = {y, r, z} . Then ∂S = ∂′(S − r) and therefore (J ′ − f + a) ∩ ∂S =
(J ′ − f) ∩ ∂S = J ′ ∩ ∂S = J ′ ∩ ∂′(S − r) ̸= ∅ since S − r is a nontrivial source of D′ .

Case iii: S ∩ {y, r, z} = {y} . Then (J ′ − f + a) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ .

Case iv: S ∩ {y, r, z} = {y, z} . Same argument as in case iii.

Case v: S ∩ {y, r, z} = {z} . We will show that (J ′ − f) ∩ ∂S is nonempty. Unlike in the
previous cases, S is a not a source of D′ , but ∂′S = ∂S − b + f . Moreover, since the join J ′

is minimal, there exists a nontrivial source Y of D′ such that

J ′ ∩ ∂′Y = {f}.

Of course Y ∩ {y, z} = {y} . Clearly, Y is also a source of D and ∂Y = ∂′Y − f + a , whence

(J ′ − f) ∩ ∂Y = (J ′ − f) ∩ (∂′Y − f + a) = (J ′ − f) ∩ ∂′Y = ∅. (7)
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Since S and Y are sources of D , also U := S∪Y and I := S∩Y are sources of D . Moreover,
∂U ∪ ∂I = ∂S ∪ ∂Y and ∂U ∩ ∂I = ∂S ∩ ∂Y . This leads to the modular relation

|∂U |+ |∂I| = |∂S|+ |∂Y | .

The equality is preserved when we take the intersection of each term with an arbitrary set
of arcs. In particular,

|(J ′ − f) ∩ ∂U |+ |(J ′ − f) ∩ ∂I| = |(J ′ − f) ∩ ∂S|+ |(J ′ − f) ∩ ∂Y | .

Since (J ′ − f) ∩ ∂Y = ∅ by virtue of (7), the modular relation is reduced to

|(J ′ − f) ∩ ∂U |+ |(J ′ − f) ∩ ∂I| = |(J ′ − f) ∩ ∂S| .

We shall prove next that either (J ′ − f)∩ ∂U is nonempty or (J ′ − f)∩ ∂I is nonempty. This
will imply that (J ′ − f) ∩ ∂S is nonempty and thereby conclude the analysis of case v.

Subcase v.1: ∂U ̸= {a, b} . Of course ∂U ⊃ {a, b} . The set U is not only a source of D but
also a source of D′ , since f has both ends in U . Moreover, ∂′U = ∂U − a − b . Hence, U is
nontrivial in D′ and therefore J ′∩∂′U ̸= ∅ . Finally, (J ′− f)∩∂U = (J ′− f)∩ (∂′U +a+ b) =
(J ′ − f) ∩ ∂′U = J ′ ∩ ∂′U ̸= ∅ , as claimed.

Subcase v.2: ∂U = {a, b} . Let G be the graph underlying D . Since G is 2-connected, there
are two internally disjoint paths from y to z in G . Hence, there is a path P from y to z in
G − r . Of course, P can be seen as a path from y to z in D − r . All the vertices of P are
in U since ∂U = ∂{r} . Since the origin of P is in Y ∖ S while the terminus is in S ∖ Y ,
some arc vw of P has one end in Y and the other in U ∖ Y . Since Y is a source, v ∈ Y and
w ∈ U ∖ Y . Since U ∖ Y ⊆ S and S is a source of D , thus v ∈ S . We conclude that v ∈ I
and vw ∈ ∂I . But I is also a source of D′ and ∂′I = ∂I , whence I is nontrivial in D′ and
therefore J ′ ∩ ∂′I ̸= ∅ . Finally, (J ′ − f) ∩ ∂I = (J ′ − f) ∩ ∂′I = J ′ ∩ ∂′I ̸= ∅ , as claimed. 2

Proposition 7.11 (join for alternating open triplet) Let (y, r, z) be an alternating open
triplet in a digraph D . Suppose that a := yr and b := zr are the legs of the triplet. Let
f := yz and D′ := (D − r) + f . For any join J ′ of D′ , if f /∈ J ′ then J ′ + b is a join of D .

PROOF: Let J ′ be a join of D′ such that J ′ ̸∋ f . Let S be a nontrivial source of D . For each
of the five possible values of the intersection S∩{y, r, z} we argue next that (J ′+b)∩∂S ̸= ∅ .

Case i: S ∩ {y, r, z} = ∅ . Then ∂S = ∂′S and therefore (J ′ + b)∩ ∂S = J ′ ∩ ∂S = J ′ ∩ ∂′S ̸= ∅
since S is a nontrivial source of D′ .

Case ii: S ∩ {y, r, z} = {y, r, z} . Then ∂S = ∂′(S − r) and therefore (J ′ + b)∩ ∂S = J ′ ∩ ∂S =
J ′ ∩ ∂′(S − r) ̸= ∅ since S − r is a nontrivial source of D′ .

Case iii: S ∩ {y, r, z} = {y} . Then ∂S = ∂′S − f + a and therefore (J ′ + b) ∩ ∂S = J ′ ∩ ∂S =
J ′ ∩ (∂′S − f + a) = J ′ ∩ (∂′S − f) . Suppose f /∈ J ′ . Then J ′ ∩ (∂′S − f) = J ′ ∩ ∂′S ̸= ∅ since
S is a nontrivial source of D′ .

Case iv: S ∩ {y, r, z} = {y, z} . Then (J ′ + b) ∩ ∂S ⊇ {b} ∩ ∂S ̸= ∅ .

Case v: S ∩ {y, r, z} = {z} . Same argument as in case iv. 2

Proposition 7.12 (joins for pair of alternating open triplets) Let (y, r, z) and (y, s, z)
be alternating open triplets in a digraph D . Suppose that a := yr and b := zr are
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the legs of the first triplet and c := ys and d := zs are the legs of the second triplet. Let
D′ := D − r . For any join J ′ of D′ , both J ′ + a and J ′ + b as well as J ′ + a− c + d and
J ′ + b− d+ c are joins of D .

PROOF: Let J ′ be a join of D′ and S a nontrivial source of D . For each of the seven possible
values of the intersection S ∩ {y, r, s, z} we argue next that J ′ + a and J ′ + b as well as
(J ′ + a− c+ d) ∩ ∂S and (J ′ + b− d+ c) ∩ ∂S are nonempty.

Case i: S ∩ {y, r, s, z} = ∅ . Then ∂S = ∂′S and therefore (J ′ − c − d) ∩ ∂S = J ′ ∩ ∂S =
J ′ ∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ . In particular, J ′ + a and J ′ + b as well as
(J ′ + a− c+ d) ∩ ∂S and (J ′ + b− d+ c) ∩ ∂S are nonempty.

Case ii: S ∩ {y, r, s, z} = {y, r, s, z} . Then ∂S = ∂′(S − r) and therefore (J ′ − c − d) ∩ ∂S =
J ′ ∩ ∂S = J ′ ∩ ∂′(S − r) ̸= ∅ since S − r is a nontrivial source of D′ . In particular, J ′ + a and
J ′ + b as well as (J ′ + a− c+ d) ∩ ∂S and (J ′ + b− d+ c) ∩ ∂S are nonempty.

Case iii: S ∩ {y, r, s, z} = {y} . Then ∂S = ∂′S + a and therefore J ′ ∩ ∂S = J ′ ∩ (∂′S + a) =
J ′∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ . In particular, (J ′+ a)∩ ∂S and (J ′+ b)∩ ∂S
are nonempty. In addition, (J ′ + a− c+ d) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ and (J ′ + b− d+ c) ∩ ∂S ⊇
{c} ∩ ∂S ̸= ∅ .

Case iv: S ∩ {y, r, s, z} = {z} . Then ∂S = ∂′S + b and therefore J ′ ∩ ∂S = J ′ ∩ (∂′S + b) =
J ′∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ . In particular, (J ′+ a)∩ ∂S and (J ′+ b)∩ ∂S
are nonempty. In addition, (J ′ + a− c+ d) ∩ ∂S ⊇ {d} ∩ ∂S ̸= ∅ and (J ′ + b− d+ c) ∩ ∂S ⊇
{b} ∩ ∂S ̸= ∅ .

Case v: S ∩ {y, r, s, z} = {y, s, z} . Then (J ′ + a) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ and (J ′ + b) ∩ ∂S ⊇
{b} ∩ ∂S ̸= ∅ . Similarly, (J ′ + a− c+ d) ∩ ∂S ̸= ∅ and (J ′ + b− d+ c) ∩ ∂S ̸= ∅ .

Case vi: S ∩ {y, r, s, z} = {y, z} . Same argument as in case v.

Case vii: S ∩ {y, r, s, z} = {y, r, z} . Then ∂S = ∂′(S − r) + a + b and so J ′ ∩ ∂S = J ′ ∩
(∂′(S − r) + a+ b) = J ′ ∩ ∂′(S − r) ̸= ∅ since S − r is a nontrivial source of D′ . In particular,
(J ′ + a) ∩ ∂S ̸= ∅ and (J ′ + b) ∩ ∂S ̸= ∅ . In addition, (J ′ + a − c + d) ∩ ∂S ⊇ {d} ∩ ∂S ̸= ∅
and (J ′ + b− d+ c) ∩ ∂S ⊇ {c} ∩ ∂S ̸= ∅ . 2

Proposition 7.13 (joins for pair of alternating open triplets) Let (y, r, z) and (y, s, z)
be alternating open triplets in a digraph D . Suppose that a := yr and b := zr are
the legs of the first triplet and d := sy and c := sz are the legs of the second triplet. Let
D′ := D − r . For any join J ′ of D′ , both J ′ + a and J ′ + b as well as J ′ + a− c + d and
J ′ + b− d+ c are joins of D .

PROOF: Let J ′ be a join of D′ and S a nontrivial source of D . For each of the six possible
values of the intersection S ∩ {y, r, s, z} we argue next that J ′ + a and J ′ + b as well as
(J ′ + a− c+ d) ∩ ∂S and (J ′ + b− d+ c) ∩ ∂S are nonempty.

Case i: S ∩ {y, r, s, z} = ∅ . Then ∂S = ∂′S and therefore (J ′ − c − d) ∩ ∂S = J ′ ∩ ∂S =
J ′ ∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ . In particular, J ′ + a and J ′ + b as well as
(J ′ + a− c+ d) ∩ ∂S and (J ′ + b− d+ c) ∩ ∂S are nonempty.

Case ii: S ∩ {y, r, s, z} = {y, r, s, z} . Then ∂S = ∂′(S − r) and therefore (J ′ − c − d) ∩ ∂S =
J ′ ∩ ∂S = J ′ ∩ ∂′(S − r) ̸= ∅ since S − r is a nontrivial source of D′ . In particular, J ′ + a and
J ′ + b as well as (J ′ + a− c+ d) ∩ ∂S and (J ′ + b− d+ c) ∩ ∂S are nonempty.

Case iii: S ∩ {y, r, s, z} = {y, s} . Then ∂S = ∂′S + a and therefore J ′ ∩ ∂S = J ′ ∩ (∂′S + a) =
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J ′∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ . In particular, (J ′+ a)∩ ∂S and (J ′+ b)∩ ∂S
are nonempty. In addition, (J ′ + a− c+ d) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ and (J ′ + b− d+ c) ∩ ∂S ⊇
{c} ∩ ∂S ̸= ∅ .

Case iv: S ∩ {y, r, s, z} = {z, s} . Then ∂S = ∂′S + b and therefore J ′ ∩ ∂S = J ′ ∩ (∂′S + b) =
J ′∩ ∂′S ̸= ∅ since S is a nontrivial source of D′ . In particular, (J ′+ a)∩ ∂S and (J ′+ b)∩ ∂S
are nonempty. In addition, (J ′ + a− c+ d) ∩ ∂S ⊇ {d} ∩ ∂S ̸= ∅ and (J ′ + b− d+ c) ∩ ∂S ⊇
{b} ∩ ∂S ̸= ∅ .

Case v: S ∩ {y, r, s, z} = {y, s, z} . Then (J ′ + a) ∩ ∂S ⊇ {a} ∩ ∂S ̸= ∅ and (J ′ + b) ∩ ∂S ⊇
{b} ∩ ∂S ̸= ∅ . Similarly, (J ′ + a− c+ d) ∩ ∂S ̸= ∅ and (J ′ + b− d+ c) ∩ ∂S ̸= ∅ .

Case vi: S ∩ {y, r, s, z} = {s} . Then ∂S = ∂′S and so J ′ ∩ ∂S = J ′ ∩ ∂′S ̸= ∅ since S is a
nontrivial source of D′ . In particular, (J ′ + a) ∩ ∂S ̸= ∅ and (J ′ + b) ∩ ∂S ̸= ∅ . In addition,
(J ′ + a− c+ d) ∩ ∂S ⊇ {d} ∩ ∂S ̸= ∅ and (J ′ + b− d+ c) ∩ ∂S ⊇ {c} ∩ ∂S ̸= ∅ . 2

A Appendix

This appendix establishes some notational conventions and lists the definitions of standard terms in
graph theory.

A.1 Notational conventions

For any set S and any objects s and s′ , we denote by S − s the set S ∖ {s} and by S − s − s′ the
set (S − s) − s′ . (If s /∈ S then, of course, S − s = S .) For any object t , we denote by S + t the set
S ∪ {t} . (If t ∈ S then, of course, S + t = S .) Similarly, we denote by S − s+ t the set (S − s) + t .

A.2 Graph theory terminology

A graph, or undirected graph, is a pair (V,E) of sets where V is a finite set of vertices and E is a
set of unordered pairs of vertices. Each element of E is an edge. An edge of the form {v, w} can be
denoted by vw or wv . The vertices v and w are the ends of edge vw . The sets of vertices and edges
of a graph G will be denoted by V (G) and E(G) respectively.

Clearly, the two ends of every edge are distinct and two different edges cannot have the same pair of
ends. In other words, graphs have no loops and no parallel edges.

Two vertices v and w of a graph are adjacent if vw is an edge. If v and w are adjacent, we say that
v is a neighbor of w . An edge is said to be incident to both its ends. The degree of a vertex v is the
number of edges incident to v .

A graph is complete if every pair of its vertices is an edge. Any complete graph on n vertices is
denoted by Kn .

A path in a graph is any sequence (v0, v1, v2, . . . , vk) of pairwise distinct vertices such that vi is
adjacent to vi−1 for i = 1, 2, . . . , k . Vertex v0 is the origin and vertex vk is the terminus of the path.
The vertices v1 , v2 , . . . , vk−1 are internal to the path. An edge of the path is any edge of the form
vi−1vi . The set of edges of a path P is denoted by E(P ) . The length of path P is the number |E(P )| .

A path from v to w is any path with origin v and terminus w . Two paths are internally disjoint if
they have to internal vertices in common.

A circuit in a graph is any sequence (v0, v1, v2, . . . , vk−1, vk) of vertices such that k ≥ 3 , vk = v0 , the
vertices v0 , v1 , . . . , vk−1 are pairwise distinct, and vertex vi is adjacent to vi−1 for i = 1, 2, . . . , k . An
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edge of the circuit is any edge of the form vi−1vi . The sets of vertices and edges of a circuit C are
denoted by V (C) and E(C) respectively. The length of circuit C is the number |E(C)| .

Given a circuit (v0, v1, . . . , vk−1, vk) , any sequence (vi, vi+1, . . . , vk, v1, . . . , vi−1, vi) is also a circuit.
We regard all such sequences as equivalent representations of the circuit.

A graph is connected if, for any two vertices s and t , there exists a path from s to t . A vertex v of a
connected graph G is a cut vertex if G− v is disconnected.

A graph with more than two vertices is 2-connected if, for any two vertices s and t , there are two
internally disjoint paths from s to t . A graph with more than two vertices is 2-connected if and only
if it is connected and has no cut vertices.

A subgraph of a graph G is any graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) . For any subset
E′ of E(G) , we denote by G− E′ the subgraph (V (G), E(G)∖ E′) . For any subset V ′ of V (G) , we
denote by G − V ′ the subgraph (V (G) ∖ V ′, E(G) ∖ E′) , where E′ is the set of all edges of G that
have at least one end in V ′ .

For any edge e and any vertex v of a graph G , the subgraphs G− {e} and G− {v} are denoted by
G − e and G − v respectively. For any two vertices v and w of G , the graph (V (G), E(G) + vw) is
denoted by G+ vw .
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